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Abstract: Survey data describing land cover information such as type and diversity over several 
decades are scarce. Therefore, our capacity to reconstruct historical land cover using field data and 
archived remotely sensed data over large areas and long periods of time is somewhat limited. This 
study explores the relationship between CORONA texture—a surrogate for actual land cover type 
and complexity—with spectral vegetation indices and texture variables derived from Landsat MSS 
under the Spectral Variation Hypothesis(SVH) such as to reconstruct historical continuous land 
cover type and complexity. Image texture of CORONA was calculated using a mean occurrence 
measure while image textures of Landsat MSS were calculated by occurrence and co-occurrence 
measures. The relationship between these variables was evaluated using correlation and regression 
techniques. The reconstruction procedure was undertaken through regression kriging. The results 
showed that, as expected, texture based on the visible bands and corresponding indices indicated 
larger correlation with CORONA texture, a surrogate of land cover (correlation >0.65). In terms of 
prediction, the combination of the first-order mean of band green, second-order measure of 
tasseled cap brightness, second-order mean of Normalized Visible Index (NVI) and second-order 
entropy of NIR yielded the best model with respect to Akaike’s Information Criterion (AIC), 
r-square, and variance inflation factors (VIF). The regression model was then used in regression 
kriging to map historical continuous land cover. The resultant maps indicated the type and degree 
of complexity in land cover. Moreover, the proposed methodology minimized the impacts of 
topographic shadow in the region. The performance of this approach was compared with two 
conventional classification methods: hard classifiers and continuous classifiers. In contrast to 
conventional techniques, the technique could clearly quantify land cover complexity and type. 
Future applications of CORONA datasets such as this one could include: improved quality of 
CORONA imagery, studies of the CORONA texture measures for extracting ecological parameters 
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(e.g., species distributions), change detection and super resolution mapping using CORONA and 
Landsat MSS. 

Keywords: historical land cover; CORONA; Landsat MSS;land cover type; land cover 
complexity;spectral variation hypothesis(SVH); image texture; regression kriging 
 

1. Introduction 

One of the most important drivers of global environmental changes is anthropogenic land use 
and land cover change [1]. A clear understanding of land cover over time is crucial to forecast future 
changes and effectively manage ecosystems [2]. Therefore, reconstructed historical land cover maps 
have long been recognized as an important source of information for both scientific research (e.g., 
change detection) and to support environmental decision-making (e.g., conservation planning) [3]. 
Furthermore, appropriate spatio-temporal data on historical land cover may help scientists and 
managers understand the reasons for land cover change, investigate the impacts of land use policies 
and provide consistent land cover statistics. Numerous international research centers and programs, 
such as the U.S. Geological Survey (USGS), have prioritized the development of systems to 
reconstruct historical land cover maps in intelligent ways. Remote sensing has emerged as the most 
useful data source for generating historical land cover maps [4–6].  

Landsat archive data, particularly from the Landsat multispectral scanning system (MSS) sensor, 
have been used for producing historical land cover maps because this archive contains unique, and 
now irreplaceable, information about the historical state of land cover on the Earth’s surface [7]. In 
addition, these data are freely available to the global community via the Internet from the USGS.  

Efforts to generate historical maps of land cover have involved classifying remotely sensed 
spectra into thematic maps which commonly are formed of discrete land cover classes depicting 
broad land cover types [8]. While such approaches have yielded encouraging results, discrete 
classification might be inappropriate. This is partly because such processing results in a loss of 
information and partly because smooth transitions between land cover classes cannot be represented 
adequately [9,10]. Specifically, discrete classification techniques assign each pixel in a remotely 
sensed image to a single class, which results in a loss of information [11]. This is true when the 
“objects” in the scene of interest are both large (high resolution or H-resolution case) and small (low 
resolution or L-resolution case) relative to the pixel size [12,13]. 

To minimize the limitations of hard (or discrete) classification techniques, two common 
methods have been suggested: the so-called “soft” classification model (here used to mean 
proportion prediction in general) and the calibrated post-classification model. Soft classification 
techniques estimate the proportion of each class within each pixel using, for example, spectral 
mixture models or fuzzy classification [14]. Calibrated post-classification models can increase the 
accuracy of area estimates from remote sensing, assuming that the relationship between the true and 
estimated proportions can be modeled [13]. 

The above techniques may be used to provide a land cover proportions map that is both more 
informative and potentially more accurate than the equivalent discrete classifiers. In addition to these 
benefits, non-discrete classifiers can provide more accurate parameter estimates for ecosystem and 
climate change monitoring and detection. However, while the proportions of each class within each 
pixel may be estimated more accurately than using hard classification, these methods have some 
shortcomings that may affect the performance of land cover mapping particularly for historical data.  

The accuracy of soft classification methods depends on the spectral resolution of the satellite 
sensor data, which may affect the ability to discriminate different land covers. For example, the 
similarity in the spectral properties among non-photosynthetic vegetation, soil, and various 
impervious surface materials can make it difficult to distinguish impervious surfaces from pervious 
materials. Thus, applying soft classification may lead to over-estimation or under-estimation of the 
total area of impervious surfaces [15]. This is especially true for early satellite sensors, such as 
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Landsat MSS, which has a coarse spectral resolution (a broad band multispectral sensor). Calibrated 
post-classification models are applied in a sequential methodology; thus, the accuracy of each step 
may affect subsequent steps [16]. 

An alternative approach to generate informative continuous historical land cover maps uses the 
spectral variation hypothesis (SVH) [17]. This model assumes that spatial patterns of reflectance in 
remotely sensed imagery are likely to be correlated with spatial variation in biodiversity. Hence, 
spatial patterns of reflectance in a remotely sensed image can be used directly to provide 
information on the environment, without classification. It is noteworthy that the SVH was used 
initially to examine the correlation between plant species diversity and spectral variation derived 
from airborne panchromatic imagery [17].  

The SVH could be used to generate land cover maps that include land cover type and 
complexity (heterogeneity and homogeneity) using two important sources of variation: spectral 
variation and spatial variation. As such, the conceptual SVH model may be implemented by using 
geostatistical techniques and texture measures [4,18,19]. Image texture is an important component of 
remotely sensed images. Texture, often refers to spatial variation in the brightness of an  image 
(e.g., radiance , reflectance) and is due to spatial variation in one or a mix of the land surface, 
atmosphere or sensor field of view [20]. Land-cover classes may have different textures in remotely 
sensed images and the similarity and differences between texture and spectral brightness have great 
potential for characterizing land cover patterns, predicting land cover diversity and increasing land 
cover classification accuracy [8,21,22]. Geostatistics is based on the Theory of Regionalized Variables 
(TRV) and is applied extensively to predict values at unobserved locations. Geostatistical prediction 
uses the observed spatial dependence between data, represented by the variogram model or a 
similar function (which can be thought of as a texture measure), to minimize the linear model 
prediction error and produce zero bias [23,24].  

While the SVH is valuable for mapping biodiversity, this hypothesis has two limitations for 
generating historical land cover maps. Firstly, the main focus of SVH is tracking biodiversity, while 
classification of remotely sensed images into land cover, particularly continuous classification, is not 
well addressed. Secondly, field data are the priority of the SVH model for building the relationship 
with remotely sensed images. This is a challenging task, and in some cases impossible, when 
historical continuous land cover maps using earlier sensors, and specifically Landsat MSS. 

Given the above, historical maps or historical archives of aerial photos can be used as a 
surrogate of ground-based land cover information (e.g., pattern, type, complexity). Thus, the 
combination of aerial photography, satellite sensor imagery and historical maps could be used for 
reconstructing historical land cover maps particularly under the SVH hypothesis [17,25]. Recently, 
the United States fine spatial resolution military surveillance satellite sensor known as CORONA 
has received increasing attention [7,26,27]. The CORONA data were acquired in the period 
1961–1980 with a spatial resolution of 1 m to 10m in the panchromatic band, and were declassified in 
1995 [28]. In addition, some parts of this data archive were made freely available to the global 
community via the Internet by the USGS enabling the scientific community to produce historical 
land cover maps.  

Previous studies have used CORONA imagery for mapping forest and land cover via 
conventional techniques such as hard classification [27,29], density slicing [28,30,31] and visual 
interpretation [32–34]. A selection of these methods is presented in Table 1, which does not attempt a 
detailed review, but rather provides an overview of the variety of algorithms applied to the 
CORONA for extracting land cover and land use. 
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Table 1. Selected studies, using CORONA imagery, that illustrate the variety of conventional 
techniques used to the identify spatial distribution of land cover. 

Categories of Study Mapping Approach Objective Reference
Change detection Hard classification Impervious surface mapping [27] 
Change detection On screen interpretation Mapping pattern and dynamic of land cover [35] 

Land use/cover change Density Slicing technique Mapping Forest [30] 
Change detection Visual interpretation Change of range land [34] 

Classification Step-wise density slicing Mapping land cover [28] 
Land cover mapping Segmentation Landscape pattern features [26] 

and cover change Visual interpretation Change detection [33] 
Land cover change ISODATA Change detection [29] 

As mentioned earlier, such techniques might be inappropriate for land cover mapping. Several 
studies have suggested that CORONA imagery can be used as a surrogate for field data [36]. 
However, no studies have investigated the utility of panchromatic CORONA imagery as a surrogate 
for historical field data in the context of generating historical continuous land cover maps using 
Landsat MSS imagery under the SVH hypothesis.  

We contend that image texture derived from CORONA data could be used as a surrogate for 
land cover type and structure and be potentially valuable for reconstructing historical land cover. 
However, it is not clear how well the relationship between image texture in CORONA data with 
Landsat MSS variables (spectral, vegetation indices and corresponding textures) can characterize 
historical land cover type and complexity. Furthermore, the potential of geostatistical techniques for 
predicting such land cover maps is unexplored. This is important because land cover type and 
complexity can offer insights into habitat quality and diversity, which is may provide useful 
information for land management applications.  

Our goal was to explore the ability of geostatistical techniques, applied to image texture of 
CORONA data and Landsat MSS variables to reconstruct and map historical land cover type and 
complexity. The first objective of this paper was to assess the relationship between historical 
CORONA data, as a surrogate for field data, and Landsat MSS data. The second objective was to 
evaluate the utility of this relationship for generating historical continuous land cover maps within a 
forested environment. Based on the SVH, we investigated the hypothesis that spatial variation in the 
reflectance of Landsat MSS is likely to be correlated with spatial variation in the reflectance of 
CORONA. By modeling this relationship, we aimed to generate historical continuous land cover 
type and complexity. Specifically, texture measures were employed to analyze the variation in 
reflectance in CORONA and Landsat MSS while a geostatistical technique (regression kriging) was 
applied for spatial prediction. 

2. Materials and Methods  

2.1. Geostatistical Analysis-Regression Kriging 

Geo-statistics is a set of methods aimed at characterizing and modeling spatial variability for 
prediction and simulation, and a range of other geostatistical operations [23,24,37]. In the context of 
remote sensing, geostatistical methods extract spatial properties of regionalized variable(e.g., 
spectral reflectance) which can be used in image classification, allocation of spatial unbiased 
sampling sites during classification map accuracy assessment, and prediction of values at 
unobserved locations [38]. One of the geostatistical interpolation techniques is Kriging. This 
technique includes a family of least-squares linear regression algorithms that are used to estimate 
the value of a continuous attribute (e.g., reflectance) at any unobserved location using weighting 
scheme where proximate sample locations have a greater impact on the final prediction [38,39]. The 
weighting procedure is determined by the variogram [39].  

Recently, much attention has been given to hybrid kriging interpolation methods which 
integrate different aspatial and spatial algorithms [23]. One of the hybrid kriging interpolation 
techniques is regression kriging (RK) which includes two major steps: modeling the relationship 
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between the response and predictors variables, and then using simple kriging with known mean (0) 
to interpolate the residuals from the regression model [23]. In mathematical terms, these two steps 
can be written as [23]: ̂(s ) = (s ) + e(s )=∑ β ∙ q + ∑ λ ∙ e( ) (1) 

where (s ) is the fitted drift, e(s ) is the interpolated residual,β  are the  estimated drift model 
coefficients(β  is the estimated intercept), and the λ  are kriging weights determined by the spatial 
dependence structure of the residual and where e( ) is the residual at location . RK has been 
used for remote sensing problems such as estimating Leaf Area Index, and image fusion [23]. 
Results have demonstrated the high potential of RK to characterize the relationship between the 
target and predictor variables in remote sensing [23,24,37,39].  

In this research, the RK approach was conducted based on guidelines from previous studies 
that consisted of the following steps [23,24,37,39,40]: 

(1) Different regression models are fitted to explore the relationship between CORONA as a 
surrogate of real land cover and Landsat MSS bands (this step is presented in detail in the next 
section). 

(2) Moran’sI is applied to the selected regression residuals to quantify autocorrelation. The 
Moran’s I statistic for spatial autocorrelation is given as [39]: 

=	 ∑ ∑ − −∑ ∑ ∑ −  (2) 

where, N is the number of spatial units indexed by i and j; X is the variable of interest;  is the mean 
of X; and Wij is an element of the matrix of spatial weights. Moran’s I varies from −1 (large negative 
spatial autocorrelation) to +1 (large positive spatial autocorrelation). A zero value indicates a 
random spatial pattern. It should be borne in mind that if the residuals exhibit no spatial 
autocorrelation (pure nugget effect), ordinary least squares (OLS) estimation of the regression 
coefficients is applied; Otherwise, if the residuals exhibit spatial autocorrelation, regressing kriging 
is applied [39].  
(3) The variogram of the residuals is used to determine the weights for spatial prediction (i.e., 

weights applied to observed points that are spatially auto-correlated with the site to be 
predicted).The empirical variogram is computed from [39]: 

(4)  

γ( ) = 12 Z( ) − Z( + )  (3) 

where Z(xi) is the residual value at location i, Z(xi+h) is the residual value of other locations 
separated from xi, by a discrete separation vector or lag h; n represents the number of pairs of 
observations separated by h; and ( ) is the estimated or “experimental” semivariance for all pairs 
of observations at lag h. Semivariances were calculated for each possible pair of observed locations, 
and the mean values of the semivariances were plotted against lag magnitude intervals |h| to 
produce the experimental variogram of the regression residuals. 
(5) The variogram is applied in Krige. 
(6) The estimated trend is added back to the Kriged estimates in Equation (1).  

The gstat package was used to conduct the variogram analysis and regression kriging [41].  

2.2.Building Regression Models 

2.2.1. Response Variable from CORONA 

This study utilized CORONA imagery as a surrogate of ground-based land cover in forested 
environment. The first-order-mean n texture statistic was calculated for the CORONA image, as a 
surrogate measure for the actual land cover type and its complexity. Hereafter, this measure is 



Remote Sens. 2017, 9, 682  6 of 23 

 

abbreviated to LC. The small texture values represent low complexity and variability in spectral 
composition of a sample region while large texture values indicate high complexity in that region 
[38]. For example, forested regions may result in a low magnitude first-order-mean while urban 
regions may have a high magnitude. This texture measure was selected based on its established 
advantages such as characterizing vegetation cover, measuring heterogeneity, and ease of 
computation [9]. We computed the first order measure, mean, within a moving window (25 × 25 
pixels;~171m × 171m; or ~3 × 3 pixels on the Landsat MSS), and the texture measure was assigned to 
the central cell of each window. This window size was selected to reduce the impacts of geometric 
errors associated with both the MSS scene and the CORONA image. 

2.2.2. Explanatory Variables from Landsat MSS 

Vegetation Indices 

The vegetation indices computed from the spectral reflectance of Landsat MSS in this research 
were grouped into three categories, visible, near infrared (NIR) and Tasseled cap. Visible band 
indices included the S5 index which was the ratio of the red band (MSS5) to the green band (MSS4), 
and Normalized Visible Index (NVI):  NVI = MSS5 −MSS4MSS5 +MSS4 (4) 

These indices are commonly used due to their ability to separate vegetation from 
non-vegetation covers [38].  

NIR indices were divided into three classes: S6 the ratio of the NIR1 band (MSS6) to the red 
band (MSS5), S7 the ratio of NIR 2 band (MSS7) to the red band (MSS5), and the Normalized 
Difference Vegetation Index (NDVI). It is noteworthy that the NDVI was calculated using MSS7 and 
MSS5. These indices are commonly used because of the relationship with the amount and health of 
vegetation present in an area, particularly useful for detecting vegetation differences [38].  

Finally, the Tasseled Cap (TC), which is linear transformation of the four MSS bands, was 
computed forming the third group. In addition to the TC bands (Greenness, Brightness, Yellow, and 
Non), we calculated two ratios: Greenness Brightness Ratio (GBR-ratio of Greenness to Brightness) 
and Greenness Brightness difference (GBD-difference between Greenness and Brightness). The 
Tasseled Cap bands provide the ability to detect readily the canopy, soil, and a mixture of these 
components [38]. 

Texture Measures 

We applied both first-order (occurrence) and second-order (co-occurrence) statistics. To 
compute the first-order statistics for a given scale of interest (e.g., a 3 × 3 pixel moving window), the 
pixel values within the window were used to calculate the given statistic (e.g., variance), which was 
assigned to the central pixel [42]. Second-order statistics consider the spatial relationships between 
neighboring pixels [42]. To calculate second-order statistics, the pixel values for a given scale of 
interest were first translated into a gray-level co-occurrence matrix (GLCM). The texture statistics 
were then calculated for every pixel. 

To match the spatial resolutions at which the LC and image texture were represented, we 
applied a 3×3 window size for all image texture analysis [7]. This window size has the advantage of 
capturing the heterogeneity of pixel values over small extents. Texture measures were selected 
based on their established ability to characterize vegetation structure [42,43]. We calculated three 
first order texture measures (entropy, mean and variance), and four second order texture measures 
(mean, entropy, homogeneity, variance) using the Landsat MSS spectral bands and vegetation 
indices. The details and equations of texture measures are described in [42]. 
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2.3. Collecting Training Points 

250 stratified random samples were generated using the Random Point Tool in ArcGIS 10.2. 
We compared and examined carefully each sample point in the 1978 Landsat MSS and 1975 
CORONA images. Sixteen samples exhibited apparent changes in landscape composition and were, 
therefore, removed. A total of 234 samples were retained for use in the training model. Further, we 
used the tool “Extraction” in ArcGIS 10.2 to extract digital numbers of Landsat MSS variables 
(spectral bands, vegetation indices and textures) and the texture of the CORONA data based on 
these sample points.  

To avoid any confusion produced by topographic shadow, prior to applying the sampling 
approach, we constructed a shadow mask identifying pixels belonging to shadow regions and 
excluded them from the Landsat MSS and CORONA images. First, the shadow mask was 
constructed based on the CORONA image using thresholding. Second, accuracy assessment was 
conducted to evaluate the accuracy of the mask. The overall accuracy was found to be 95% based on 
cross comparison with visual assessment. Then, the shadow mask was applied to the CORONA and 
Landsat images to remove shadowed regions.  

2.4. Statistical Modeling 

The Pearson’s correlation coefficient was calculated between the response variable (LC) and 
explanatory variables (Landsat MSS). Explanatory variables with a small correlation (|r|<0.6) were 
eliminated from the analysis.  

The response variable was regressed on the remaining explanatory variables. We selected the 
best fitting models using the following conditions: (1) the smallest Akaike’s Information Criterion 
(AIC); (2) the largest r-square; and (3) explanatory variables had only a small correlation with other 
variables (i.e., measured using variance inflation factors(VIF) or with multi-collinearity less than 5). 
Model selection was implemented using stepwise-VIF regression. In this technique, different 
combinations were evaluated with respect to multi-collinearity. The variables with the largest VIF 
(>5) were removed from the model until all VIF values of the explanatory variables fell below the 
given threshold. Then a linear model was created using the selected explanatory variables. 

2.5. Accuracy Assessment 

The performance of the models was assessed by leave-one-out cross-validation [6]. In this 
procedure, one observation is temporally removed from the dataset, and the remaining sample 
values are used to predict the variable. The cross-validation yielded a list of estimated values of LC 
paired to those obtained from the observed sampling units. There are many different measures for 
checking the discrepancies between observed values and predicted values by cross-validation. The 
root mean square error (RMSE), bias error (BE) and r-square were used to for assessment [24,37].  

In addition to cross-validation (to validate whether the model predicts well within the range 
and character of the training data), random samples outside of the training dataset were used to 
evaluate the accuracy of prediction [24,37]. We used 234 randomly selected sample points to 
examine the accuracy of the results via the RMSE, BE and r-square.  

2.6. Comparison: Conventional Mapping Techniques 

The results of the proposed approach were compared directly to two major techniques: hard 
classifiers and soft classifiers. Hard classifiers included two classification techniques: the support 
vector machine (SVM) and density slicing. The support vector machine (SVM) was implemented to 
classify the Landsat MSS image into five classes: shadow, farmland, urban, mining and forest. The 
technical setting parameters of this approach were: Radial Basis Function for Kernel Type, Gamma 
in Kernel Function (0.33), Penalty Parameter (100.00), and Pyramid levels (0). The total number of 
training samples was seven pixels for each class. Regarding density slicing, this technique was 
performed based on guidelines in [28]. The CORONA image was classified by the density slicing 
technique. The number and names of classes were similar to those for Landsat MSS.  
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In terms of soft classifiers, we employed spectral mixture analysis (SMA) and regression 
without kriging. SMA was applied to the Landsat MSS bands to estimate the proportion of forest 
and non-forest cover. SMA was implemented using three end members: forest, non-forest and 
shadow. Details of the SMA procedure can be found in [44]. Furthermore, the regression kriging 
procedure was applied to the CORONA and Landsat data with the major difference being that 
kriging and the variogram were excluded from the regression model.  

For the sake of clarity and brevity, we placed a condition for comparison between the results of 
the different methods. Accordingly, if a careful visual interpretation could demonstrate that the 
developed method is preferable to conventional techniques, numerical accuracy assessment was not 
employed for accuracy evaluation.  

2.7.Study Region and Data 

2.7.1. Study Region 

The study was conducted in the southern portion of Fu Yang County, Zhejiang Province, China 
(29°4′49.93′′–29°7′48.95′′ N and 119°5′22.65′′–119°8′52.13′′)(Figure 1). Elevations range from 800m to 
1500m above sea level. There are two dominant land cover types: forest, and other areas due to 
human activity (Figure 1). Forest regions are located in the mountains while the remaining land 
covers are situated in the valleys. The main human activities are rural urban cover, mining and 
agriculture. 

 
Figure 1. The study region and spatial distribution of forest in 1980. 
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2.7.2. Remote Sensing Data and Pre-Processing 

Three sources of data were used: CORONA, Landsat 3 MSS and Google Earth. The CORONA 
image used in this project was acquired on 18 December 1975 (KH-9 camera, mission 1027-1, frame 
8). This image was originally photographed by panoramic cameras and recorded on film, with a 
large response in the visible spectrum (400–700nm) [28]. The data were digitized to 8-bit radiometric 
precision with only one “panchromatic” band and distributed by the USGS with nominal ground 
resolutions of 6m and 1m [28].  

One of the most important steps for image pre-processing of CORONA is geometric correction 
to minimize image distortion, particularly in mountainous regions [7,45]. While this step is crucial, 
it is very difficult to conduct as CORONA calibration parameters (fiducial coordinates, lens 
distortion coefficients, and principal point coordinates) are not available[45–50].This may lead to an 
array of problems such as mis-registration if the objective is to use CORONA for digital mapping 
purposes, for example, land cover mapping. Therefore, there is a growing need to develop new 
algorithms for geometric correction of CORONA imagery [48]. Given the focus of this paper is 
reconstructing of historical land cover rather than developing geometric corrections, we adopted 
image-to-image registration [7,38,51,52]. CORONA imagery was registered to an orthorectified 
Landsat MSS image by incorporating Google Earth. For each site, the CORONA image was 
co-registered to the Landsat MSS image using stable ground features as ground control points 
(GCP). The locations of the GCPs were also scrutinized using Google Earth. 20 points were 
manually selected, of which 14 points had acceptable accuracy and were used for geometric 
correction. Furthermore, the parameters used in geometric correction were the Universal 
Transverse Mercator (UTM) map coordinates (Zone: 50, datum:WGS 1984),a second-order 
polynomial and, to maintain the statistical properties of the original data, nearest neighbor 
re-sampling with a 7 m pixel size.  

A Landsat 3 MSS image, acquired on 5 July 1978, was used in this research. This image had 
already been rectified and geo-referenced accurately with a pixel size of 57m, to the UTM map 
projection (Zone 50) and WGS 1984. The Landsat image was converted to top-of-atmosphere 
reflectance using published post-launch calibration coefficients in the ENVI RSI 5.1software. The 
dark pixel subtraction technique was also applied to each band to reduce atmospheric effects.  

There were no significant disturbances (e.g., thinning, land cover change, forest fire) in the 
study area in the time between the CORONA and Landsat MSS image acquisition dates. Thus, the 
spatial pattern of forest was similar between the acquisition of the Landsat 3 MSS and CORONA 
images. The agricultural class, in terms of crop types and growing seasons, may not be the same 
between the two dates. However, the intention of this project was not to map crop types.  

Besides the above datasets, Google Earth archives were also employed for analytical purposes, 
accuracy assessment, visual interpretation and collecting sample points.  

2.8. Methodology 

The methodology proposed for generating continuous historical land cover type and 
complexity is divided into four parts (Figure2): 

(1) Response and explanatory variables: (a) response variables are provided via CORONA 
imagery; and (b) explanatory variables are calculated using Landsat MSS data including 
spectral bands, vegetation indices and corresponding texture measures. 

(2) Statistical analysis: (a) Pearson’s correlation coefficient is estimated between sample points of 
CORONA and Landsat MSS products; (b) regression models are fitted between response and 
explanatory variables; and (c) best regression models are selected using AIC and VIF. 

(3) Geostatistical analysis: (a) Moran’s I is applied to the residual values to measure spatial 
autocorrelation; and (b) regression residuals are subjected to kriging to generate the land cover 
map. 

(4) Accuracy assessment: A range of indices is used to evaluate the final results. 
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(5) To provide context, we compared the performance of the proposed technique with 
conventional mapping techniques. 

 
Figure 2. Overview of the research methodology. 

3. Results 

3.1. Geometric Correction of CORONA Data 

Given that CORONA imagery suffered image distortion, a second-order polynomial was 
selected for geometric correction. It is noteworthy that when there are serious geometric errors in 
the dataset, these errors can only be modeled using a higher-order polynomial [38]. The check point 
residuals of second-order polynomial geometric correction in the X and Y directions were less than 
6m and 9m, respectively, with total Root Mean Square Error (RMSE) of less than 7m (Table 2). Since 
RMSE and total RMSE are less than 7m, which is approximately one pixel, it meets the 
requirements of geometric correction accuracy. With the second-order polynomial geometric 
correction method, a geometric correction procedure was applied to CORONA imagery covering 
the study area. Re-sampling was performed using the nearest neighbor method.  

Table 2.Pearson’s correlation between LC and Landsat MSS based predictors. See Table 2 for 
detailed description of predictors. 

Points X Residual (m) Y Residual (m) RMS Error (m)
1 0.5117 1.0687 1.189 
2 7.6081 1.111 7.6888 
3 4.8855 −1.9936 5.2766 
4 −3.8865 1.0848 4.0351 
5 5.0202 1.1157 5.1427 
6 3.0993 2.3951 3.9169 
7 7.6081 1.111 7.6888 
8 3.976 1.5839 4.2798 
9 1.6541 1.6648 2.3468 

10 3.2691 5.0614 6.0254 
11 2.9597 1.7869 3.4772 
12 1.2547 0.7627 1.4684 
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13 5.2505 3.5758 6.3525 
14 −4.0958 2.1237 4.6136 

3.2. Correlation Analysis 

Correlation coefficients (r) representing the relationship between LC and the predictors ranged 
from <0.01 to 0.76. To concentrate on those variables with the greatest predictive potential, only 
those variables with correlation coefficients >0.6 were selected (Table 3). The candidate predictors 
were first-order mean (FOM), second-order mean (SOM) and second-order entropy (SOE). These 
variables may play important roles in the prediction of LC. Generally, texture based on the visible 
bands and their indices indicated a larger correlation with LC than textures based on the NIR. More 
specifically, the second-order mean green (band 1) had the largest correlation, followed by the 
second-order mean NVI (SOMNVI) and the second-order mean of S5 (SOMS5). In terms of NIR, only 
the second-order mean of NIR 1(SOMNIR1) had a large correlation (0.65). 

Table 3.Pearson’s correlation coefficients between LC and Landsat MSS based predictors.  

Bands Correlation with LC Bands Correlation with LC Bands Correlation with LC
Near Infrared  Visible  Tasseled Cap  
1SOMNIR1 0.65 SOMGreen 0.75 SOMTCB 0.68 
SOMNIR2 0.63 SOMRed 0.69 FOMTB 0.64 
2SOENIR2 0.61 FOMRed 0.66 SOETCB 0.63 
SOENIR1 0.61 FOMGreen 0.65 SOEGBD 0.63 

3FOMBNIR1 0.61 SOERed 0.61 SOETGe 0.63 
    SOEYe 0.62 

Near Infrared Indices  Visible Indices    
SOENDVI 0.63 SOMNVI 0.74   

SOES7 0.62 SOMS5 0.73   
  FOMS5 0.65   
  SOENVI 0.63   
  SOES5 0.61   

Second-order mean (SOM), Second-order entropy (SOE), First-order mean (FOM). 

3.3. Multiple Linear Regression Modeling  

Model selection using stepwise-VIF showed that eight models were accurate predictors of LC 
(Table 4).Interestingly, the combination of the first-order mean Green (FOMG), second-order mean 
Tasseled Cap Brightness (SOMTCB), second-order mean NVI (SOMNVI) and second-order entropy 
NIR 2 (SOENIR2) yielded the best fitting model in terms of AIC, r2, and VIF. This model explained 
the greatest amount of variation in the response (61%). The regression equation of this model (and 
the set of residuals) was used to map land cover across the entire study area. Because the ultimate 
goal was to predict LC, other equally good models were not considered further.  

Table 4. Candidate models considered in the analysis of the relationship between LC and Landsat 
MSS variables. 

Equation1 r2 AIC VIF 

LC~FOMG+SMTCB+SOMNVI+SOENIR2 0.61 1961.6 

2.3 
2.6 
2.9 
2.2 

LC~ SOMS5 + FOMG + SOMNIR1 0.61 1964.4 
2.1 
2.0 
2.0 

LC ~ SOMG + FOMS5 + SOMNIR1 0.60 1966.8 
3.3 
1.9 
2.6 

LC ~ SOMNIR2 + SOES5 + FOMTCBr 0.49 2027.1 3.8 
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2.5 
2.5 

LC~FOMNIR1 + SOES7 + FOMS5 0.49 2023.5 
4.0 
1.8 
4.3 

LC~SOENDVI + FOMTBS + SOMTCBr+ 
SOMNVI 

0.61 1963.6 

2.2 
2.8 
3.7 
2.9 

LC ~FOMR + SOMNIR2 + SOENVI 0.56 1990.2 
1.5 
2.7 
2.7 

LC ~FOMS5+SOETCGr+SOMNIR1 0.55 1998.0 
1.86 
2.5 
2.1 

1Second-order mean (SOM), Second-order entropy (SOE), First-order mean (FOM). 

3.4. Spatial Distribution and Autocorrelation of Residuals  

Figure 3 shows the spatial distribution of the regression residuals. They are plotted in different 
colors defined by the natural breaks in ArcGIS 10.2. Large positive residual values were located 
amongst the non-forest land covers (Figure 3a, red circles) while small positive and large negative 
residual values were observed in the forest regions (Figure 2a, green, yellow and orange circles). 

Moran’s I is one of the most common measures used to test for spatial autocorrelation in 
regression residuals. Moran’s I ranges from −1 to +1 and a zero value indicates a random spatial 
pattern [39]. A Moran’s I score of 0.183 is significant, indicating spatial autocorrelation in the 
residuals (Figure 3b). It is clear that the usual assumption that residual values of linear regression 
are not correlated with each other should not be made for land cover mapping in this case. 

 
Figure 3. (a) Spatial distribution of residual values in CORONA imagery; and (b) testing for 
autocorrelation in regression residuals using Moran’s I. 

3.5. Land Cover Type and Complexity Prediction 

The variogram was used to characterize the spatial structure in the residuals of the prediction 
model. Several models were fitted to the empirical variogram. The exponential model provided the 
best fit and so was selected for spatial prediction (Figure 4). This model had a nugget of 90%2, partial 
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sill of 112.9%2 and a range of 411.4m.The fitted variogram was used to generate a continuous land 
cover map based on the 234 sample points. The interpolation procedure was applied to a grid with 
cells size 57m × 57m equal to the Landsat MSS pixel size. Figure 5 shows the historical continuous 
land cover map predicted by RK with respect to type and complexity (Figure 5c). In this case, the 
figure shows how land cover complexity and heterogeneity change with land cover type. For 
example, urban regions indicate high complexity while low complexity is observed in forest regions. 
Moreover, the impacts of shadow were also relaxed in the final image.  

 
Figure 4. Experimental (crosses) and fitted model (line) variogram of regression residuals for use in 
predicting LC. 

 
Figure 5.Maps of: (a) CORONA image; (b) Landsat MSS false color composite of bands 
RGB—NIR2,Red, and Green; and (c) map of land cover type and complexity in 1978 predicted by 
regression kriging.  
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3.6. Accuracy Assessment 

3.6.1. Visual Assessment  

The output of the above analysis was a map of continuous land cover. This map provides 
spatially explicit information in terms of characterizing the land cover morphology in a forest 
region, transitional boundaries between forest and non-forest, and avoids loss of information. In 
Figure 5, the darker color (red) indicates the possibility of human activities in rural regions (Figure 5 
white circle and white arrow), while the forest region can be observed by lighter colors (green).The 
smooth transition between the boundary of forest and non-forest is represented by the yellow color 
where a mixture of forest and non-forest is likely (Figure 5, white square). In addition, the 
continuous map may reveal spatial-heterogeneity in the forested environment. An increase in LC 
values would represent heterogeneity where it was located in sites of human activity (urban cover 
and mining sites). However, homogeneity could be observed in the forest region via a decrease in 
LC values. It is noteworthy that 90% of the forest in this region was evergreen forest during the 
studied period.  

3.6.2. Numerical Assessment 

Table 5 shows accuracy assessment metrics based on cross-validation and external data 
validation. The overall RMSE was between 14.23% and 15.90%, suggesting that the proposed 
method produces reasonably accurate results. The correlation coefficient obtained using random 
sample points also confirmed an acceptable agreement between the actual LC on CORONA and 
predicted LC using Landsat MSS data (Figure 6). However, there was a slight difference between the 
BE and r2 of cross-validation and those of the external data points. Similar differences were also 
observed by [37]. This difference is due to the effect of generalizing the fitted model to new data.  

Table 5. Accuracy assessment metrics between the reference and predicted variables using 
cross-validation and unseen sample points. 

 RMSE BE r2 (%) 
Cross–validation RK 14.23 −0.23 68.28 

Unseen sample points RK 15.90 2.02 51.39 

 
Figure 6.Scatterplot of actual observed LC against predictions using 234 randomly selected points. 

3.7.Comparative Analyses with other Methods 

Figures 7 and 8 show the outputs from traditional alternatives to the proposed approach. The 
thematic maps (Figure 7a, b) represent the land cover as a thematic map of forest, mining, urban, 
shadow, and farmland. Thematic maps of land cover have been employed extensively for historical 
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land cover studies (e.g., [27,28,50,53]) and do provide an overall picture of land cover and change in 
land cover. However, despite the progress made in interpreting, analyzing and managing land 
cover based on such maps, there are many situations where these maps may be inappropriate. In 
particular, the thematic maps do not accurately represent the considerable spatial complexity 
(heterogeneity and homogeneity) of land cover. When land cover is represented by a thematic land 
cover class this may result in a loss of complexity and this may lead to a loss of information as well 
as a degrading of the transition boundaries between classes [17].  

 
Figure 7.Maps of land cover in a forested region produced by: (a) Landsat MSS using SVM hard 
classifier; and (b) CORONA using density slicing. 

 
Figure 8.Maps of: (a) Forest Fraction using Landsat MSS based on SMA; and (b) land cover in 
forested regions using Landsat MSS and CORONA without using Kriging. 
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By contrast, the continuous techniques based on the use of SMA and regression without kriging 
could mitigate these limitations. For instance, by means of visual interpretation of estimated forest 
fraction using SMA (Figure8a) and forest cover map using regressing without kriging (Figure8b), 
the continuous scale of land cover variation enables us to readily observe both the type and 
complexity of forest cover. However, in comparison to the two former techniques, proposed 
approach (Figure5) has a range of strengths. This approach produces a smooth continuous land 
cover, thus, providing an informative and appropriate representation of the complexity and type of 
land cover. However, SMA and regression without kriging indicate a high degree of class mixing 
particularly in forested regions. Furthermore, the proposed approach is able to clearly visualize the 
spatial distribution of land cover compared to the two former methods. 

4. Discussion 

4.1. Value of CORONA for Surrogacy; Advantages and Limitations  

Survey data including field data, map, and fine spatial resolution imagery have been the 
primary sources for remote sensing research such as classification, biodiversity, and accuracy 
assessment. Furthermore, archives of survey data can be important for reconstructing the historical 
environment either independently or through combination with current remotely sensed data. 
However, obtaining a source of spatially continuous historical survey data is a daunting challenge, 
particularly in developing countries.  

To fill this gap, CORONA photographs provide a unique opportunity to substitute for actual 
land cover over a period for which obtaining survey data records with high quality (spatial and 
visibility) is challenging. The potential value of CORONA photographs for surrogacy purposes can 
be recognized when costs, spatial resolution and spatial coverage are taken into account. 

In this research, we demonstrated that images recorded by CORONA can be used as a 
surrogate of historical land cover and these images can be combined with Landsat MSS to 
synthesize historical continuous land cover maps. We also showed that the developed algorithm 
has three major advantages. First, the developed technique can generate a continuous map that is 
more informative and intelligent compared to a crisp map. As Palmer et al. [17]stated, continuous 
mapping can avoid loss of information, depict transition zones between classes, and present 
quantitative information. Second, the generated map not only illustrates land cover types, but also 
it accentuates land cover complexity (homogeneity and heterogeneity). Third, though the focus of 
this paper was not on shadow correction, the proposed algorithm minimizes the impacts of 
topographic shadows. This finding supports previous results that geostatistical techniques can 
reduce the impacts of topographic shadows [54,55].  

Although the results of this study are encouraging, care must be exercised when using 
CORONA data for mapping historical land cover. First, CORONA images exhibit substantial 
geometric distortions and brightness anomalies that could reduce the accuracy of final results if the 
appropriate correction methods are not selected. Given that some technical information about the  
CORONA instruments has not been released yet, improving the quality and quantity of CORONA 
imagery would be very difficult although several previous studies have developed mathematical 
models for such aims (e.g., [45,48,52]). Second, a few studies have focused on image processing, 
pattern recognition and classification aspects of CORONA imagery. Our comparison based on a 
search via the Web of Knowledge (http://apps.webofknowledge.com/), the largest abstract and 
citation database of Science Citation Index (SCI) journal publications, illustrates that more attention 
has been given to the current high spatial resolution imagery compared to CORONA data (Figure 
9). Given that knowledge of historical land cover and biodiversity, especially the magnitude, 
location, geometry, spatial pattern of land cover and biodiversity change, is significant to a range of 
issues and themes in biodiversity science central to global land cover change and 
human–biodiversity interactions, it becomes an urgent need to develop standard methods for 
processing CORONA imagery.  
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Figure 9.Yearly publications from 1998 to 2017 indexed by Web of Knowledge on:(a) CORONA 
satellite imagery; (b) IKONOS; (c) QuickBird; and (d) only aerial photograph. The search was 
conducted on 8 June 2017 to compare the number of publications on CORONA with other high 
spatial resolution imagery (http://apps.webofknowledge.com/). 

4.2. Developed Methodology 

This research is the first to use CORONA imagery as a surrogate for historical land cover and 
link observed information to Landsat MSS bands to reconstruct historical continuous land cover 
type and complexity. To fulfill this procedure, we employed SVH theory. First, our findings 
support the core idea of SVH in which spatial variation of remotely sensed data is associated with 
spatial variation in the environment [17]. Moreover, our results expand SVH theory where in the 
absence of field data, variation in remotely sensed datasets can be correlated. Consequently, the use 
of SVH can be grouped into three classes:  

1. Direct-SVH: Linking field data from an actual environment to the remotely sensed data. 
2. Indirect-SVH: Collecting samples from fine spatial resolution imagery (or fine radiometric 

resolution imagery) and linking the data to other types of remotely sensed imagery. 
3. Direct-Indirect-SVH: First, linking field data from an actual environment to fine spatial 

resolution imagery (or fine spectral resolution imagery), and correlating the evaluated samples 
from both resources to other types of remotely sensed imagery.  
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With respect to the objective of this study, this study had two main aims: (i) to link continuous 
spectra from CORONA, as a surrogate for land cover (type and complexity), to Landsat MSS via a 
regression model; and based on this model; (ii) generate a historical continuous land cover map. In 
relation to the first objective, the results support the general hypothesis that the texture of CORONA 
is correlated with Landsat MSS reflectance and corresponding texture measures under the SVH 
hypothesis. Among the explanatory variables, the first-order mean Green (FOMG), second-order 
mean Tasseled Cap Brightness (SOMTCB), second-order mean NVI (SOMNVI) and second-order 
entropy NIR 2(SOENIR2) showed the greatest explanatory power in relation to LC. In this regard, 
second-order texture measures, especially the second-order texture mean were most efficient at 
characterizing land cover. This measure represents the average distribution of gray levels, hence 
large values of the mean indicate brighter areas (such as agricultural bare land and rural settled 
regions in the visible bands) and small values of the mean represent dark areas (such as forest in the 
visible red band) in an image [56]. Moreover second-order entropy was included in the final results 
of the correlation analysis. Entropy measures the degree of disorder of gray level value pairs 
(second-order entropy). Thus, it is sensitive to variation in land cover in the imagery [56].  

Our results showed that visible indices had a larger correlation with LC compared the NIR 
indices. It is important to note that small  correlations of some NIR auxiliary variables and large 
correlation of visible auxiliary variables to LC could be attributed to the relationship between 
wavelengths of CORONA and Landsat MSS. CORONA imagery was captured in the panchromatic 
range(400–700nm) and, thus, it should be correlated naturally  with the Landsat MSS visible bands, 
MSS4-Green(500–600nm) and MSS5-Red(600–700nm) rather than NIR bands, 
MSS6-NIR1(700–800nm) and MSS7-NIR2(800–1100nm)(Figure 10). Moreover, 80% of the study area 
was covered by forest cover.t  

 
Figure 10. Visual difference between CORONA panchromatic image and Landsat MSS bands; (a) 
CORONA; (b) Landsat MSS4 (Green band); (c) Landsat MSS5 (Red band); (d) Landsat MSS6 (NIR1 
band); and (e) Landsat MSS7 (NIR2 band ). 

Acknowledging these results, however, we urge caution regarding the relationship between 
LC, visible bands and NIR bands, thereby generating small and large correlations. Linking field or 
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surrogate data to satellite sensor imagery requires accurate preprocessing of all datasets. Although 
we applied standard pre-processing to Landsat MSS and CORONA data, the pre-processing results 
of CORONA might not be satisfactory in comparison to Landsat MSS. This is because Landsat 
MSS’s header file generally includes all the technical information for the pre-processing steps. In 
addition, Landsat MSS has captured Earth images using digital sensors. However, pre-processing 
CORONA images is complex, because of the lack of technical information about a given mission’s 
sensor [48,50,52], differences among missions [47], and high level of spatial distortion [7,46,48]. In 
addition, CORONA images have been captured by analog camera. Then the acquired images were 
captured by scanner systems. Therefore, the limitations of CORONA may have adverse impacts on 
the relationship between CORONA imagery and Landsat MSS bands. Nevertheless, the analysis of 
the relationship between CORONA as surrogate of actual land cover and Landsat MSS bands, as 
demonstrated in this paper , does open the possibility to reconstruct the type and complexity of the 
distribution and magnitude of historical land cover. 

With regard to the second objective, a proportion of Fu Yang County was selected to test the 
proposed methodology. The results showed that it was possible to map the spatial distribution of 
land cover type and complexity via RK. In addition, the approach reduced the impacts of 
topographic shadow through spatial interpolation. However, it is noteworthy that all the model 
coefficients estimated are specific to this region. Due to the complexity of forest landscapes, 
atmospheric effects, seasonal impacts and the environment of study, the model coefficients would 
not be directly transferrable to other places. On the contrary, the procedure undertaken and the 
general relationships observed in this research should be transferable (e.g., the applying this 
methodology in other regions). A further limitation is that the methodology applied addressed only 
between-class variation. This means that the method does not take into account likely within-class 
variation, for example different tree types. This is because the application goal presented in this 
paper was purposefully kept simple to focus attention on the use of CORONA data for historical 
construction and methodology. A more complex goal could be considered in future by that included 
more classes in different landscapes.  

4.3. Future of CORONA in Land Cover Research 

Informative, intelligent and accurate generation of historical land cover maps using either 
CORONA data or an archive of panchromatic aerial photos is an important remote sensing 
application in land cover studies; if achieved this could contribute significantly to the field of change 
detection and land cover simulation. While the results were encouraging, there are several problems 
which need to be addressed in future studies. We classify these challenges into four groups: 

(1) Spatial coverage: CORONA provides broad spatial coverage with fine spatial resolution in 
contrast to aerial photographs. Hence, image processing of CORONA data is very time 
consuming with current remote sensing software. This is one reason why the present study did 
not focus on a large and complex landscape. Therefore, new or improved software is needed to 
analyze CORONA imagery.  

(2) Correction (Geometric and Radiometric): Geometric distortions and anomalous brightness 
could restrict the accuracy of the land cover information derived from CORONA, which, in 
turn, might limit the effectiveness of change detection results. Consequently, future research 
should pay more attention to developing new mathematical algorithms (particularly in the 
absence of CORONA technical information) to enhance the quality and quantity of these 
records.  

(3) Between-class vs. within-class variation: While many studies have focused on the 
between-class land cover mapping (e.g., forest and non-forest) [7,28], few have concentrated 
explicitly on the importance of different texture methods (e.g., geostatistical techniques), and 
pattern recognition algorithms (e.g., neural networks) for quantifying within-class variation 
(e.g., tree types, and urban categories). In particular, these characteristics could be important 
for monitoring change in biodiversity.  
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(4) Fine continuous super resolution map: Although the present study used spatial information 
through RK for continuous land cover mapping, we did not produce a super resolution map 
using this technique. Future studies may focus on historical continuous super resolution 
mapping [12].  

Nevertheless, these limitations raise two fundamental questions about generating historical 
land cover maps using CORONA data: 

1. Which kinds of current remote sensing techniques might be appropriate for enhancing the 
quality and quantity of CORONA data? 

2. How can we extract historical fine details from a combination of CORONA and Landsat MSS 
data?  

5. Conclusions 

Historical land cover complexity and type maps provide an essential baseline for the long-term 
management (e.g., conservation program) of a region. If such maps present continuous information 
(i.e.,type, complexity, and proportions)rather than discrete classes, those may have greater value. 
Landsat MSS archives have contributed to this issue so far. However, generating historical land 
cover complexity and type maps without field survey is challenging as there is an absence of fine 
resolution on land cover type, homogeneity and heterogeneity. Using an image acquired from the 
CORONA program, which has spatial resolutions finer than the Landsat MSS sensor and which is 
accessible for most global land cover, this article attempted to fill this information gap by presenting 
a potentially useful approach based on remotely sensed data, SVH theory, texture and geostatistics. 
While several studies have focused on historical land cover mapping using CORONA 
[7,28,32,49–51], no studies have developed techniques for treating CORONA data as a surrogate of 
actual land cover. Moreover, it is worth remembering that, while efforts were made to test the SVH, 
no studies have been performed on the assessment of the relations between the CORONA and 
Landsat MSS spectral bands under the SVH hypothesis, thus promoting the present paper as a 
primer on the matter to further increase understanding of using CORONA and Landsat MSS 
simultaneously. 

This developed used the modeled relationship between CORONA panchromatic imagery as a 
surrogate of historical ground data, and Landsat MSS bands. The concept of SVH, developed by 
Palmer et al. [17], was used to fit a regression model between the CORONA and Landsat MSS 
datasets. The RK framework was then employed to predict the spatial distribution of forest using 
that relationship.  

An example of the utility of the methodology was given through a case study carried out in a 
part of Fu Yang County, China. The results showed that when modeling the spatial distribution of 
land cover using the integration of CORONA and Landsat MSS data, predictors based on 
continuous variables derived from the Landsat MSS visible bands were, as expected, consistently 
ranked more highly than NIR-based predictors. Our findings also demonstrated the importance of 
texture variables derived from Landsat MSS in mapping land cover. RK was able to map continuous 
land cover which captured the type and complexity of the landscape in a forested region and 
preserved the gradual transitional boundaries between forest and non-forest areas. RK also reduced 
the impact of topographic shadow in the final results. Comparative analyses demonstrated that RK 
provided more information about the degree of complexity and type of land cover in comparison to 
hard classifiers(SVM and density slicing) and continuous mapping (SMA and regression without 
kriging).Moreover, our results extended into SVH theory wherein in the absence of field data, 
variation in remotely sensed data could be correlated together.  

CORONA and Landsat MSS data would be of great assistance in reconstructing historical land 
cover map and in the tracking of land cover changes. These archives will enable developing novel 
techniques using geostatistical and pattern recognition techniques for reconstructing historical 
biodiversity, urban growth and forest maps. Along with such studies, however, more attentions 
needs to be given to geometric and radiometric correction.  
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