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Abstract: Remote sensing of high-latitude forests phenology is essential for understanding the
global carbon cycle and the response of vegetation to climate change. The normalized difference
vegetation index (NDVI) has long been used to study boreal evergreen needleleaf forests (ENF)
and deciduous broadleaf forests. However, the NDVI-based growing season is generally reported
to be longer than that based on gross primary production (GPP), which can be attributed to the
difference between greenness and photosynthesis. Instead of introducing environmental factors
such as land surface or air temperature like previous studies, this study attempts to make VI-based
phenology more consistent with photosynthesis dynamics through applying a light use efficiency
model. NDVI (MOD13C2) was used as a proxy for both fractional of absorbed photosynthetically
active radiation (APAR) and light use efficiency at seasonal time scale. Results show that VI-based
phenology is improved towards tracking seasonal GPP changes more precisely after applying the
light use efficiency model compared to raw NDVI or APAR, especially over ENF.
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1. Introduction

Phenology is the study of the timing of vegetation growing/senescence events based on
vegetation seasonal dynamics [1]. Satellite observations of land surface provides spatially-continuous
time-resolved reflectance data of terrestrial vegetation. Therefore, extracting phenological timing from
time-series remote sensing data is an effective tool for monitoring large-scale vegetation dynamics,
especially where in-situ observations are lacking (e.g., [2]). Generally, remote sensing of vegetation
phenology is based on the seasonal cycle of reflectance-based vegetation indices (VIs). VIs have been
regarded as proxies of the green biomass of vegetation canopy, carrying information of leaf greenness
and canopy structure [3]. Because VIs often show clear seasonal cycles over mid-high latitude forests,
due to seasonal changes of temperature and precipitation [4,5], numerous researches have utilized VI
time-series curves to study the phenology of such vegetation.

Among all the reflectance-based VIs, the normalized difference vegetation index (NDVI) has been
most widely used to understand vegetation phenology at both regional and global scales. NDVI is a
proxy of green biomass, which is related to canopy photosynthesis. Many studies used NDVI to track
seasonal dynamics of carbon assimilation, comparing NDVI with gross primary production (GPP)
which represents the photosynthetic carbon uptake [6,7] over boreal forests. However, NDVI-based
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durations of growing season and photosynthesis season have been found to be significantly longer
than those derived from both tower-based and simulated GPP [8,9]. As a matter of fact, NDVI
increases earlier in the spring and decreases later in the fall than GPP. As a result, start of season (SOS)
date determined by NDVI is earlier than that determined by GPP while end of season (EOS) date
appears to be later. Thus, NDVI is considered not sensitive for tracking photosynthesis dynamics of
vegetation alone.

However, a direct comparison between NDVI-based phenology and GPP-based phenology may
be not reasonable. GPP can be described by the light use efficiency (LUE) model as follows:

GPP = PAR × fPAR × LUE = APAR × LUE, (1)

where PAR stands for photosynthetically active radiation (i.e., shortwave solar radiation between
400 nm and 700 nm) and fPAR stands for fraction of absorbed PAR (APAR). LUE model is a conceptual
model originated from [10] based on physiological process of light absorption (APAR) and conversion
(LUE) [11]. According to the LUE model, dynamics of GPP are jointly controlled by changes of PAR,
fPAR and LUE. At seasonal scale, PAR is related to solar zenith angle and fPAR is determined by
canopy structure and leaf greenness, which are directly related to NDVI, while LUE dynamics are more
complex because it is related not only to vegetation growing status but to environmental (e.g., radiation,
temperature and soil water) stress as well. Thus, in order to use NDVI-based phenology to track
photosynthesis dynamics, one should also take seasonal cycles of PAR and LUE into consideration.

Because VIs have been used as a robust proxy of fPAR [12] while PAR can be obtained from
external data sources, many studies have used VI × PAR as a proxy for APAR [8,9]. However, Moderate
Resolution Imaging Spectroradiometer- (MODIS-, onboard Aqua and Terra satellite instruments) based
APAR is found to overestimate both the greenness season duration and the photosynthesis duration [8],
and APAR is temporally biased compared to GPP [13], indicating that VI-based APAR is still not an
appropriate proxy for carbon assimilation. Thus, LUE might be the main reason for inconsistencies
between APAR-based phenology and GPP-based phenology.

LUE can be estimated through narrow-band VIs such as photochemical reflectance index
(PRI) [14,15] or by introducing maximum LUE, temperature and precipitation stress factors [16].
However, seasonal changes of LUE that are similar to seasonal VI patterns have been observed by
studies over northern hemisphere plants (e.g., [17]). Although directly estimating LUE from VI lacks
physically-based theoretical basis, some empirical relation may exist between seasonal VI and LUE.
Stagakis, et al. [18] reported a significant linear correlation (determination coefficient, r2 = 0.78) between
seasonal NDVI and LUE. Wu et al. [19] found a significant linear relationship between VIs (NDVI and
enhanced vegetation index, EVI) and LUE over maize and then used VIs as proxies for LUE at seasonal
scale. Based on this scope, a VI-based LUE model is developed:

GPP = m × VI × VI × PAR, (2)

where VI could be either NDVI or EVI and m is an empirical adjust parameter which is determined
from the calibration dataset. Favorable results have been reported for this model by several studies
(e.g., [19,20]).

Most of the applications of this model on GPP estimation are site-based, where in-situ flux-based
GPP data that are used to calculate parameter m are available. However, for phenology applications, it
is not necessary to calculate m from calibration datasets because in these situations we focus on the
seasonal fluctuations of the indicators we use rather than their absolute values. If VI is able to be a proxy
of LUE at seasonal scale, as is the case reported by previous studies, the VI-based LUE model should
be able to improve the VI-based phenology towards tracking photosynthesis dynamics more precisely.
Based on this assumption, this study aims to evaluate the performance of VI-based LUE model in
tracking the seasonal cycle of GPP and to use this model to improve VI-based vegetation phenology.
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2. Materials and Methods

2.1. Region and Vegetation Types of Interest

In this study, we focused on the high-latitude forests (between 50◦N and 60◦N) over the Northern
Hemisphere. This area mainly includes evergreen forests and deciduous forests. These forests play an
important role in the global carbon cycle [21], making a substantial contribution to global carbon sink.
Besides, these forests are sensitive to global warming, showing an extending growing season under the
influence of increasing winter and the spring temperatures [22]. The forests are divided into three sets
according to their region and vegetation type, i.e., North American evergreen needleleaf forests (ENF),
Europe-Asia (Eurasia) ENF and Eurasia deciduous broadleaf forests (DBF). The landcover information
was obtained from MODIS land cover product (MCD12C1, 2011).

2.2. NDVI, GPP, and Radiation Datasets

MODIS vegetation index product (MOD13C2) was used in this study because compared
to other datasets (e.g., GIMMS NDVI3g), MODIS NDVI is based on narrow-band calculations
specifically designed for vegetation monitoring. In addition, MOD13C2 is quality controlled
global-gridded (0.05◦ × 0.05◦ spatial resolution) monthly average product, which benefits from
improved radiometric sensitivity and atmospheric/geometric (bi-directional radiation distribution
function, BRDF) corrections [23].

For GPP, we used monthly global products provided by the Max Planck Institute’s Biogeochemical
integration group (MPI-BGC). The MPI-BGC GPP products were generated through a machine learning
algorithm upscaling flux-tower-based GPP into global 0.5◦ × 0.5◦ products [24]. Here we did not use
MODIS GPP products (MOD17A2) because MOD17A2 is also based on LUE model and takes MODIS
NDVI as a major input. Thus results might be biased when comparing MODIS GPP and VI-based
LUE model.

The incoming shortwave radiation (SWR) was used in this study as a proxy for PAR. Monthly
global SWR data (gridded 1◦ × 1◦) provided by the National Aeronautics and Space Administration
Clouds and the Earth’s Radiant Energy System (NASA-CERES, a series of satellite instruments) are
available at https://eosweb.larc.nasa.gov/order-data.

2.3. Data Processing and Growing Season Determination

Monthly NDVI, GPP and radiation data covering a three-year period from 2009 to 2011 were
used in this study. The temporal range was determined according to time (the end of 2011) of the
latest publicly-available MPI-BGC GPP product. VI and radiation products were resampled to the
spatial resolution of GPP product. MOD13C2 products were resampled by mean of regional averaging
and CERES SWR products were resample by mean of bilinear interpolation. Then single-pixel-based
temporal analyses were conducted at the spatial resolution of 0.5◦ × 0.5◦.

To determine the growing season, we used a method proposed by Jeong et al. [22]. This method
calculates the dates for SOS and EOS using a threshold of annual maximum of the selected indicators
which are NDVI, NDVI × PAR, NDVI2 × PAR and GPP for this study. Seasonal values were firstly
normalized to the range [0, 1] using annual maximum and minimum, then a 6-degree polynomial
equation was used to fit the seasonal cycle curve and finally the spring and fall dates were calculated
according to the selected threshold. In this study we used a threshold of 0.5.

3. Results

Four indicators were used in this study to represent the seasonal vegetation dynamics, including
NDVI, NDVI × PAR, NDVI2 × PAR and GPP. Normalized regional-mean seasonal cycles from 2009 to
2011 of the selected indicators are shown in Figure 1 by different regions and vegetation types.

https://eosweb.larc.nasa.gov/order-data
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Figure 1. Seasonal patterns of normalized difference vegetation index (NDVI), NDVI × PAR 
(photosynthetically active radiation, as a proxy for APAR), NDVI2 × PAR (vegetation index-based 
light use efficiency model) and gross primary production (GPP) from 2009 to 2011. Error bars indicate 
regional standard deviations for the specified vegetation types, i.e., North America evergreen 
needleleaf forest (ENF), Eurasia ENF and Eurasia deciduous broadleaf forest (DBF). Results are 
ordered and displayed by year (subfigures a, d and g for 2009, b, d and h for 2010 and c, f and i for) 
and biome (subfigures (a–c) for North America ENF, (d–f) for Eurasia ENF and (g–i) for Eurasia DBF). 

According to Figure 1, seasonal patterns of the four indicators stayed similar across years, 
showing a clear seasonal cycle with single-peak around July. North America ENF and Eurasia ENF 
showed similar patterns while results for Eurasia DBF show some differences. For North America 
and Eurasia ENF, the NDVI2 × PAR curves nearly perfectly matched the GPP curves, especially 
during the growing and senescence season. The small discrepancies between the two kinds of curves 
over peak growing season (June–August) might result from the saturation effect of NDVI. Both NDVI 
and NDVI × PAR curves were found to overestimate the length of growing season, i.e., inclined earlier 
while declined later than NDVI2 × PAR and GPP. More discrepancies were found in the fall than in 
the spring among the seasonal patterns. Much steeper spring increases than fall decreases were found 
for NDVI over years while the other three indicators showed relatively symmetrical growing and 
senescence patterns (Figure 1a–f) indicating that NDVI shows more significant lag to photosynthesis 
(GPP) changes in the fall. Although NDVI × PAR (as a proxy for APAR) curves were much closer to 
NDVI2 × PAR and GPP curves in the fall, which was consistent with previous study [9], APAR failed 
to alleviate but tended to aggravate the early increase in the spring (Figure 1a,c,d). Similar results 
were reported by Walther et al. [13] when using EVI instead of NDVI. In contrast, NDVI2 × PAR 
curves correspond well to GPP curves in both spring and fall, indicating that besides APAR, LUE 
also plays an important role in the spring recovery of photosynthesis and the spring LUE changes 
might be tracked with NDVI. The similar patterns in the fall for the three indicators except for NDVI 
also indicate that radiation reduction is the main factor leading photosynthesis decrease during that 
season. Thus, the late fall decrease of NDVI compared to GPP, which is often reported (e.g., [2]), is 
expected to be alleviated when introducing radiation constraint. In addition, the regional standard 
deviations of NDVI are largely reduced after multiplying with radiation, indicating that more robust 

Figure 1. Seasonal patterns of normalized difference vegetation index (NDVI), NDVI × PAR
(photosynthetically active radiation, as a proxy for APAR), NDVI2 × PAR (vegetation index-based
light use efficiency model) and gross primary production (GPP) from 2009 to 2011. Error bars indicate
regional standard deviations for the specified vegetation types, i.e., North America evergreen needleleaf
forest (ENF), Eurasia ENF and Eurasia deciduous broadleaf forest (DBF). Results are ordered and
displayed by year (subfigures a, d and g for 2009, b, d and h for 2010 and c, f and i for) and biome
(subfigures (a–c) for North America ENF, (d–f) for Eurasia ENF and (g–i) for Eurasia DBF).

According to Figure 1, seasonal patterns of the four indicators stayed similar across years, showing
a clear seasonal cycle with single-peak around July. North America ENF and Eurasia ENF showed
similar patterns while results for Eurasia DBF show some differences. For North America and Eurasia
ENF, the NDVI2 × PAR curves nearly perfectly matched the GPP curves, especially during the growing
and senescence season. The small discrepancies between the two kinds of curves over peak growing
season (June–August) might result from the saturation effect of NDVI. Both NDVI and NDVI × PAR
curves were found to overestimate the length of growing season, i.e., inclined earlier while declined
later than NDVI2 × PAR and GPP. More discrepancies were found in the fall than in the spring among
the seasonal patterns. Much steeper spring increases than fall decreases were found for NDVI over
years while the other three indicators showed relatively symmetrical growing and senescence patterns
(Figure 1a–f) indicating that NDVI shows more significant lag to photosynthesis (GPP) changes in
the fall. Although NDVI × PAR (as a proxy for APAR) curves were much closer to NDVI2 × PAR
and GPP curves in the fall, which was consistent with previous study [9], APAR failed to alleviate but
tended to aggravate the early increase in the spring (Figure 1a,c,d). Similar results were reported by
Walther et al. [13] when using EVI instead of NDVI. In contrast, NDVI2 × PAR curves correspond well
to GPP curves in both spring and fall, indicating that besides APAR, LUE also plays an important role
in the spring recovery of photosynthesis and the spring LUE changes might be tracked with NDVI.
The similar patterns in the fall for the three indicators except for NDVI also indicate that radiation
reduction is the main factor leading photosynthesis decrease during that season. Thus, the late fall
decrease of NDVI compared to GPP, which is often reported (e.g., [2]), is expected to be alleviated
when introducing radiation constraint. In addition, the regional standard deviations of NDVI are
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largely reduced after multiplying with radiation, indicating that more robust results are expected
when using APAR or VI-based LUE model to monitor forests’ seasonal dynamics rather than using
NDVI itself.

Compared to ENF, DBF shows narrower seasonal cycles (Figure 1g–i). This is due to the fact that
in the spring DBF rely on newly grown leaves for photosynthesis while new leaves only give limited
contribution to ENF’s total photosynthesis, while in the fall DBF experiences more sharp decline of
canopy greenness than ENF. Both NDVI and APAR show broader seasonal cycles than GPP. It is shown
that for DBF, the NDVI2 × PAR curves still slightly overestimate the duration of growing season,
especially in the spring. This is possibly because photosynthesis for DBF starts only when greenness
and temperature increase to a higher level than ENF, leading more lag between spring VIs and GPP.
It might be interpreted that it is more difficult to use VIs to track seasonal LUE changes in DBF. One
possible explanation lies in that for DBF, seasonal variations of NDVI are jointly affected by changes
of canopy structure and leaf pigment while for ENF whose canopy structure shows less seasonal
dependence, NDVI variations are mainly explained by changes of canopy pigment concentration,
which is directly related to LUE. In this sense, NDVI is more reasonable a proxy for LUE in ENF, where
the VI-based LUE model performs better in the present study, than in DBF. Although monitoring
phenology over ENF is generally more difficult than over DBF using remote sensing (e.g., [25]), the
results in the present study suggest that the VI-based LUE model can track GPP dynamics more
precisely in ENF.

SOS and EOS dates derived from the four individual curves are displayed by latitude in Figure 2.
According to Figure 2, good consistency can be found among the EOS dates derived from the three
indicators except for NDVI. EOS dates derived from NDVI are generally 60 days larger and 40 days
larger than those derived from the other three indicators for North America and Eurasia respectively.
For SOS, dates derived from the four indicators are much closer. NDVI and APAR give 10–20 days’
earlier SOS dates than GPP in both North America and Eurasia. SOS dates based on the NDVI2 × PAR
curves keep consistent with those based on GPP curves across latitudes over years in America.
In Eurasia, SOS dates based on the former are generally smaller than those based on the latter,
especially at higher latitudes. This is because North America consists mainly of ENF while in Eurasia
forests are ENF-DBF mixed. In addition, EOS dates were more strongly dependent on latitude than
SOS dates, especially over Eurasian forests.
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4. Discussion

NDVI has been widely used to track seasonal dynamics of photosynthesis and phenology based
on NDVI are often compared to both flux tower measurements and remote sensing measurements.
Not surprisingly, NDVI-based growing season has been found to be longer than GPP-based growing
season. This is because, in the spring, photosynthesis lags behind leaf growth [26] while in the fall, leaf
decay lags behind photosynthesis decline [25]. In order to improve VI-based phenology, temperature,
which high-latitude forests are sensitive to and therefore dominating their phenology, is often taken
into consideration (e.g., [7]). However, for boreal forests whose phenology is mainly determined by
environmental factors, seasonal VI cycles also carry information of temperature and precipitation.
Instead of introducing environmental stress factors, the present study aims to improve NDVI-based
phenology at the perspective of using VI-based GPP estimation model.

Because NDVI has been considered as a proxy for fPAR, the key of using the VI-based LUE model
to track seasonal cycles of GPP is whether NDVI can be a reasonable proxy for LUE at seasonal scale.
Remote sensing of LUE from greenness-related VIs is challenging due to the fact that LUE is jointly
controlled by multiple factors and is sensitive to changes of environmental stress. As a matter of fact,
VIs often show obvious lag when environmental stress occurs. At short-term scale (e.g., diurnal),
where physiological factors such as non-photochemical quenching (NPQ) dominate LUE changes [15],
greenness-related VIs generally fail to track LUE changes [14]. At seasonal scale, however, both LUE
and NDVI are sensitive to canopy chlorophyll concentration [27,28]. Thus NDVI may track seasonal
changes of LUE. These facts give opportunities for using VI as a proxy for LUE at seasonal scale,
especially for phenology study. As a matter of fact, linear relationships between seasonal NDVI and
LUE has been reported by empirical analyses [18,19]. Another possible reason for why NDVI-based
phenology is improved by applying VI-based LUE model is that NDVI2 might be a good proxy for
ecosystem/apparent LUE (i.e., the ratio of GPP and PAR). Numerically, squaring NDVI gives smaller
value and the squared NDVI can be closer to actual fPAR related to GPP due to the fact that only a part
of the canopy APAR (PAR absorbed by photosynthetically related pigments) is used for photosynthesis.
Since LUE model is conceptual [11], NDVI2 × PAR might be a direct estimation of GPP regardless of
using one NDVI as proxy for fPAR while using another as proxy for LUE.

Results of the present study show that VI-based phenology is improved towards better tracking
seasonal photosynthesis (GPP) dynamics through applying a VI-based LUE model. Better performance
of the proposed method is found over ENF than DBF. This is because VI and photosynthesis have
different mutual influencing mechanisms over these two plant functional types. NDVI variations of
ENF are more controlled than those of DBF by changes of canopy pigment concentration, which is the
main factor determining canopy LUE. Using remotely sensed VIs to monitor phenology over ENF is
generally more difficult because ENF has smaller annual VI fluctuations.
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A limitation of this study is that errors of MPI-GPP were not considered although MPI-GPP is
generally considered to have overall good quality.

5. Conclusions

In this study, we investigate the feasibility of using the VI-based LUE model to track seasonal
dynamics of GPP over high-latitude forests. Our results showed that VI-based phenology of ENF
can be significantly improved through applying the VI-based LUE model. One of the potential
advantages of using VI-based LUE model to monitor photosynthesis dynamics is that apart from
VI, no external data source is required except for PAR, which can be easily obtained from satellite
or in-situ observations. Another advantage is that there is no need to estimate absolute LUE or GPP
values, neither of which can be directly obtained from remote sensing data. Several recent studies have
employed satellite-based solar-induced chlorophyll fluorescence (SIF) to track seasonal photosynthesis
cycles, as SIF has been considered as a proxy for GPP [29]. The advantage of using SIF to monitor
phenology is that it carries information of PAR, fPAR (greenness) and LUE [30]. However, as satellite
retrieval of SIF could be noisy and global long-term SIF products are lacking, VI is still the most widely
used indicator for the phenology study. Our results show the potential of using VI-based LUE model
to monitor photosynthesis dynamics more precisely.
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