
remote sensing  

Article

Power Sensitivity Analysis of Multi-Frequency,
Multi-Polarized, Multi-Temporal SAR Data for
Soil-Vegetation System Variables Characterization

Fulvio Capodici 1,* , Antonino Maltese 1 , Giuseppe Ciraolo 1 , Guido D’Urso 2 and
Goffredo La Loggia 1

1 Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM), Università degli Studi
di Palermo, Viale delle Scienze bld, 8-90128 Palermo (PA), Italy; antonino.maltese@unipa.it (A.M.);
giuseppe.ciraolo@unipa.it (G.C.); goffredo.laloggia@unipa.it (G.L.L.)

2 Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università, 100 I-80055 Portici (NA), Italy;
durso@unina.it

* Correspondence: fulvio.capodici@unipa.it; Tel.: +39-091-2389-6547

Received: 10 April 2017; Accepted: 28 June 2017; Published: 4 July 2017

Abstract: The knowledge of spatial and temporal variability of soil water content and others
soil-vegetation variables (leaf area index, fractional cover) assumes high importance in crop
management. Where and when the cloudiness limits the use of optical and thermal remote sensing
techniques, synthetic aperture radar (SAR) imagery has proven to have several advantages (cloud
penetration, day/night acquisitions and high spatial resolution). However, measured backscattering
is controlled by several factors including SAR configuration (acquisition geometry, frequency and
polarization), and target dielectric and geometric properties. Thus, uncertainties arise about the more
suitable configuration to be used. With the launch of the ALOS Palsar, Cosmo-Skymed and Sentinel
1 sensors, a dataset of multi-frequency (X, C, L) and multi-polarization (co- and cross-polarizations)
images are now available from a virtual constellation; thus, significant issues concerning the retrieval
of soil-vegetation variables using SAR are: (i) identifying the more suitable SAR configuration;
(ii) understanding the affordability of a multi-frequency approach. In 2006, a vast dataset of both
remotely sensed images (SAR and optical/thermal) and in situ data was collected in the framework
of the AgriSAR 2006 project funded by ESA and DLR. Flights and sampling have taken place weekly
from April to August. In situ data included soil water content, soil roughness, fractional coverage
and Leaf Area Index (LAI). SAR airborne data consisted of multi-frequency and multi-polarized SAR
images (X, C and L frequencies and HH, HV, VH and VV polarizations). By exploiting this very wide
dataset, this paper, explores the capabilities of SAR in describing four of the main soil-vegetation
variables (SVV). As a first attempt, backscattering and SVV temporal behaviors are compared
(dynamic analysis) and single-channel regressions between backscattering and SVV are analyzed.
Remarkably, no significant correlations were found between backscattering and soil roughness (over
both bare and vegetated plots), whereas it has been noticed that the contributions of water content
of soil underlying the vegetation often did not influence the backscattering (depending on canopy
structure and SAR configuration). Most significant regressions were found between backscattering
and SVV characterizing the vegetation biomass (fractional cover and LAI). Secondly, the effect of
SVV changes on the spatial correlation among SAR channels (accounting for different polarization
and/or frequencies) was explored. An inter-channel spatial/temporal correlation analysis is proposed
by temporally correlating two-channel spatial correlation and SVV. This novel approach allowed
a widening in the number of significant correlations and their strengths by also encompassing the
use of SAR data acquired at two different frequencies.
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1. Introduction

A positive impact on hydrology as well as on modern agricultural practices can be achieved
by monitoring spatial and temporal dynamics of some land surface variables such as soil water
content, mv, and vegetation. Despite the fact that synthetic aperture radar (SAR) allows acquiring in all
weather conditions, unassessed strengthenings of the relations among backscattering, σ◦, at different
frequencies and polarizations and soil-vegetation variables (SVV) are limiting the operational
application of SAR. Indeed, SAR configuration controls the wave-target interactions [1,2] and,
thus, affects models’ assessments depending on its frequency, polarization and acquisition geometry.

The dependence of bare soils σ◦, σ◦S, on both water content and surface roughness was modeled
by several authors [1–5]. However, the need of a prior knowledge of the soil surface roughness could
reduce the feasibility of SAR techniques [4,6–8]. Indeed, reliable roughness measures are hardly
achievable: (i) in situ measurements with contact methods (e.g., grid board [9]) are point based and
usually not representative at plot scale; (ii) innovative methodologies (e.g., non-contact ultrasonic
profiling) are capable of describing wide areas but still economically expensive (i.e., requiring airborne
acquisitions).

Over vegetated areas an additional σ◦ contribution, σ◦V, needs to be taken into account. Several
authors, investigated σ◦V by setting up theoretical models [10–12] schematizing the vegetation as
simple targets of known geometry (such as plates and cylinders). Simple empirical models, avoiding
a rigorous mathematical and geometrical simulation of the canopy, are often based on ratios of bands
acquired at different polarizations [13–16]. The need of a priori characterization of vegetation structure
(hardly achievable through in situ campaigns) reduces the operational use of SAR in agriculture.

In recent years, several researches focused on mv quantification (over both bare, B, and vegetated,
V, soils) explored different SAR configurations and approaches by testing (Table 1): (i) the use
of temporal indices; (ii) the integration of passive microwaves and in situ data; (iii) different σ◦

models; (iv) the conjunct use of complex statistical models (such as Bayesian approach); (v) empirical
fitting and ratio methods (refer to the Appendix A for symbols and acronyms). There were several
approaches: empirical, EA; semi-empirical, SEA; theoretical, TA; polarimetric, PA; statistical SA,
these latter employing Neural Networks, polarimetric indices or, channels ratio. Some authors
calibrated σ◦ models such as: IEM (Integral Equation Model [4]), WC (Water-Cloud model [17]);
GO (Geometrical Optics [4]); Dubois [1]; Oh [2,3]; RTM (Radiative Transfer Model); MIMICS (Michigan
Microwave Canopy Scattering model [18]). Several authors separated soil and vegetation contributions
by exploiting more than two polarizations (single frequency), by parameterizing the WC through in
situ data.

All these approaches are usually based on regression analyses among σ◦ and SVV
(i.e., soil roughness, water content, fractional cover and leaf area index). It is well known that SAR
configuration (acquisition geometry, frequency and polarization) plays a fundamental role in the σ◦ vs.
SVV relationship; thus it is expected that modifications of some SVV change also the spatial correlation
between data acquired with different configurations.

Based on this evidence, this paper firstly aims to quantify the strength of the relation among σ◦

and four SVV (dynamic and single regression analyses) over bare and vegetated soils, over a wide
range of cultivars and for different SAR configurations. These first sections are tailored to address:
(i) frequencies and polarizations showing the highest sensitivities of σ◦ to the dynamic of the selected
SVV; (ii) SAR configurations suitable to estimate SVV changes; (iii) frequencies and polarizations
carrying redundant information.

Afterwards, the paper shows the effect of SVV changes on the spatial correlation among
SAR channels and proposes, as novel approach, the use of temporal regressions of two-channel
spatial correlations vs. SVV to explore any improvement achievable compared to the single-channel
regression approach.
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Table 1. mv retrieval using SAR: overview table on previous studies. Accuracy is reported in terms of: determination coefficient, r2; correlation, r; root mean square
error, rmse; average absolute deviation, aad; and mean square error, mse. For detailed notes please refer to Appendix A.

SAR configuration Approach

Reference Sensor Bare or
Vegetated Freq. Polarizations Angles Multi

Freq.
Mult
Pol.

Multi
Angles

Temporal
Index

Passive
Data

In
Situ
Data

σ◦ Model Statistical Empirical
Fitting Polarimetric Ratio

Method Performance Index Notes

[19] TSX B X HH Multi • IEM • r2 = 0.8; rmse = 1.32
(a) and 1.14 (b)

i

[20] TSX, CSK B X HH VV Dual • • IEM Dubois • r2 = 0.64 (a); 0.07 (b);
0.77 (c); 0.06 (d)

ii

[21] CSK B V X HH HV VV Single • • Oh RTM *
[22] ERS-2 B C VV Single • IEM • rmse ~6%
[23] ERS-2 B V C VV Single • • • • • r2 ~0.93
[24] Radarsat-1 B V C HH Single • • IEM WC • rmse ~0.1–0.25
[25] Radarsat-1 B V C HH Single • • • r ~0.7
[26] ERS-2 B V C VV Single • • r2 ~0.9
[27] ASAR B V C HH Single • • r ~0.7
[28] Radarsat-1 B C HH Dual • • • r2 ~0.93
[29] Radarsat-1 B V C HH Dual • • • r2 = 0.79 (a); 0.93 (b) iii
[30] ASAR B V C HH VV Single • • IEM GO • • • rmse 1.5–8.5%
[31] ASAR B V C VV VH Single • • • MIMICS WC aad ~0.051
[32] ASAR B V C HH VV Dual • • • IEM • *

[33] Radarsat-2 B V C HH VV HV Single • • WC • r2 = 0.61 (a);
r2 = 0.73 (b)

iv

[34] Radarsat-2 B V C HH HV VV Single • • • • • rmse < 0.07

[35] ASAR B V C HH HV VH
VV Single • • • • • r2 ~0.87 rmse = 2.83% v

[36] PALSAR B V L HH HV Single • • • • rmse 4–14%
[37] SIR-C B V L HH HV VV Single • Dubois *
[38] PALSAR B V L HH HV VV Single • • Dubois • rmse ~0.041

[39] PALSAR B V L HH HV VV Single • • IEM OH
Dubois rmse 4–14%

[40] E-SAR B V L HH HV VV Single • Oh Dubois r2 ~0.85 (a);
r2 ~0.4 (b)

vi

[41] E-SAR B V L HH HV VH
VV Single • • rmse ~4.5%

[42] Proximity sensing B C S HH VV Single • • • • IEM • MRE ~12–20% (a)
~9–36% (b) vii

[43] AirSAR B V C L HH VV Single • • • IEM • r = 0.68 (a); 0.60 (b) viii

[44] Proximity sensing B V C L HH VV Dual • IEM WC • 0.72 ≤ r ≤ 0.79 (a);
0.08 ≤ r ≤ 0.80 (b) ix

[45] SIR-C, X-SAR B V C L HH HV VV Single • IEM WC • r ~0.83 (a), ~0.95 (b) x

[46] SIR-C B V C L HH HV VV Single • • • r2 = 0.743 (a);
r2 = 0.840 (b)

xi

[47] TSX, ASAR, PALSAR B X C L HH VV Multi • • • *
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2. Study Area

In situ and SAR data have been collected on the 24 km2 DEMMIN (Durable Environmental
Multidisciplinary Monitoring Information Network) test site (Figure 1). The site is hosted
by a farm located in Mecklenburg-Western Pomerania in North-Eastern Germany (Görmin farm,
53◦59′33′ ′N–13◦16′40′ ′E, EPSG 4326).
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Figure 1. LHV diachronic composition of the DEMMIN test-area (R: 24 May; G: 21 June; B: 26 July). 
Labels indicating crop IDs and cultivars are over-imposed. 

Nine crops were monitored over one or more plots (the plot identifier is reported between 
brackets): wheat (IDs 230 and 250), rape (IDs 101 and 140), barley (IDs 440 and 450), maize (ID 222) 
and sugar beet (IDs 102, 460). Sowing and harvesting dates are reported in Table 2. Noticeable, these 
cultivars are characterized by different vegetation architecture. Main soil textures in the Görrmin 
area were loamy sand and sandy loam. Within this area, the 9 monitored plots are characterized by 
loamy sand texture. In particular, the soil texture of plots 222, 450 and 140 is predominantly loamy 
sand; plot 460 is characterized by loamy sand and slightly loamy sand soil; whereas the other plots 
are characterized by both loamy sand and strong loamy sand soils. 

Table 2. Sowing and harvesting dates for main crops during the investigation period; plots IDs are 
reported within brackets. 

Crop (ID) Sowing Dates Harvest Dates 
Wheat (230, 250) 5 September–31 October 15–31 August 
Barley (440, 450) 12–25 September 15–25 July 
Rape (101, 140) 8 August–5 September 28 July–10 August 

Maize (222) 20 April–5 May 25 September–10 October 
Sugar beet (102, 460) 25 March–20 April 25 September–31 October 

3. Materials 

Data have been collected between April and August 2006 in the framework of the AgriSAR 2006 
project (funded by the European Space Agency, ESA) primarily planned to address programmatic 
needs of Sentinel-1 two-satellite constellation. AgriSAR 2006 campaign was specifically tailored to 
investigate σ° dynamic throughout the crop-growing season. The dataset includes weekly in situ 
measures and airborne SAR and optical images. 

Figure 1. LHV diachronic composition of the DEMMIN test-area (R: 24 May; G: 21 June; B: 26 July).
Labels indicating crop IDs and cultivars are over-imposed.

Nine crops were monitored over one or more plots (the plot identifier is reported between
brackets): wheat (IDs 230 and 250), rape (IDs 101 and 140), barley (IDs 440 and 450), maize (ID 222)
and sugar beet (IDs 102, 460). Sowing and harvesting dates are reported in Table 2. Noticeable, these
cultivars are characterized by different vegetation architecture. Main soil textures in the Görrmin
area were loamy sand and sandy loam. Within this area, the 9 monitored plots are characterized by
loamy sand texture. In particular, the soil texture of plots 222, 450 and 140 is predominantly loamy
sand; plot 460 is characterized by loamy sand and slightly loamy sand soil; whereas the other plots are
characterized by both loamy sand and strong loamy sand soils.

Table 2. Sowing and harvesting dates for main crops during the investigation period; plots IDs are
reported within brackets.

Crop (ID) Sowing Dates Harvest Dates

Wheat (230, 250) 5 September–31 October 15–31 August
Barley (440, 450) 12–25 September 15–25 July
Rape (101, 140) 8 August–5 September 28 July–10 August

Maize (222) 20 April–5 May 25 September–10 October
Sugar beet (102, 460) 25 March–20 April 25 September–31 October

3. Materials

Data have been collected between April and August 2006 in the framework of the AgriSAR 2006
project (funded by the European Space Agency, ESA) primarily planned to address programmatic
needs of Sentinel-1 two-satellite constellation. AgriSAR 2006 campaign was specifically tailored to
investigate σ◦ dynamic throughout the crop-growing season. The dataset includes weekly in situ
measures and airborne SAR and optical images.
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In particular, in situ data have been collected by the Leibnitz-Zentrum für Agrarlandschaftsforschung
(ZALF) and the University of Kiel (Christian-Albrechts-Universität, Department of Geography) almost
simultaneously to SAR and optical flights. Measurements of mv (at 0–5 and 5–10 cm below ground
level, b.g.l.), soil surface roughness, fractional cover, Fv, and LAI were acquired by the research teams
along 16 campaigns. In situ LAI and mv were measured using a LICOR-2000 and a portable IMKO
TRIME-FM TDR respectively, root mean square of roughness height, h’, was characterized with a laser
profiler and a Rollei d7 metric digital stereoscopic system [48]. A TDR probe (IMKO TRIME-ES,
theoretical accuracy of ±0.01–±0.03 m3m−3) was installed from the Ludwig-Maximilians Universitat
München (LMU) and the University of Kiel on fields 102 (sugar beet) and 250 (wheat) providing
measures of mv at 5 depths (5, 9, 15, 25 and 47 cm b.g.l.) with a temporal resolution of half an hour.
Approximately 1150 measurements were executed, equally spread among plots and acquisition times.
In particular, ~24 measurements were carried out for each in situ campaign; for each plot, always the
same locations were taken into account; ~36 measurements per plot was carried out during the whole
in situ campaign for each SVV. The sugar beet field was completely bare from the first campaign in
19 April until 11 May (Fv reached 10% in 7 June); maize field was completely bare until the end of
May. Other fields were vegetated until July; rape and barley were harvested during the airborne SAR
campaign (Figure 2).
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Figure 2. Temporal photo sequence of some Görmin’s fields. Pictures were collected during the
investigation periods by ZALF and LMU institutes; the white gridded panel (1 m × 1 m size,
10 cm × 10 cm grid resolution) allows estimating the vegetation height evolution.

During the investigation three drying periods occurred; mv varies in the range [0.34–0.06 m3m−3]
with some differences among fields. In maize crop, mv was higher than in other fields, probably only
due to the root-zone water dynamics of this cultivar (the soil texture was similar to the other monitored
plots); mv in barley, wheat, sugar beet and rape fields behaves similarly during the whole period.
Finally, temporal trends of h’ over barley, rape and wheat fields are quite similar; whereas h’ exhibits
higher values and different temporal behavior over maize and sugar beet (Figure 3).
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The SAR dataset includes 120 images acquired in X, C and L bands (central wavelengths: 2,
5, and 21 cm respectively) in dual polarization (HH and VV for X band) and in quad-polarization
(HH, VV, VH and HV for C and L bands). Flights were weekly carried out from the 9th of April to
the 2nd of August by an airborne E-SAR (Experimental SAR), operated by the German Aerospace
Center (Deutsches Zentrum für Luft- und Raumfahrt—DLR). The E-SAR sensor was on board a Do228
aircraft; although a total of 16 radar flights were executed during the AgriSAR 2006 campaign, the 12
performed in the E-W direction were considered in this research. The deployment of corner reflectors
of 20 cm × 20 cm during one of the in situ campaigns allowed obtaining multi-look, geo-coded and
calibrated σ◦ products at a raw spatial resolution, RS, of 2 m.
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Figure 3. Temporal dynamic of spatially averaged mv, h’, Fv and LAI. Blue bars mark mv peaks
separating consecutive drying periods occurred at all crops except for maize in which the second
drying period was shorter (see the dashed bar).

During the airborne SAR acquisitions, high variability of mv, Fv and LAI occurred over both bare
and vegetated soils, including different cultivars. Thus, AgriSAR 2006 dataset allows investigating
(i) how σ◦ is controlled by changes of SVV and, (ii) how SAR configuration (acquisition geometry,
frequency and polarization) rules the relationships between σ◦ and SVV.

4. Methods

For bare soils, h’ and mv were included in the analysis; whereas, over vegetation the behavior of
σ◦ was assessed under a wide range of mv for different cultivars with varying h’, LAI, and Fv.

Different data analyses were carried out: (i) dynamic analysis of both σ◦ and SVV over all fields
and over a selected plot; (ii) single regressions between σ◦ and SVV; (iii) single regression analysis
between inter-channel spatial correlation and SVV at plot scale.

4.1. Data Aggregation

As a preliminary step, images were spatially averaged to reduce the speckle. Although several
filters have been proposed to this aim [49–53] a simple spatial averaging technique was preferred.
Indeed, the spatial aggregation limits inaccuracies in the comparison between σ◦ and in situ data due
to georeferencing errors and GPS positioning uncertainties, respectively. The more appropriated RS

was selected based on the values assumed by the Moran index IM [54] and the speckle index, IS [55].
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4.2. Dynamic Analyses

This section is focused on the investigation of σ◦ temporal behavior. In the first subsection,
σ◦ dynamic was evaluated at different frequencies and polarizations during the whole period for
varying SVV. Subsequently, the σ◦ temporal dynamic is qualitatively compared to SVV changes for
two selected plots.

4.2.1. Dynamic Analysis: All Plots

Firstly, it was analyzed the σ◦ dynamic at different frequencies and polarizations (hereinafter
referred to as channel) during the whole period, in which variations of mv, h’, LAI and Fv occurred.

For each plot the σ◦ range of variability, ∆σ◦plot, was evaluated. Then, for each channel, metrics
such us the average of ∆σ◦plot, ∆σ◦avg, and standard deviation of ∆σ◦plot, ∆σ◦stdev, were quantified.
The higher ∆σ◦avg the more the channel sensitivity to SVV changes, the higher ∆σ◦stdev the more
heterogeneity among plots. The corresponding metrics computed on ∆h’, ∆mv, ∆Fv and ∆LAI are
discussed within the corresponding result Section 5.2.1. Backscattering varies with the dielectric and
geometric properties of the soil-vegetation system. In particular, dielectric properties are ruled by mv

(for the soil layer) and canopy water content; whereas, the geometric properties are ruled by h’ (for the
soil layer) and by both vegetation biomass (Fv and LAI) and canopy structure (this latter has not been
parameterized during the campaign).

4.2.2. Dynamic Analysis: Two Selected Plots

This analysis was performed for two selected plots: the first displayed soil drying over both bare
and vegetated stages (plot 460, sugar beet); the second (plot 450, barley) was fully vegetated from April
to July, then, it was harvested and thus, was bare during the last two SAR acquisitions. The analysis
allows understanding how σ◦ behaves with mv over changing SVV. Outcomes over the first plot allow
evaluating which channels have the higher sensitivity to vegetation growth. The dynamic of σ◦ over
the second selected plot allows evaluating which channels have higher sensitivity to mv when the soil
is beneath a vegetation canopy.

4.3. Temporal Single Regression Analysis

Because of the speckle noise affecting SAR images at raw resolution, operational applications
are to be preferred using spatially aggregated images by averaging both in situ measures and the
corresponding aggregated σ◦ values. Thus, temporal single regressions among σ◦ and SVV were
analyzed to address the application of semi-empirical models over bare and vegetated plots; mv and h’
were analyzed over bare soil, whereas, Fv and LAI were also explored over vegetated areas.

4.4. Inter-Channel Spatial/Temporal Correlation

A target is expected exhibiting different dielectric and geometrical properties if sensed with
distinct SAR configurations. Thus, a pixel based spatial correlation image, rsp, was evaluated for each
plot using a moving kernel. A plot representative spatial correlation, rs, was obtained by averaging
values of rsp co-localized to in situ measures. The calculation is extended to all available channel pairs
and acquisition times, thus, generating an rs domain cube. Because the moving kernel is applied on
spatially aggregated images, a minimum kernel size (3 × 3) was chosen to avoid exceeding plots’
dimensions. A total of 45 channel pairs were analyzed; the rs cube was evaluated for each of the
9 monitored plots.

The dynamic between rs and SVV was analyzed via a single regression over 9 selected pairs
of channels. The analysis determines in what extent rs could be useful to assess SVV changes; thus,
results are shown in terms of plot temporal correlation coefficients, rt, out-coming from the rs vs. SVV
regressions (Figure 4).
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Finally, errors associated to best regressions (both σ◦ vs. SVV and rs vs. SVV) are computed in
terms of mean absolute errors (MAE).Remote Sens. 2017, 7, 677 8 of 22 
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5. Results

5.1. Data Aggregation

The IM first derivative suggests almost the same aggregation level for co-polarized, σ◦pp, and
cross-polarized, σ◦pq, channels. Whereas, RS suggested by the IS analysis are higher at σ◦pp than those
at σ◦pq with highest values shown by XHH, and lowest value exhibited by LHV. The RS equal to 20 m,
as suggested by IS analysis, although even coarser then the value suggested by IM analysis (≈10 m),
remains suitable to characterize the average plot size (~280 m).

5.2. Dynamic Analyses

5.2.1. Dynamic Analysis: All Plots

L bands show the highest ∆σ◦avg values especially at cross-polarized channels. This suggests
that σ◦ at L band could be highly influenced by SVV dynamics. The higher values of ∆σ◦stdev also
highlight that σ◦ is influenced by SVV depending on the cultivar; contrarily, lower ∆σ◦stdev exhibited
by Xpp and Cpp bands implies a weaker influence of the cultivar (Figure 5, left panel).
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Numerically, the highest dynamic (∆σ◦avg = 12 dB and ∆σ◦stdev = 3.2 dB) is exhibited by LHV

whereas the lowest is observed for CHH (∆σ◦avg = 6.4 dB and ∆σ◦stdev = 1.2 dB). SVV variations
are responsible of changes of dielectric and geometric properties of the soil-vegetation system
(Figure 5, right panel). The variations of mv was on average ≈0.2 m3m−3 (with standard
deviation ∆mv,stdev = 0.03 m3m−3), whereas ∆Fv,avg = 0.64 (∆Fv,stdev = 0.17), ∆LAIavg = 3.42 m3m−2

(∆LAIstdev = 0.92 m3m−2) and ∆h’avg = 0.7 cm (∆h’stdev = 0.6 cm). To describe the differences observed
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in distinct channels as resulting from SVV changes, the dynamic analysis was applied to bare plots
(plots 460 and 222).

Bare soils exhibited lower ∆σ◦avg (particularly at L frequency) compared with those observable
during the whole investigation period (where both bare and vegetated conditions occurred).

Over vegetation, the highest ∆σ◦avg at L frequency was found for sugar beet, which is
characterized by a broad-leaf structure; whereas X channels exhibited highest ∆σ◦avg for barley
and wheat; finally C channels exhibited highest ∆σ◦avg for rape, barley and wheat. These differences
confirm that vegetation structure determines the geometric properties of the target.

5.2.2. Dynamic Analysis: Two Selected Plots

The dynamic analysis for the plot 460 revealed that σ◦pq exhibits lower values if compared to
σ◦pp at the same frequency. Peaks of σ◦ occur contextually to mv maxima (Figure 6, drying period I).
As expected, σ◦ over bare soil (until the 11th of May) is linearly correlated to mv at all channels.
With the growth of the vegetation two different σ◦ behaviors were observed: σ◦ at L (both σ◦pp and
σ◦pq) and C (σ◦pq only) is highly related to mv until Fv is lower than 3%. Whereas σ◦pp at X and C
frequencies were still influenced by mv dynamics until Fv is lower than 10% (Figure 6, drying period II).
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in which the increase of Fv began.

The difference between σ◦ collected on 19 April and 21 June is prevalently a measure of the
vegetation biomass change; indeed, σ◦ at these two times were acquired at almost similar h’ and mv

conditions. It is noticeable that high positive σ◦ differences occur at cross-polarization, thus confirming
outcomes of several other studies (e.g., [56]).

The dynamic analysis for the plot 450 (barley) revealed that all σ◦ at L frequency behave similarly
to mv; σ◦ at C and X frequencies is less influenced by mv dynamics, thus highlighting that σ◦ at
L frequency partially penetrated the canopy cover (Figure 7, drying periods I to III). In particular,
σ◦L,HH vs. mv was characterized by r2 ≈ 0.27, whereas lower r2 characterized regressions with other
frequencies (r2 ~10−4 for both σ◦C,HH and σ◦X,HH vs. mv). Conversely, L frequencies were not linked
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to Fv (r2 ~0.05); whereas, slightly higher r2 (~0.15) characterized σ◦ vs. Fv at C frequency; finally,
X channels were completely uncorrelated with Fv (r2 ~10−6).Remote Sens. 2017, 7, 677 10 of 22 
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5.3. Temporal Single Regression Analysis

A first analysis was applied on bare soils having different h’. Single regressions among σ◦ vs. mv

and h’ were calculated separately for two plots (IDs 460 and 222) that remained bare until the first
week of May; h’ values ranged between 0.93–1.77 and 1.42–2.05 cm, for plots 460 and 222 respectively
(Table 3). Correlations, r, are classified according to Evans, 1996 [57]; slopes, m, and intercepts, q,
values could be employed to apply empirical or semi-empirical models (e.g., the WC model [17]).
No significant correlations characterized the σ◦ vs. h’ regressions (not shown).

Table 3. σ◦ vs. mv over bare soil for plot 460 (left panel) and plot 222 (right panel). Significant and very
strong correlations (i.e., p-value less than 0.05 and r > 0.8) are highlighted in dark-grey with values in
bold: quasi-significant correlations (i.e., 0.05 < p-value < 0.1) are underlined.

σ◦ vs. mv r m q p-Value σ◦ vs. mv r m q p-Value

XHH 0.79 1.00 −30.12 6.0 × 10−2 XHH 0.62 0.46 −22.89 2.6 × 10−1

XVV 0.83 1.01 −29.98 4.0 × 10−2 XVV 0.61 0.43 −22.40 2.8 × 10−1

CHH 0.60 0.59 −24.29 2.1 × 10−1 CHH 0.83 0.56 −25.79 8.0 × 10−2

CHV 0.63 0.94 −41.30 1.8 × 10−1 CHV 0.71 0.54 −34.42 1.8 × 10−1

CVV 0.71 0.91 −29.61 1.2 × 10−1 CVV 0.77 0.52 −24.14 1.3 × 10−1

LHH 0.46 0.67 −37.84 3.6 × 10−1 LHH 0.99 1.12 −51.45 6.2 × 10−4

LHV 0.65 0.78 −48.88 1.6 × 10−1 LHV 0.99 0.98 −54.99 2.8 × 10−4

LVV 0.74 1.20 −46.16 9.6 × 10−2 LVV 0.99 1.34 −56.59 4.2 × 10−4

Noticeable, very strong and significant σ◦ vs. mv correlations were found for XVV (plot 460), CHH

and for L frequencies (plot 222); while, strong (i.e., 0.6 < r < 0.8) correlations were not significant
(p-value > 0.1).

For plot 460 two quasi-significant correlations were found at XHH and LVV, respectively.
The highest σ◦ vs. mv correlations were found at L frequency (≈0.99).

A second analysis was applied on vegetated plots (Table 4). Noticeable, σ◦ vs. h’ returned
no significant correlations (not shown). Regarding σ◦ vs. mv, only moderate to strong correlations
(0.4 < r < 0.8) were found as the capability of the signal of perceiving the mv is attenuated by the
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vegetation cover. Most significant σ◦ vs. mv correlations were found at L frequency, highlighting that
the longer the wave the better the canopy penetration. A limited number of quasi- and significant
correlations were found at C and X frequencies even if these were characterized by lower r values.

Table 4. r of σ◦ vs. mv for plots covered by vegetation. Quasi-significant correlations
(i.e., 0.05 < p-value < 0.1) are outlined; significant correlations (i.e., p-value < 0.05) are highlighted
in light-grey; strong and significant correlations are also bolded; very weak correlations (r < 0.19) are
not reported.

σ◦ vs. mv
Sugar Barley Maize Rape Wheat

r p-Value r p-Value r p-Value r p-Value r p-Value

XHH 0.32 5.9 × 10−1 - - 0.54 2.7 × 10−1 0.37 8.4 × 10−2 0.25 2.6 × 10−1

XVV 0.34 5.7 × 10−1 - - 0.55 2.6 × 10−1 0.46 2.7 × 10−2 - -
CHH 0.23 7.2 × 10−1 0.38 7.4 × 10−2 0.39 4.4 × 10−1 0.19 4.0 × 10−1 0.32 1.3 × 10−1

CHV - - 0.35 9.8 × 10−2 - - - - 0.46 2.6 × 10−2

CVV - - - - 0.59 2.1 × 10−1 0.27 2.1 × 10−1 - -
LHH - - 0.46 2.8 × 10−2 0.75 8.4 × 10−2 0.46 2.6 × 10−2 0.51 1.3 × 10−2

LHV -0.52 3.7 × 10−1 0.52 1.2 × 10−2 0.72 1.1 × 10−1 0.39 6.6 × 10−2 0.66 6.6 × 10−4

LVV - - 0.53 9.4 × 10-3 0.28 5.9 × 10−1 0.40 5.0 × 10−2 0.55 7.0 × 10−3

Several very strong and significant σ◦ vs. Fv correlations (Table 5) were found over maize (at CHV,
LHH and LHV) and sugar (all channels except LHH and LHV). These plants are both characterized
by bigger leaf dimensions compared to those characterizing other cultivars. Noticeable, σ◦ vs. Fv

regressions showed higher r than those characterizing σ◦ vs. mv (best r ~0.95 for σ◦ vs. Fv at LHV over
maize plot), thus confirming that: (i) σ◦ is mainly controlled by geometric and dielectric properties of
the vegetation; (ii) the canopy limits the assessment of the properties of the underlying soil. Although
several significant correlations were found for other cultivars, these were characterized by weak
(0.2 < r < 0.4) or moderate (0.4 < r < 0.6) r values.

Table 5. r of σ◦ vs. Fv for plots covered by vegetation. Quasi-significant correlations are outlined;
significant correlations are highlighted in light-grey; very strong and significant correlations are
highlighted in dark-gray with values in bold; very weak correlations are not reported.

σ◦ vs. Fv
Sugar Barley Maize Rape Wheat

r p-Value r p-Value r p-Value r p-Value r p-Value

XHH 0.90 3.8 × 10−2 0.19 3.9 × 10−1 0.30 6.3 × 10−1 0.39 7.2 × 10−2 - -
XVV 0.85 7.0 × 10−2 0.27 2.2 × 10−1 0.22 7.3 × 10−1 0.32 1.5 × 10−1 - -
CHH 0.87 5.0 × 10−2 - - 0.52 3.7 × 10−1 0.33 1.3 × 10−1 - -
CHV 0.90 3.7 × 10−2 - - 0.81 9.6 × 10−2 - - - -
CVV 0.87 5.8 × 10−2 - - 0.21 7.3 × 10−1 0.37 9.3 × 10−2 0.29 1.9 × 10−1

LHH 0.79 1.1 × 10−1 - - 0.87 5.0 × 10−2 0.39 7.6 × 10−2 0.28 2.1 × 10−1

LHV 0.53 3.6 × 10−1 - - 0.95 1.2 × 10−2 0.48 2.3 × 10−2 0.33 1.3 × 10−1

LVV 0.90 3.9 × 10−2 - - 0.69 1.9 × 10−1 0.54 9.3 × 10−3 - -

The highest and significant σ◦ vs. LAI correlations were found again for sugar beet and maize;
whereas, no significant correlations were found at X and CHH channels. Several significant correlations
were found for other cultivars; diversely than σ◦ vs. Fv, most of these exhibited a strong correlation
(Table 6). For some channels, σ◦ resulted significantly correlated with both LAI and Fv. Although σ◦ at
LHH resulted also correlated to mv the higher p-value indicates a weaker significance of this correlation.
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Table 6. r of σ◦ vs. LAI for plots covered by vegetation. Significant correlations are highlighted in
light-grey; strong and significant correlations are also bolded; very strong and significant correlations
are highlighted in dark-grey with values in bold; very weak correlations are not reported.

σ◦ vs.
LAI

Sugar Barley Maize Rape Wheat

r p-Value r p-Value r p-Value r p-Value r p-Value

XHH 0.72 0.17 0.63 4.7 × 10−3 - - - - 0.50 2.5 × 10−2

XVV 0.70 0.19 0.61 6.7 × 10−3 - - - - 0.51 2.2 × 10−2

CHH 0.80 1.0 × 10−1 0.32 1.9 × 10−1 0.31 6.2 × 10−1 0.31 1.8 × 10−1 0.64 2.4 × 10−3

CHV 0.91 3.1 × 10−2 - - 0.64 2.5 × 10−1 - - 0.49 2.7 × 10−2

CVV 0.80 1.0 × 10−1 0.19 4.5 × 10−1 - - 0.21 3.8 × 10−1 0.19 4.3 × 10−1

LHH 0.98 2.7 × 10−3 0.53 2.2 × 10−2 0.94 1.9 × 10−2 0.44 5.0 × 10−2 0.38 9.8 × 10−2

LHV 0.93 2.1 × 10−2 0.60 7.9 × 10−3 0.95 1.2 × 10−2 0.60 4.7 × 10−3 0.25 3.0 × 10−1

LVV 0.89 4.5 × 10−2 0.32 1.9 × 10−1 0.59 2.9 × 10−1 0.28 2.3 × 10−1 - -

5.4. Inter-Channel Spatial/Temporal Correlation at Plot Scale

This section discusses and analyzes rs domains for the two selected plots (see Sections 4.2.2
and 5.2.2). For the plot 460, rs domains were analyzed for increasing vegetation cover (for bare to
vegetated) and decreasing mv (Figure 8). In particular, three different dates were selected: (i) 19 April,
when field was bare and mv ~0.21 m3m−3; (ii) 7 June, when field was slightly vegetated (Fv ~0.1) and
mv decreased to ~0.16 m3m−3; and, (iii) 26 July, when Fv increased up to (~0.35) and the mv decreased
to ~0.02 m3m−3.
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frequencies). On 21 June, mv considerably increased (with almost constant Fv) causing a radical 

Figure 8. rs domain for plot 460 at three selected dates: 19 April (left panel), 7 June (central panel) and
26 July (right panel). The dichromatic color ramp describes very strong negative to very strong positive
correlations (from blue to grey). Values of rs rounded to first decimal place are also reported.

On 19 April the rs domain highlights that strong to very strong correlation occurred among σ◦ at
L and X channels, weak to very strong correlations were observed among σ◦ at C channels. On 7 June,
when mv slightly decreased and sugar beet started growing (Fv ~0.1); rs between σ◦ at some channels
slightly increased (e.g., σ◦ at CHH and CVV). Finally, on the 26th of July σ◦ of most of the bands were
strongly correlated (rs > 0.8). Whereas, lower correlations were observed among some σ◦ at CHV

and σ◦pq at L frequency (rs ~0.8). The decreasing of mv caused a noticeable increasing of rs for all
channel pairs.

For the field 450 (Figure 9) rs domains were analyzed at three selected times: (i) on 13 June, when
Fv ~0.9 and mv ~0.06 m3m−3; (ii) on 21 June, when Fv slightly increased (Fv ~0.95) and mv considerably
increased to ~0.22 m3m−3; and, (iii) on 26 July, when both Fv and mv considerably decreased to ~0.3
and ~0.06 m3m−3 respectively.
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Figure 9. rs domain for plot 450 three selected times: 13 June (left panel); 21 June (center panel) and
26 July (right panel). The dichromatic color ramp describes very strong negative to very strong positive
correlations (from blue to grey). Values of rs rounded to first decimal place are also reported.

On 13 June, the higher correlations among channels of the same frequency are observable.
More specifically, moderate to very strong correlations occur among X, C and L frequency channels.
Conversely, very weak to weak correlations characterized inter-frequency channels (e.g., C vs.
L frequencies). On 21 June, mv considerably increased (with almost constant Fv) causing a radical
change in the C vs. L region; indeed, positive weak became negative weak correlations. On 26 July the
mv and Fv decreased to their minimum values causing the considerably increase of all rs values.

Based on the above mentioned evidences, it could be hypnotized that rs and SVV time series are
correlated (temporal).

Thus, for 9 selected channel pairs the rs vs. SVV were computed over both bare soil (Table 7) and
vegetated plots (Tables 8–11) to explore the determinability of SVV through rs. Results are shown in
terms of correlation coefficients, rt.

Table 7. rt, over bare soils occurring during the study period; quasi-significant correlations (i.e.,
characterized by 0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19) are not reported.

rs

rt (-)

rs vs. mv rs vs. h'

Sugar Crop Maize Crop Sugar Crop Maize Crop

r p-Value r p-Value r p-Value r p-Value

σ◦
X,HH vs. σ◦

X,VV −0.22 7.2 × 10−1 0.65 2.4 × 10−1 0.88 5.1 × 10−2 - -
σ◦

C,HH vs. σ◦
C,VV −0.57 3.2 × 10−1 −0.51 3.8 × 10−1 0.65 2.4 × 10−1 0.29 7.1 × 10−1

σ◦
L,HH vs. σ◦

L,VV −0.64 2.5 × 10−1 −0.66 2.2 × 10−1 0.56 3.2 × 10−1 - -
σ◦

C,HH vs. σ◦
C,HV −0.33 5.9 × 10−1 - - −0.62 2.6 × 10−1 - -

σ◦
L,HH vs. σ◦

L,HV 0.77 1.3 × 10−1 −0.27 6.7 × 10−1 −0.21 7.3 × 10−1 0.49 5.1 × 10−1

σ◦
X,HH vs. σ◦

C,HH 0.78 1.2 × 10−1 0.78 1.2 × 10−1 0.29 6.4 × 10−1 −0.78 2.2 × 10−1

σ◦
C,HH vs. σ◦

L,HH - - 0.24 7.0 × 10−1 −0.85 6.8 × 10−2 −0.32 6.8 × 10−1

σ◦
X,HH vs. σ◦

L,HH - - - - −0.83 8.0 × 10−2 −0.32 6.8 × 10−1

σ◦
C,HV vs. σ◦

L,HV −0.35 5.6 × 10−1 0.58 3.1 × 10−1 −0.80 1.1 × 10−1 −0.29 7.0 × 10−1

Table 8. rt vs. h’ temporal correlations, rt, over the whole period for different crops; significant
strong correlations (p-value < 0.05, 0.6 < r < 0.8) are in light-gray highlighted with values in bold;
quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19) are
not reported.

rs

rt between rs and h'

Sugar Beet Barley Maize Rape Wheat

r p-Value r p-Value r p-Value r p-Value r p-Value

σ◦
X,HH vs. σ◦

X,VV −0.35 6.5 × 10−1 0.26 4.6 × 10−1 0.56 2.4 × 10−1 0.27 4.2 × 10−1 - -
σ◦

C,HH vs. σ◦
C,VV −0.88 1.2 × 10−1 - - 0.29 5.8 × 10−1 0.34 3.1 × 10−1 0.47 2.1 × 10−1

σ◦
L,HH vs. σ◦

L,VV 0.31 6.9 × 10−1 0.55 1.0 × 10−1 - - −0.35 2.9 × 10−1 - -
σ◦

C,HH vs. σ◦
C,HV −0.70 3.0 × 10−1 0.51 1.3 × 10−1 0.48 3.4 × 10−1 0.49 1.2 × 10−1 0.52 1.5 × 10−1

σ◦
L,HH vs. σ◦

L,HV 0.55 4.5 × 10−1 −0.49 1.5 × 10−1 0.28 6.0 × 10−1 −0.35 2.9 × 10−1 0.53 1.4 × 10−1

σ◦
X,HH vs. σ◦

C,HH −0.70 3.0 × 10−1 - - 0.25 6.4 × 10−1 0.44 1.7 × 10−1 0.45 2.2 × 10−1

σ◦
C,HH vs. σ◦

L,HH −0.66 3.4 × 10−1 0.54 1.1 × 10−1 −0.24 6.5 × 10−1 - - 0.69 3.9 × 10−2

σ◦
X,HH vs. σ◦

L,HH 0.32 6.8 × 10−1 −0.68 3.1 × 10−2 - - 0.43 1.9 × 10−1 0.45 2.2 × 10−1

σ◦
C,HV vs. σ◦

L,HV −0.91 9.4 × 10−2 - - −0.31 5.5 × 10−1 −0.31 3.5 × 10−1 0.28 4.5 × 10−1
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Table 9. rt vs. mv temporal correlations, rt, over the whole period for different crops; significant
correlations (p-value < 0.05) are in light-gray highlighted; strong (0.6 < r < 0.8) significant correlations
are also bolded; very strong (r > 0.8) significant correlations are also highlighted in dark-gray;
quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19)
are not reported.

rs

rt between rs and mv

Sugar Beet Barley Maize Rape Wheat

r p-Value r p-Value r p-Value r p-Value r p-Value

σ◦
X,HH vs. σ◦

X,VV 0.24 7.6 × 10−1 - - - - - - −0.65 2.0 × 10−3

σ◦
C,HH vs. σ◦

C,VV - - - - 0.31 5.5 × 10−1 - - - -
σ◦

L,HH vs. σ◦
L,VV −0.98 2.1 × 10−2 - - 0.61 2.0 × 10−1 −0.26 2.4 × 10−1 −0.38 9.7 × 10−2

σ◦
C,HH vs. σ◦

C,HV - - −0.48 3.2 × 10−2 −0.50 3.1 × 10−1 −0.23 2.9 × 10−1 - -
σ◦

L,HH vs. σ◦
L,HV −0.97 2.9 × 10−2 −0.27 2.5 × 10−1 −0.67 1.5 × 10−1 −0.36 1.0 × 10−1 −0.33 1.5 × 10−1

σ◦
X,HH vs. σ◦

C,HH - - 0.26 2.7 × 10−1 −0.19 7.3 × 10−1 −0.20 3.6 × 10−1 - -
σ◦

C,HH vs. σ◦
L,HH −0.33 6.7 × 10−1 - - −0.67 1.5 × 10−1 0.20 3.8 × 10−1 - -

σ◦
X,HH vs. σ◦

L,HH −0.88 1.2 × 10−1 −0.23 3.3 × 10−1 −0.67 1.5 × 10−1 - - −0.49 2.8 × 10−2

σ◦
C,HV vs. σ◦

L,HV - - −0.28 2.3 × 10−1 −0.68 1.4 × 10−1 0.24 2.8 × 10−1 −0.53 1.6 × 10−2

Table 10. rt vs. Fv temporal correlations, rt, over the whole period for different crops; significant
correlations (p-value < 0.05) are in light-gray highlighted; strong (0.6 < r < 0.8) significant correlations
are also bolded; very strong (r > 0.8) significant correlations are also highlighted in dark-gray;
quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19)
are not reported.

rs

rt between rs and Fv

Sugar Beet Barley Maize Rape Wheat

r p-Value r p-Value r p-Value r p-Value r p-Value

σ◦
X,HH vs. σ◦

X,VV 0.72 1.7 × 10−1 −0.41 7.3 × 10−2 −0.83 4.2 × 10−2 −0.21 3.5 × 10−1 - -
σ◦

C,HH vs. σ◦
C,VV −0.44 4.6 × 10−1 −0.41 7.0 × 10−2 −0.91 1.3 × 10−2 −0.33 1.3 × 10−1 0.78 4.4 × 10−5

σ◦
L,HH vs. σ◦

L,VV −0.55 3.3 × 10−1 0.28 2.4 × 10−1 −0.83 4.1 × 10−2 −0.46 2.9 × 10−2 - -
σ◦

C,HH vs. σ◦
C,HV −0.65 2.3 × 10−1 - - −0.20 7.1 × 10−1 0.23 3.0 × 10−1 0.79 3.6 × 10−5

σ◦
L,HH vs. σ◦

L,HV −0.66 2.2 × 10−1 - - 0.42 4.1 × 10−1 - - - -
σ◦

X,HH vs. σ◦
C,HH 0.30 6.2 × 10−1 −0.76 1.1 × 10−4 −0.57 2.4 × 10−1 −0.41 6.0 × 10−2 0.74 2.1 × 10−4

σ◦
C,HH vs. σ◦

L,HH −0.46 4.3 × 10−1 - - 0.29 5.8 × 10−1 −0.36 9.8 × 10−2 0.45 4.5 × 10−2

σ◦
X,HH vs. σ◦

L,HH - - - - 0.31 5.5 × 10−1 −0.35 1.1 × 10−1 - -
σ◦

C,HV vs. σ◦
L,HV 0.32 5.9 × 10−1 - - - - −0.25 2.6 × 10−1 0.25 2.9 × 10−1

Table 11. rt vs. LAI temporal correlations, rt, over the whole period for different crops; significant
correlations (p-value < 0.05) are in light-gray highlighted; strong (0.6 < r < 0.8) significant correlations
are also bolded; quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations
(r < 0.19) are not reported.

rs

rt between rs and LAI

Sugar Beet Barley Maize Rape Wheat

r p-Value r p-Value r p-Value r p-Value r p-Value

σ◦
X,HH vs. σ◦

X,VV 0.55 3.3 × 10−1 0.52 2.6 × 10−2 −0.49 4.0 × 10−1 - - 0.76 2.4 × 10−4

σ◦
C,HH vs. σ◦

C,VV −0.83 8.2 × 10−2 −0.26 2.9 × 10−1 −0.81 1.0 × 10−1 - - - -
σ◦

L,HH vs. σ◦
L,VV - - −0.57 1.3 × 10−2 −0.83 8.2 × 10−2 - - - -

σ◦
C,HH vs. σ◦

C,HV −0.86 6.1 × 10−2 0.42 8.3 × 10−2 0.27 6.6 × 10−1 0.32 1.7 × 10−1 0.25 3.2 × 10−1

σ◦
L,HH vs. σ◦

L,HV - - −0.48 4.2 × 10−2 0.84 7.3 × 10−2 - - −0.30 2.3 × 10−1

σ◦
X,HH vs. σ◦

C,HH - - 0.39 1.1 × 10−1 - - - - 0.21 4.0 × 10−1

σ◦
C,HH vs. σ◦

L,HH −0.54 3.5 × 10−1 −0.69 1.4 × 10−3 0.20 7.5 × 10−1 0.19 4.1 × 10−1 - -
σ◦

X,HH vs. σ◦
L,HH 0.40 5.1 × 10−1 −0.24 3.3 × 10−1 0.25 6.9 × 10−1 - - - -

σ◦
C,HV vs. σ◦

L,HV −0.74 1.5 × 10−1 −0.22 3.9 × 10−1 - - 0.46 3.9 × 10−2 0.42 8.3 × 10−2

Over bare soils, a total of 36 correlations (9 band pairs, 2 soil variables, 2 crops) were evaluated.
Only 13 (≈30%) rt are moderate (>|0.6|); most of them (6 cases) involve multi-frequency pairs.
Conversely to the single regression approach, the inter-channel spatial/temporal correlation analysis
pointed out three quasi-significant and very strong rs vs. h’ correlations (involving XHH-XVV, CHH-LHH,
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XHH-LHH pairs). Best correlations will be further analyzed within the discussion section (Tables 12
and 13).

Table 12. Best results achieved through the dynamic and correlation analyses; significant correlations
are highlighted in light-grey, quasi-significant correlations are underlined; other correlations are not
reported; for each correlation MAE is also reported.

Channel

σ◦ Dynamic Analysis—∆σ◦

(dB) σ◦ vs. SVV Analysis

Whole Dataset
Bare Soils Vegetated

σ◦ vs. h' σ◦ vs. mv σ◦ vs. h' σ◦ vs. mv σ◦ vs. Fv σ◦ vs. LAI

Varying h', mv,
Fv and LAI

(∆σ◦
avg)

Varying
LAI (∆σ◦)

r
(-)

MAE
(dB)

r
(-)

MAE
(dB)

r
(-)

MAE
(dB)

r
(-)

MAE
(dB)

r
(-)

MAE
(dB)

r
(-)

MAE
(dB)

XHH 7.50 6.99 - - 0.79 0.81 - - 0.37 1.03 0.90 0.54 0.63 1.28
XVV 7.20 6.16 - - 0.82 0.66 - - 0.46 1.05 0.85 0.74 0.62 1.48
CHH 6.40 5.79 - - 0.83 0.71 - - 0.38 1.22 0.87 0.75 0.64 0.90
CHV 10.00 10.39 - - - - - - 0.46 1.41 0.90 0.62 0.91 0.54
CVV 7.80 5.02 - - - - - - - - 0.87 0.61 - -
LHH 11.40 11.72 - - 0.99 0.24 - - 0.51 2.44 0.87 0.76 0.98 0.29
LHV 12.10 13.96 - - 0.99 0.15 - - 0.66 1.79 0.95 0.67 0.95 0.83
LVV 11.30 10.95 - - 0.99 0.22 - - 0.55 1.61 0.90 0.83 0.89 0.88

Table 13. Best results achieved through the inter-channel correlation analysis. Additionally, to the key
legend of Table 12, improvements, with respect to the single regression approach, are highlighted in
blue; bolded blue values refer to improvements achieved through the multi-frequency approach.

Channel Pairs

rs vs. SVV Analysis

Bare Vegetated

rs vs.
h'

MAE
(-)

rs vs.
mv

MAE
(-)

rs vs.
h'

MAE
(-)

rs vs.
mv

MAE
(-)

rs vs.
Fv

MAE
(-)

rs vs.
LAI

MAE
(-)

rs single
Freq.

XHH vs. XVV 0.88 0.02 - - - - −0.65 0.05 −0.83 0.02 0.76 0.04
CHH vs. CVV - - - - - - - - −0.91 0.02 −0.83 0.03
LHH vs. LVV - - - - - - −0.98 0.01 −0.83 0.03 −0.57 0.13
CHH vs. CHV - - - - - - −0.48 0.05 0.79 0.07 −0.86 0.07
LHH vs. LHV - - - - - - −0.97 0.04 - - −0.48 0.18

rs dual Freq.

XHH vs. CHH - - - - - - - - −0.76 0.08 - -
CHH vs. LHH −0.85 0.05 - - 0.69 0.09 - - 0.45 0.13 −0.69 0.18
XHH vs. LHH −0.83 0.08 - - −0.68 0.07 −0.49 0.16 - - - -
CHV vs. LHV - - - - −0.91 0.07 −0.53 0.09 - - 0.46 0.10

Over vegetated areas, among 180 correlations (9 band couples, 4 soil-vegetation variables, 5 crops),
only 34 (≈18%) rt were higher than |0.6|; 14 are strong and very strong significant correlations and 5
of these involve multi-frequency combinations (Tables 8–11).

Over vegetated areas, rs vs. h’ produces the lowest number of significant correlations as, in this
case, σ◦ is mainly ruled by canopy dielectric (plant water content) and geometric properties (LAI, Fv

and vegetation structure).
However, conversely to the single regression analysis, the dual-frequencies inter-channel

spatial/temporal approach pointed out some strong significant correlations. Despite rt were computed
over vegetated plots, some negative strong and very strong significant rt were observed between
rs and mv for pairs of σ◦ at L and X frequencies. These results partially confirm the suitability of
dual frequency approach to quantify mv and biomass (Fv particularly), as already reported by other
authors [16,58]; further discussion about the improvements achievable through the multi-channel
approach and the multi-frequency correlation will be provided in the next section.

6. Discussion on Best Results Achieved

This section summarizes best results achieved from the dynamic and single regression analyses
(Table 12). Due to the reciprocity property of cross-polarizations, only outcomes achieved by using
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σ◦HV and σ◦pp channels are further discussed. In addition, this part will be focused on the quasi- and
significant correlations only.

The dynamic analysis highlighted that ∆σ◦ at CHV and L frequency generally showed the
highest ∆σ◦ (≈10–12 dB); however, individual contributions of h’, mv, Fv and LAI were not
definitely distinguishable.

By observing ∆σ◦ due to vegetation variations (i.e., changes in LAI and Fv) ∆σ◦pq are higher at
L (~14 dB) rather than at C frequency (~10 dB); this is probably due to the structure of sugar beet
characterized by very large leaves. Moreover, as confirmed by other studies, σ◦HV and σ◦VH (not
shown here) behave quite similarly according to the reciprocity principle, which for most natural
media assumes a symmetric scattering matrix [59].

The correlation analysis highlights that over bare soils, σ◦ vs. mv are significant and characterized
by high r at all channels with exceptions of CHV and CVV. The highest r and the lowest MAE were
found at L frequency. Whereas no significant σ◦ vs. h’ correlations were achieved.

Over vegetated areas, since h’ was measured below canopy, no significant r values have been
found as σ◦ over dense vegetation is mainly ruled by: (i) surface water contents (mv and canopy
water content) and (ii) surface roughness (correlated with biomass variables, including LAI and
Fv, and vegetation structure). Quasi-significant and significant moderate to strong correlations
(i.e., 0.4 < r < 0.8) characterized σ◦ vs. mv at all channels with the exception of CVV. The highest
r values were found at L frequency probably due to the higher ability of longer waves to penetrate the
canopy layer.

Very strong correlations (i.e., r > 0.8) were found for σ◦ vs. Fv at all frequencies and polarizations;
highest r characterized σ◦ vs. Fv at XHH, CHV and LHV comparisons. Strong to very strong r
characterized σ◦ vs. LAI comparisons with the highest values at CHV and L frequencies.

All these results highlight that, on the average, σ◦ at L bands are more suitable than others to
infer SVV over both bare and vegetated areas.

It has been observed that, usually, correlations showing the highest r were also characterized by
the lower MAE (although this is not a general rule). Over bare soils and for all channels, lower MAE
were found for σ◦ vs. mv (MAE was ≈0.6 dB on average) with respect to the vegetated soils (≈1.3 dB).
Lower MAE characterized both σ◦ vs. Fv and σ◦ vs. LAI (on average ≈0.7 dB and ≈1 dB, respectively)
if compared to σ◦ vs. mv. Finally, lowest MAE were found at L frequency for σ◦ vs. mv (bare soils) and
for σ◦ vs. Fv and σ◦ vs. LAI (vegetated plots).

Over bare soils, the inter-channel correlation analysis (Table 13) revealed three quasi-significant
and very strong rs vs. h’ correlations; thus, it was observed a remarkable improvement with respect to
the single frequency approach. However, no significant rs vs. mv correlations were found, meaning
that all channel pairs were useless to assess mv by means of this approach.

Improvements with regards to the single regression approach (Table 13, highlighted in red) were
observed in several cases; the dual-frequency approach allowed pointing out higher correlations
(Table 13, bolded red values) if compared to the single-frequency approach. Remarkably, rs seems
to be negatively correlated with SVV with some exceptions (see Tables 7–11). These exceptions are
probably linked to the vegetation structure (as most of them were found for Fv and LAI for the wheat
plot); however, further analyses are required to corroborate this hypothesis. Further investigations
could be carried out by employing multi-mission satellite data (e.g., using nowadays imagery acquired
by Cosmo-SkyMed, TerraSAR-X, Palsar and Sentinel 1).

Over vegetated plots in particular, the more suitable band pairs to assess mv were LHH-LVV and
LHH-LHV (rt > |0.97|); however, the inter-channel approach opens the possibility to assess mv for all
pairs except CHH-CVV, XHH-CHH and CHH-LHH.

As for the mv, several channel pairs are suitable to assess Fv (strong to very strong significant
correlations) with the exception of the CHH-LHH pair. Channel pairs more suitable to assess LAI are:
XHH-XVV, CHH-LHH, CHV-LHV.



Remote Sens. 2017, 9, 677 17 of 22

7. Conclusions

The paper reports a detailed analysis on the influence of main SVV on σ◦. Statistical analyses have
been carried out to define suitable frequencies/polarimetry configuration to characterize the main
SVV over bare and vegetated plots. Dataset includes X, C and L SAR bands with HH, VV, VH and HV
polarizations and in situ measurements.

The dynamic and correlation analyses investigate the behavior of single bands with changing
SVV. The inter-channel correlation analysis explores the behavior of band pairs with SVV changing
over time.

The dynamic analysis revealed that cross-polarized channels exhibit higher sensitiveness to SVV,
in particular to LAI and Fv.

The single correlation analysis revealed that: (i) over bare soil, σ◦ vs. mv exhibits strong and very
strong correlation at all channels; best r characterizes σ◦ vs. mv at L channels (r ~1); (ii) over vegetated
areas, highest r characterizes σ◦ vs. Fv and σ◦ vs. LAI with best suitable channels at L frequency.

The inter-channel correlation (using a single frequency) displayed significant rs vs. h’ correlations
over both bare and vegetated plots (unachievable by means of the single regression approach).
The inter-channel spatial/temporal regression analysis is more suitable than the single channel
approach in several cases. Thus, the inter-channel correlation analyses promise to retrieve other
SVV with good accuracies even over vegetated plots. In some cases, best correlations are found by
adopting the dual frequency approach compared to the use of a single frequency.

Despite all the analyses confirming that L bands are more suitable than others to infer SVV over
both bare and vegetated plots, few satellite sensors provide SAR data at L frequency (PALSAR 1 and 2);
as a consequence, in the past, most of the models (see Table 1) have been implemented on C and X
bands only (widely available). In addition, the NASA JPL’s Soil Moisture Active Passive (SMAP),
a mission launched at the end of 2015, partially failed after collecting just two months of data because
of the malfunctioning of the SAR (LVV, LHH, and LHV).

Based on the results achieved by means of the inter-channel analysis, it could be interesting
to perform further experiments exploiting data collected also by the near future SAR sensors;
including: (i) SAOCOM-CONAE 1A/1B (Argentina) an L band two-satellite flying in constellation
with COSMO-SkyMed; (ii) Tandem-L (DLR-Germany) a two formation-flying radar satellites operating
in L band (planned to be launched at the end of 2022), and (iii) NISAR (NASA JPL-United States, 2020)
that will include both L and S band polarimetry SAR sensors. These new experiments could be carried
out coupling SAR to optical retrieved vegetation biomass (e.g., by means of Sentinel 2 or Landsat 8)
and soil water content (e.g., through the use of passive microwave) maps. Thus, widening the study
area these new researches could point out expected limitations in the relationship’s inversion.
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Abbreviations

The following abbreviations are used in this manuscript:

i, j subscripts indicating generic bands
pp, pq subscripts indicating like and cross polarizations
ASAR Advanced Synthetic Aperture Radar
AirSAR Airborne Synthetic Aperture Radar
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B, V bare or vegetated soils
CSK COSMO-SkyMed-Constellation of Small Satellites for Mediterranean basin Observation
DEMMIN Durable Environmental Multidisciplinary Monitoring Information Network
DLR Deutsches Zentrum für Luft- und Raumfahrt
EA, SEA empirical and semi-empirical approaches
EO Earth Observation
E-SAR Experimental SAR
ERS-2 European Remote Sensing 2
GO Geometrical Optics model
HH horizontal like polarization
HV horizontal vertical cross polarization
IEM Integral Equation Model
MIMICS Michigan Microwave Canopy Scattering
PALSAR Phased Array type L-band Synthetic Aperture Radar
RTM Radiative Transfer Model
SAR Synthetic Aperture Radar
SIR-C Spaceborne Imaging Radar-C
SVV Soil Vegetation Variables
VV vertical-vertical like polarization
VH vertical-horizontal cross polarization
WC Water Cloud model
X-SAR X-Band Synthetic Aperture Radar
ZALF Leibnitz-Zentrum für Agrarlandschaftsforschung
X SAR band at 2 cm wavelength
XVV, XHH band X in VV and HH like polarizations
C SAR band at 5 cm wavelength
CHH, CVV C band in HH and VV like polarizations
CHV, CVH C band in HV and VH cross polarizations
L SAR band at 21 cm wavelength
LHH, LVV L band in HH and VV like polarizations
LHV, LVH L band in HV and VH cross polarizations

Symbols

Symbol Meaning Unit
σ◦ backscattering coefficient (dB)
σ◦min, σ◦max plot minimum and maximum σ◦ (dB)
σ◦S, σ◦V bare soil and vegetation σ◦ (dB)
σ◦VV σ◦ in VV like polarization (dB)
σ◦HH σ◦ in HH like polarization (dB)
σ◦HV σ◦ in HV cross-polarization (dB)
σ◦VH σ◦ in VH cross-polarization (dB)
σ◦X,HH, σ◦X,VV σ◦ in X band HH and VV like polarizations (dB)
σ◦C,HH, σ◦C,VV σ◦ in C band HH and VV like polarizations (dB)
σ◦C,HV, σ◦C,VH σ◦ in C band HV and VH cross polarizations (dB)
σ◦L,HH, σ◦L,VV σ◦ in L band HH and VV like polarizations (dB)
σ◦L,HV, σ◦L,VH σ◦ in L band HV and VH cross polarizations (dB)
σ◦f,TR σ◦ at given frequency, f, and transmitted-received, TR, polarizations (dB)
∆σ◦ σ◦ variation (dB)
∆σ◦plot σ◦ variation (max-min) at plot scale (dB)
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∆σ◦avg average of the ∆σ◦plot values computed for all plots (dB)
∆σ◦stdev standard deviation of the ∆σ◦plot values computed for all plots (dB)
IM Moran Index (-)
IS Speckle Index (-)
RS spatial resolution (m)
h’ roughness height (m)
mv volumetric soil water content (m3m−3)
LAI Leaf Area Index (m2 m−2)
Fv Fractional cover (-)
m, q slope and intercept of a linear regression line variable dependent
r, r2 Pearson correlation and determination coefficients (-)
rmse, mse root mean square error or mean square error variable dependent
rsp Spatial correlation image between two channels (-)
rs For each plot is a representative spatial correlation value obtained by

averaging pixels of rsp co-localized to in situ measures
(-)

rt Pearson correlation out coming from rs vs. SVV (-)

Appendix A

This appendix reports notes of Table 1.

Note Description

* performance not quantified;
i σ◦ vs. in situ mv for incidence angles of 25◦ (a) and 50◦ (b);
ii σ◦ vs. in situ mv in the HH polarization: (a,b) for mv measured with a Thetaprobe instrument at a

depth of 5 cm, at 36◦ and 26◦ incidence; (c,d) for mv measured by gravimetric sampling at a depth of
2 cm, at 36◦ and 26◦ incidence;

iii (a) linear regression model at low incidence angle; (b) linear regression model using low and high
incidence angle;

iv Environment Canada (EC) network measurements (a) and sampled fields measurements (b);
v Retrieved using HH and HV polarizations;
vi (a) bare soil: (b) vegetated soil. mv retrieved using L bands only; a sensitivity analysis using the full

multi-frequency dataset is also presented;
vii (a) Bayesian and (b) Neural network approaches;
viii r between measured and extracted mv for (a) C band and (b) L band;
ix In situ mv vs. and C band retrieved mv, obtained by the ratio method (a) and water cloud model (b);
x bare soil (a) and vegetated soil (b);
xi Best performances retrieved with multiple linear regression at C and L bands: (a) CHH and (b) LHV.
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