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Abstract: Land cover classification is an important application for polarimetric synthetic aperture
radar (PolSAR). Target polarimetric response is strongly dependent on its orientation. Backscattering
responses of the same target with different orientations to the SAR flight path may be quite different.
This target orientation diversity effect hinders PolSAR image understanding and interpretation.
Roll-invariant polarimetric features such as entropy, anisotropy, mean alpha angle, and total scattering
power are independent of the target orientation and are commonly adopted for PolSAR image
classification. On the other aspect, target orientation diversity also contains rich information which
may not be sensed by roll-invariant polarimetric features. In this vein, only using the roll-invariant
polarimetric features may limit the final classification accuracy. To address this problem, this work
uses the recently reported uniform polarimetric matrix rotation theory and a visualization and
characterization tool of polarimetric coherence pattern to investigate hidden polarimetric features
in the rotation domain along the radar line of sight. Then, a feature selection scheme is established
and a set of hidden polarimetric features are selected in the rotation domain. Finally, a classification
method is developed using the complementary information between roll-invariant and selected
hidden polarimetric features with a support vector machine (SVM)/decision tree (DT) classifier.
Comparison experiments are carried out with NASA/JPL AIRSAR and multi-temporal UAVSAR
data. For AIRSAR data, the overall classification accuracy of the proposed classification method is
95.37% (with SVM)/96.38% (with DT), while that of the conventional classification method is 93.87%
(with SVM)/94.12% (with DT), respectively. Meanwhile, for multi-temporal UAVSAR data, the mean
overall classification accuracy of the proposed method is up to 97.47% (with SVM)/99.39% (with
DT), which is also higher than the mean accuracy of 89.59% (with SVM)/97.55% (with DT) from the
conventional method. The comparison studies clearly demonstrate the efficiency and advantage of
the proposed classification methodology. In addition, the proposed classification method achieves
better robustness for the multi-temporal PolSAR data. This work also further validates that added
benefits can be gained for PolSAR data investigation by mining and utilization of hidden polarimetric
information in the rotation domain.

Keywords: polarimetric synthetic aperture radar (PolSAR); polarimetric feature; polarimetric matrix
rotation; polarimetric coherence pattern; rotation domain; feature selection; classification

1. Introduction

With the ability to work day and night under almost all weather conditions and to acquire full
polarization information, polarimetric synthetic aperture radar (PolSAR) has become one of the most
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important microwave remote sensors [1]. Plenty of successful applications have been developed [1–5].
Among them, land cover classification is an important application for PolSAR data utilization. It is able
to provide information support to many fields such as general survey of crops, appraisal of cultivated
and urban land occupation, environment monitoring, etc.

Plenty of approaches have been proposed to enhance the classification performance from aspects
of polarimetric features, classifiers, and both. On one hand, some approaches focused on polarimetric
features with better discriminate performance among different land covers through target scattering
mechanism understanding and interpretation. The commonly used polarimetric target decomposition
techniques can be divided into two categories: eigenvalue-eigenvector-based decomposition and
model-based decomposition [5,6]. For eigenvalue-eigenvector-based decomposition, entropy H,
anisotropy Ani, and mean alpha angle α derived from Cloude-Pottier decomposition are frequently
used and an entropy based PolSAR land classification scheme was established thereafter [7]. Lee et al.
also used Cloude-Pottier decomposition with Wishart classifier to PolSAR image classification [8].
For model-based decomposition, the derived polarimetric features are the energy contributions of
some typical scattering mechanisms from Freeman-Durden three-component decomposition [9],
Yamaguchi four-component decomposition [10], and the recently reported generalized model-based
decomposition techniques [11,12]. Lee et al. applied Freeman-Durden three-component decomposition
with the Wishart classifier to classify PolSAR data [13]. Wang et al. adopted the non-negative
eigenvalue decomposition for terrain and land-use classification [14]. Hong et al. proposed a
four-component decomposition and applied it to classify wetland vegetation types [15].

On the other hand, other approaches to improve PolSAR classification accuracy aim at designing
or choosing the classifier with the better classification performance to take full advantage of the
available polarimetric features. Specifically, Pajares et al. proposed an optimization relaxation approach
based on the analogue Hopfield Neural Network for cluster refinement of pre-classified results from
the Wishart classification [16]. Attarchi and Gloaguen compared the performances of the support
vector machine (SVM) classifier, neural networks classifier, and random forest classifier for classifying
complex mountainous forests with SAR and other source data [17]. Zhou et al. applied the deep
convolutional neural networks (CNN) classifier for PolSAR classification and obtained improved
results [18]. In addition, considering both polarimetric feature and classifier at the same time is also an
effective way to improve the classification accuracy. Deng et al. used both polarimetric decomposition
and time-frequency decomposition to mine the hidden information of objects in PolSAR images and
applied a C5.0 decision tree (DT) algorithm for optimal feature selection and final classification [19].
They also proposed an approach to classify the PolSAR data by integrating polarimetric decomposition,
sub-aperture decomposition, and DT algorithm [20]. Cheng et al. designed and implemented a
segmentation-based PolSAR image classification method incorporating texture features, color features
and SVM classifier [21]. Wang et al. proposed a PolSAR classification method based on the generalized
polarimetric decomposition of the Mueller matrix and SVM classifier [22].

Among the aforementioned PolSAR classification methods based on polarimetric features,
roll-invariant polarimetric features are commonly adopted. An important reason is that polarimetric
response of a target is strongly dependent on its orientation [23]. On one hand, the backscattering
responses of the same target with different orientations to the PolSAR flight path are significantly
various. On the other hand, the backscattering responses of different targets with some specific
orientations to the flight path may be similar to each other. This target orientation diversity
effect frequently induces scattering mechanism ambiguity and hinders the correct understanding
and interpretation of PolSAR data [23]. As a result, roll-invariant polarimetric features which
are independent of the target orientation diversity are preferred in many applications. However,
roll-invariant polarimetric features may not completely represent target scattering properties. Target
orientation diversity also contains rich information which is not sensed by roll-invariant polarimetric
features [23]. To further improve the PolSAR classification accuracy, proper exploration of the target
orientation diversity is an effective way and is able to provide valuable hidden information for physical
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parameter retrieval. In this vein, uniform polarimetric matrix rotation theory [23] and a visualization
and characterization tool of polarimetric coherence pattern [24] were respectively proposed to extract
the hidden polarimetric features in the rotation domain along the radar line of sight for hidden
scattering information mining. Parts of these new features achieved successful applications including
crop discrimination [25], target enhancement [23], and manmade target extraction [26], etc.

Since these hidden polarimetric features contain rich hidden scattering information of targets in the
rotation domain, this work aims to utilize them to enhance PolSAR classification accuracy. Specifically,
we firstly propose a polarimetric feature selection scheme to select suitable hidden polarimetric features
derived from the rotation domain. Then, the selected hidden polarimetric features and the commonly
used roll-invariant polarimetric features of H/Ani/α/Span are combined as the discriminant feature
set. Finally, a classification method using the combined feature set and the SVM/DT classifier [27,28]
is developed.

This work is organized as follows. In Section 2, the two novel schemes for hidden polarimetric
information mining in the rotation domain and their corresponding hidden polarimetric features are
reviewed. The proposed polarimetric feature selection scheme and classification method are described
in Section 3. Comparison experiments with NASA/JPL AIRSAR and multi-temporal UAVSAR datasets
are carried out and investigated in Section 4. Section 5 provides the final conclusions and outlook for
future work.

2. Hidden Polarimetric Feature Extraction in the Rotation Domain

2.1. Polarimetric Matrices and Their Rotation

For PolSAR, in the horizontal and vertical polarization basis (H, V), the acquired full polarization
information can form a scattering matrix S with the representation as

S =

[
SHH SHV
SVH SVV

]
(1)

where SHV is the backscattered coefficient from vertical transmitting and horizontal receiving
polarization. Other terms in S are defined similarly.

Subject to the reciprocity condition (SHV = SVH), the coherency matrix T is

T =
〈

kPkH
P

〉
=

 T11 T12 T13

T21 T22 T23

T31 T32 T33

 (2)

where kP = 1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
is the Pauli scattering vector, 〈·〉 denotes the

sample average, the superscript T and H denote the transpose and conjugate transpose respectively,
and Tij is the (i, j) entry of the coherency matrix T.

With a rotation angle θ along the radar line of sight, the rotated scattering matrix S(θ) and
coherency matrix T(θ) respectively become

S(θ) = R2(θ)SRH
2 (θ) (3)

T(θ) = kP(θ)kH
P (θ) = R3(θ)TRH

3 (θ) (4)

where the rotation matrixes are R2(θ) =

[
cos θ sin θ

− sin θ cos θ

]
, R3(θ) =

 1 0 0
0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

.
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2.2. Polarimetric Features Derived from Uniform Polarimetric Matrix Rotation Theory

In order to explore the target orientation diversity and mine embedded hidden information,
uniform polarimetric matrix rotation theory was proposed [23]. It rotates the acquired polarimetric
matrix along the radar line of sight and fully describes the rotation characteristics of each entry of the
matrix. Taking the coherency matrix for example, with mathematic transformations, all the elements
and powers of the off-diagonal terms of a rotated coherency matrix T(θ) can be represented as a
uniform sinusoidal function [23]

f (θ) = A sin[ω(θ + θ0)] + B (5)

where A is the oscillation amplitude, B is the oscillation center, ω is the angular frequency, and θ0

is the initial angle. Therefore, the new polarimetric feature parameter set {A, B, ω, θ0} named as the
oscillation parameter set is able to completely characterize the rotation properties of all the elements
and powers of the off-diagonal terms of T(θ).

Series of new polarimetric features are derived in [23] to describe the hidden scattering information
of the target in the rotation domain. Among them, there are eleven independent hidden features
as: θ0_Re[T12(θ)], θ0_Im[T12(θ)], θ0_Re[T23(θ)], θ0_|T12(θ)|2, θ0_|T23(θ)|2, A_Re[T12(θ)], A_Im[T12(θ)],
A_|T12(θ)|2, A_|T23(θ)|2, B_T22(θ), and B_|T23(θ)|2. where Re

[
Tij
]

and Im
[
Tij
]

are the real and
imaginary parts of Tij respectively, and θ0_Tij(θ) denotes the initial angle θ0 of Tij(θ). The other
terms of A_Tij(θ) and B_Tij(θ) are defined similarly.

2.3. Polarimetric Features Derived from Polarimetric Coherence Pattern

Polarimetric coherence between two polarization channels s1 and s2 is also used for target
detection and classification. It can be estimated in practice with the sample average of sufficient
samples with similar properties [29] as

|γ1−2| =
|〈s1s∗2〉|√〈
|s1|2

〉〈
|s2|2

〉 (6)

where the superscript ∗ denotes the conjugate, and the value of |γ1−2| is within the range of [0, 1].
Due to the sensitivity of polarimetric coherence to the target’s orientation to the PolSAR flight

path, a visualization and characterization tool of polarimetric coherence pattern [24] was proposed
to extend the original polarimetric coherence at a given rotation angle (θ = 0) to the whole rotation
domain. It covers all rotation angles (θ ∈ [−π, π)) along the radar line of sight for the exploration of
complete interpretation of the target’s polarimetric coherence as

|γ1−2(θ)| =
|〈s1(θ)s∗2(θ)〉|√〈
|s1(θ)|2

〉〈
|s2(θ)|2

〉 (7)

With this approach, a set of new polarimetric features were proposed to quantitatively characterize
a polarimetric coherence pattern’s variation along the radar line of sight [24]. These derived
polarimetric features include: original coherence γ−org, coherence degree γ−mean, coherence fluctuation
γ−std, maximum and minimum coherences γ−max and γ−min, coherence contrast γ−contrast, coherence
beamwidth γ−bw, maximum and minimum rotation angles θγ−max and θγ−min. The detailed definitions
are given in [24].

With (H, V) polarization basis, four independent polarimetric coherence patterns can be
obtained [24] as |γHH−VV(θ)|, |γHH−HV(θ)|,

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, and

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣. For each of

them, the aforementioned nine hidden polarimetric features can be extracted. Therefore, there are a
total of thirty-six hidden features derived from the polarimetric coherence patterns.
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3. Proposed Polarimetric Feature Selection Scheme and Classification Method

3.1. Proposed Polarimetric Feature Selection Scheme

Based on the aforementioned hidden polarimetric features derived in the rotation domain, there
are eleven features derived from the uniform polarimetric matrix rotation theory and thirty-six features
derived from the polarimetric coherence pattern. So we need to select suitable features among them to
avoid information redundancy which may decrease the accuracy of the final land cover classification.
Since γ−bw of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣ is almost invariant for different land covers [24], it is not considered.

Then, a polarimetric feature selection scheme is proposed for the other forty-six hidden polarimetric
features. The flowchart of it is shown in Figure 1.
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The steps of the proposed polarimetric feature selection scheme are as follow:

(1) The first step is polarimetric features extraction and normalization. Based on the filtered PolSAR
data, independent hidden polarimetric features are extracted and normalized to the range of
[0, 1]. The total normalized feature set is Fall = { fi, i = 1, ..., I}, I is the number of hidden
polarimetric features.

(2) Pre-removal is done to the Fall based on the within-class distance, which is a measure of the
disperse degree of samples within the same class. From ground-truth map, there are X known
land covers Cx, x = 1, ..., X. For feature fi, the samples from each land cover Cx can be represented
as Ci

x =
{

f (x,k)
i , k = 1, 2, ..., Nx

}
. Where f (x,k)

i is the feature value of the kth sample in land cover
Cx, Nx is the total sample number of land cover Cx. The within-class distance of land cover Cx

with feature fi is dwithin
(
Ci

x
)

as

dwithin

(
Ci

x

)
=

√√√√ 1
Nx

Nx

∑
k=1

(
f (x,k)
i − centeri

x

)2
(8)

where centerx is the center of land cover Cx. With feature fi, centeri
x = 1

Nx

Nx
∑

k=1
f (x,k)
i . Based

on different features, the within-class distances of land cover Ci are dwithin
(
Ci

x
)
, i = 1, ..., I.

The three largest within-class distances of each land covers are all chosen. The features which
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produce them form the removal feature set Fremoval which needs to be removed from Fall as
Fpreremoval = Fall − Fremoval . Fpreremoval =

{
f̃ j, j = 1, ..., J

}
, J is the feature number of Fpreremoval

and J ≤ I.
(3) The preliminary selection is carried out based on the class separation distance defined as the

distance between two classes plus the distance between two class centers. A corresponding
amount of land cover pairs are constructed by combining each two land covers. There are Y land
cover pairs as Py, y = 1, ..., Y. For each land cover pair Py, two land covers of it are Cy1 and Cy2 ,
where y1 and y2 are the land cover labels. With feature f̃ j, the samples of land covers Cy1 and

Cy2 can be represented as Cj
y1 =

{
f̃ (y1,l)
j , l = 1, 2, ..., Ny1

}
and Cj

y2 =
{

f̃ (y2,m)
j , m = 1, 2, ..., Ny2

}
,

respectively. The distance between land covers Cy1 and Cy2 with feature f̃ j dclass

(
Cj

y1 , Cj
y2

)
and

the distance between their centers centery1 and centery2 with feature f̃ j dcenter

(
centerj

y1 , centerj
y2

)
are respectively as

dclass

(
Cj

y1 , Cj
y2

)
=

√√√√ 1
Ny1 Ny2

Ny1

∑
l=1

Ny2

∑
m=1

(
f̃ (y1,l)
j − f̃ (y2,m)

j

)2
(9)

dcenter

(
centerj

y1 , centerj
y2

)
=

∣∣∣∣∣∣ 1
Ny1

Ny1

∑
l=1

f̃ (y1,l)
j − 1

Ny2

Ny2

∑
m=1

f̃ (y2,m)
j

∣∣∣∣∣∣ (10)

The class separation distance of land cover pair Py with feature f̃ j is proposed as dseparation

(
Pj

y

)
=

dclass

(
Cj

y1 , Cj
y2

)
+ dcenter

(
centerj

y1 , centerj
y2

)
and is able to measure the land cover separation of

land cover pair Py. Based on different features of Fpreremoval , the class separation distances of

land cover pair Py are dseparation

(
Pj

y

)
, j = 1, ..., J. The selected hidden polarimetric feature of land

cover pair Py is f ss
y = argmax

f̃ j∈Fpreremoval

{
dseparation

(
Pj

y

)}
. The preliminary selected feature set for all the

land cover pairs is Fpreselection = f ss
1 ∪ f ss

2 ∪...∪ f ss
Y .

(4) After the preliminary selection, post-refinement is implemented. The idea of post-refinement is
to determine the features with relatively higher discriminant performance in Fpreselection. For each
land cover pairs, the features which lead to the maximum class separation distances are recorded
and accounted. Features with appearance higher than a predefined threshold r are all determined
as the optimal feature candidates. Then, the final selected feature set can be formed as Fselection

with these optimal features from Fpreselection.
(5) Finally, if the PolSAR data is a single-temporal/band, the Fselection will be the final selection

results direct. Or, if it is one of the multi-temporal/band PolSAR data, the union for all the
Fselection of different temporal/band data will be the final selection results.

This work uses the basic and commonly adopted criterions of within-class distance, distance
between two classes, and distance between two class centers to select suitable hidden polarimetric
features derived in the rotation domain. Certainly, other feature selection schemes can also be suitable.

3.2. Proposed Classification Method

The main idea of the proposed classification method is to utilize the complementary information
between the roll-invariant polarimetric features and the selected hidden polarimetric features in the
rotation domain. The combination of them will be used as the classifier input. In order to validate the
performance of the proposed classification method, both the SVM and DT classifiers [27,28] are used
in this work. The flowchart of the proposed classification method is illustrated in Figure 2 and the
corresponding steps are as follows.
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(1) In order to extract the roll-invariant polarimetric features of H/Ani/α, the original PolSAR data
is speckle filtered. The recently reported adaptive SimiTest speckle filter [29] is adopted.

(2) Based on the filtered coherency matrix, total scattering power Span can be calculated by
Span = T11 + T22 + T33.

(3) Roll-invariant polarimetric features of entropy H, mean alpha angle α and anisotropy Ani can be
extracted by Cloude-Pottier decomposition [6].

(4) The selected hidden polarimetric features are extracted using the uniform polarimetric matrix
rotation theory [23] and the visualization and characterization tool of polarimetric coherence
pattern [24].

(5) Each of these polarimetric features is normalized to the range of [0, 1]. And the combination of
these normalized features is formed as the classifier input.

(6) Through training and validation processing of the SVM/DT classifier, the final classification
results and corresponding accuracies of each land cover and the overall can be obtained.
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4. Comparison Experiments

4.1. Data Description

First, NASA/JPL AIRSAR L-band PolSAR data collected over Flevoland, the Netherlands, is
adopted. The range and azimuth pixel resolutions are 6.6 m and 12.1 m respectively. The data is
speckle filtered by the adaptive SimiTest approach with a 15 × 15 sliding window [29] and is shown in
Figure 3a. The filter sliding window size of 15 × 15 is recommended in [29], which makes a tradeoff
for the filter performance and computational cost. Besides, the filter sliding window size effect will be
investigated in Section 4.3. This study area contains various land covers and a ground-truth map for
eleven known land covers (including water, rapeseed, grasses, bare soil, potatoes, beet, wheat, lucerne,
forest, peas, and stembeans) is shown in Figure 3b.
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4.2. Selected Hidden Polarimetric Features of Different PolSAR Data 
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(b) Ground-truth map for eleven known land covers.

Secondly, NASA/JPL UAVSAR L-band multi-temporal PolSAR data collected over Manitoba,
Canada, are also adopted. The range and azimuth pixel resolutions are 5 m and 7 m respectively.
Four temporal data are used in the comparison. The acquisition dates are 17 June, 22 June, 5 July,
and 17 July in 2012, respectively. With Pauli basis, the RGB composite images of the filtered
multi-temporal UAVSAR data are shown in Figure 4a–d. Also, the adaptive SimiTest speckle filter
with the recommended 15 × 15 sliding window [29] is adopted. This study area also contains various
land covers and a ground-truth map for seven known land covers (including oats, rapeseed, wheat,
corn, soybeans, forage crops, and broadleaf) is shown in Figure 4e.
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4.2. Selected Hidden Polarimetric Features of Different PolSAR Data 

Figure 4. Study area. (a–d) RGB composite images of the filtered multi-temporal UAVSAR data
(17 June, 22 June, 5 July, and 17 July in 2012 respectively) with Pauli basis; (e) Ground-truth map for
seven known land covers.

4.2. Selected Hidden Polarimetric Features of Different PolSAR Data

For each land cover class, 1000 random samples are used to represent the class in the feature
selection processing. For the AIRSAR data, X = 11 denotes eleven known land covers and the
corresponding number of land cover pairs is Y = 55. Meanwhile, for the multi-temporal UAVSAR
data, X = 7 and Y = 21. The preliminary selected feature sets Fpreselection for different PolSAR data are
shown in Table 1. The numbers in brackets indicate the appearance number that this feature leads to
the maximum class separation distances. For example, the selected hidden polarimetric feature γ−min

of |γHH−VV(θ)| can maximize the class separation distances within fourteen land cover pairs of the
fifty-five pairs of the filtered AIRSAR data.
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Table 1. Preliminary selected feature sets for different polarimetric synthetic aperture radar
(PolSAR) data.

PolSAR Data Preliminary Selected Feature Set

AIRSAR

γ−min of |γHH−VV(θ)| (14), γ−max of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (11), θ0_Re[T12(θ)] (9),

θ0_Im[T12(θ)] (6), γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (3), γ−contrast of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣
(3), γ−max of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣ (2), γ−org of |γHH−HV(θ)| (2), γ−org of |γHH−VV(θ)|

(2), γ−max of |γHH−VV(θ)| (2), γ−max of |γHH−HV(θ)| (1)

UAVSAR

17 June

θ0_Im[T12(θ)] (9), γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (4), θ0_Re[T12(θ)] (2), γ−max of∣∣∣γ(HH−VV)−HV(θ)
∣∣∣ (2), γ−mean of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣ (1), γ−contrast of∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1), γ−min of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (1), γ−org of |γHH−VV(θ)| (1)

22 June

θ0_Im[T12(θ)] (9), γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (4), γ−min of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (3),

θ0_Re[T12(θ)] (1), γ−mean of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1), γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1),

γ−org of |γHH−VV(θ)| (1), γ−min of |γHH−VV(θ)| (1)

5 July
θ0_Im[T12(θ)] (7), θ0_Re[T12(θ)] (6), γ−min of |γHH−VV(θ)| (3), γ−org of∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (3), γ−contrast of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1), γ−org of |γHH−VV(θ)| (1)

17 July

θ0_Im[T12(θ)] (6), θ0_Re[T12(θ)] (3), γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (3), γ−min of

|γHH−VV(θ)| (3), γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (2), γ−max of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ (1),

γ−org of |γHH−HV(θ)| (1), γ−max of |γHH−HV(θ)| (1), γ−max of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣ (1)

Based on the preliminary selected feature sets in Table 1, we set r = 3 in the followed refinement
processing. In this vein, features which have only one or two corresponding land cover pairs
are not taken into consideration. As a result, for AIRSAR data, the final selected features are
θ0_Re[T12(θ)], θ0_Im[T12(θ)], γ−org of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, γ−max of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣, γ−contrast of∣∣∣γ(HH−VV)−HV(θ)

∣∣∣ and γ−min of |γHH−VV(θ)|. For multi-temporal UAVSAR data, the union of the
selected features of different temporal data are the final selection results, which include θ0_Re[T12(θ)],
θ0_Im[T12(θ)], γ−org of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, γ−org of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣, γ−min of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣

and γ−min of |γHH−VV(θ)|.
For AIRSAR data, four commonly adopted roll-invariant polarimetric features of H/Ani/α/Span

are calculated and shown in Figure 5a–d. Then, the six selected hidden polarimetric features derived
in the rotation domain are also calculated and shown in Figure 5e–j. In order to compare the land cover
discrimination abilities of the six selected hidden polarimetric features and the four roll-invariant
polarimetric features, means and standard deviations of different features in terms of each known land
covers are shown in Figure 6. Based on the four roll-invariant polarimetric features of H/Ani/α/Span
only, land cover 3 (grasses) and 7 (wheat) cannot be successfully discriminated. The discriminations
between land cover 3 (grasses) and 8 (lucerne), and land cover 5 (potatoes) and 9 (forest) are also
limited. In comparison, with θ0_Re[T12(θ)], land cover 3 (grasses) and 7 (wheat) can be discriminated
successfully. Furthermore, with γ−min of |γHH−VV(θ)|, better discriminations are achieved for land
cover 3 (grasses) and 8 (lucerne), and land cover 5 (potatoes) and 9 (forest). Other selected hidden
polarimetric features are also able to enhance the discriminations for some land cover pairs. Thereby,
selected hidden polarimetric features can further enhance the land cover discrimination abilities and
have the potentials to improve the land cover classification accuracy.
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Figure 5. Roll-invariant polarimetric features and selected hidden polarimetric features for AIRSAR

data. (a) H; (b) Ani; (c) α; (d) Span; (e) θ0_Re[T12(θ)]; (f) θ0_Im[T12(θ)]; (g) γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣;
(h) γ−max of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (i) γ−contrast of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (j) γ−min of |γHH−VV(θ)|.
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Figure 6. Means and standard deviations comparison for AIRSAR data. Land cover 1–11 indicate 
water, rapeseed, grasses, bare soil, potatoes, beet, wheat, lucerne, forest, peas, and stembeans 

respectively. (a) H ; (b) Ani ; (c) α ; (d) Span ; (e) ( )0 12_ Re Tθ θ   ; (f) ( )0 12_Im Tθ θ   ; (g) 

orgγ −  of ( ) ( )HH VV HVγ θ+ − ; (h) maxγ −  of ( ) ( )HH VV HVγ θ− − ; (i) contrastγ −  of ( ) ( )HH VV HVγ θ− − ; (j) 

minγ −  of ( )HH VVγ θ− . 

Similarly, for UAVSAR data (data of 17 June 2012 is used as an example), the four roll-invariant 
polarimetric features and the six selected hidden polarimetric features are calculated and shown in 
Figure 7. Means and standard deviations of these features for known land covers are shown in Figure 
8. Using H / Ani /α / Span  only, land cover 1 (oats) and 2 (rapeseed), land cover 1 (oats) and 3 
(wheat), land cover 1 (oats) and 5 (soybeans), and land cover 3 (wheat) and 5 (soybeans) may not be 
successfully discriminated. While they can be discriminated by each hidden polarimetric features of 

( )0 12_Im Tθ θ   , orgγ −  of ( ) ( )HH VV HVγ θ+ − , minγ −  of ( ) ( )HH VV HVγ θ− − , and ( )0 12_ Re Tθ θ   . This 

further verifies that combining the selected hidden and roll-invariant polarimetric features has better 
potential to enhance PolSAR classification performance. 

Figure 6. Means and standard deviations comparison for AIRSAR data. Land cover 1–11 indicate water,
rapeseed, grasses, bare soil, potatoes, beet, wheat, lucerne, forest, peas, and stembeans respectively.

(a) H; (b) Ani; (c) α; (d) Span; (e) θ0_Re[T12(θ)]; (f) θ0_Im[T12(θ)]; (g) γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣;
(h) γ−max of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (i) γ−contrast of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣; (j) γ−min of |γHH−VV(θ)|.

Similarly, for UAVSAR data (data of 17 June 2012 is used as an example), the four roll-invariant
polarimetric features and the six selected hidden polarimetric features are calculated and shown in
Figure 7. Means and standard deviations of these features for known land covers are shown in Figure 8.
Using H/Ani/α/Span only, land cover 1 (oats) and 2 (rapeseed), land cover 1 (oats) and 3 (wheat),
land cover 1 (oats) and 5 (soybeans), and land cover 3 (wheat) and 5 (soybeans) may not be successfully
discriminated. While they can be discriminated by each hidden polarimetric features of θ0_Im[T12(θ)],
γ−org of

∣∣∣γ(HH+VV)−HV(θ)
∣∣∣, γ−min of

∣∣∣γ(HH−VV)−HV(θ)
∣∣∣, and θ0_Re[T12(θ)]. This further verifies that

combining the selected hidden and roll-invariant polarimetric features has better potential to enhance
PolSAR classification performance.
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Figure 7. Roll-invariant polarimetric features and selected hidden polarimetric features for UAVSAR
data acquired on 17 June 2012. (a) H; (b) Ani; (c) α; (d) Span; (e) θ0_Re[T12(θ)]; (f) θ0_Im[T12(θ)];

(g) γ−org of
∣∣∣γ(HH+VV)−HV(θ)

∣∣∣; (h) γ−org of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣; (i) γ−min of
∣∣∣γ(HH−VV)−HV(θ)

∣∣∣;
(j) γ−min of |γHH−VV(θ)|.
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Figure 8. Cont.
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Figure 9. Classification results for AIRSAR data over eleven known land covers using support vector 
machine (SVM) classifier. (a) Conventional classification method; (b) Proposed classification method. 
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4.3. Classification Comparison with AIRSAR Data

In order to demonstrate the added benefits from hidden polarimetric features, the proposed
classification method is compared with the conventional classification method which only uses the
roll-invariant polarimetric features of H/Ani/α/Span. For each known land cover in the different
PolSAR data, a half of the known samples are randomly selected and used for training the SVM/DT
classifier, and the other half of the known samples are used for validation.

First, the AIRSAR data is adopted to compare the classification performance of the conventional
and proposed classification methods. Using the SVM classifier, the classification results for the AIRSAR
data over eleven known land covers are shown in Figure 9. The classification accuracies are listed in
Table 2. It can be observed that the performance of the proposed classification method outperforms
that of the conventional one. The overall classification accuracy of the proposed classification method
is 95.37%, while that of the conventional classification method is 93.87%. Moreover, for nine of these
eleven land covers, the classification accuracies of the proposed classification method are higher than
those of the conventional classification method. Especially for grasses, the classification accuracy
increase is up to 14.35%, from 66.99% of the conventional method to 81.34% of the proposed method.
Besides, the computational costs of the training and validation processing are listed in Table 3. The
computational costs are comparable. Finally, the classification results over the full-scene area of this
AIRSAR data with the conventional and proposed classification methods respectively are shown in
Figure 10.
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Table 2. Classification accuracies (%) for AIRSAR data using support vector machine (SVM) classifier.

Classification
Method Water Rapeseed Grasses Bare

Soil Potatoes Beet Wheat Lucerne Forest Peas Stembeans Overall

Conventional 97.65 94.89 66.99 95.84 92.81 94.89 96.12 95.89 92.53 97.85 98.07 93.87

Proposed 98.39 95.38 81.34 96.75 93.42 95.76 97.58 96.33 94.08 97.76 97.44 95.37

Table 3. Computational costs (s) of the training and validation processing for AIRSAR data using
SVM classifier.

Classification Method Training Validation

Conventional 14.3 38.1
Proposed 13.2 39.7
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Figure 10. Classification results over the full-scene area of AIRSAR data using SVM classifier.
(a) Conventional classification method; (b) Proposed classification method.

In addition, the DT classifier is used. With the conventional and proposed classification methods,
the classification results are shown in Figure 11. The classification accuracies are listed in Table 4.
The performance of the proposed classification method still outperforms that of the conventional
one. The overall classification accuracy of the proposed classification method is 96.38%, which is
higher than the 94.12% of the conventional one. Moreover, for ten of these eleven land covers, the
classification accuracies of the proposed classification method are higher than those of the conventional
one. Besides, the computational costs of the training and validation processing are listed in Table 5.
The computational costs are also comparable. Finally, the classification results over the full-scene area
of this AIRSAR data with the conventional and proposed classification methods respectively are shown
in Figure 12. The conventional and proposed classification methods both belong to the pixel-based
classification methods which are used to deal with the pixels one by one. Besides, in order to compare
the performances of the conventional and proposed classification methods, no post-processing is used.
Since the misclassification rate is about 5%, these misclassified pixels produce the noisy appearance.
Because the DT classifier has a better performance than the SVM classifier and misclassifies less pixels
in the full-scene area, the classification results using the DT classifier in Figure 12 look less noisy than
those using the SVM classifier in Figure 10. Indeed, some region-based classification methods are
suitable to reduce these noisy effects and will be considered in future.

Besides, based on the original AIRSAR data, the overall classification accuracies with different
filter sliding window sizes (7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, and 25 × 25) are examined and
listed in Table 6. It is clear that with the same classification method, the larger the filter window size,
the higher is the followed classification accuracy. However, the filter window size of 15 × 15 is chosen
based on the tradeoff for both classification accuracy and filter computational cost. In addition, with
the same filter window size, the performance of the proposed classification method is still better than
that of the conventional one. It verifies the advantage of the proposed classification method further.
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Figure 11. Classification results for AIRSAR data over eleven known land covers using decision tree
(DT) classifier. (a) Conventional classification method; (b) Proposed classification method.

Table 4. Classification accuracies (%) for AIRSAR data using decision tree (DT) classifier.

Classification
Method Water Rapeseed Grasses Bare

Soil Potatoes Beet Wheat Lucerne Forest Peas Stembeans Overall

Conventional 99.44 94.66 84.56 97.08 91.49 95.64 93.78 94.01 92.16 96.95 96.56 94.12
Proposed 99.39 96.04 93.94 97.09 93.68 96.64 97.49 97.47 94.40 97.52 96.89 96.38

Table 5. Computational costs (s) of the training and validation processing for AIRSAR data using
DT classifier.

Classification Method Training Validation

Conventional 1.10 0.05
Proposed 2.07 0.04
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Figure 12. Classification results over the full-scene area of AIRSAR data using DT classifier. (a)
Conventional classification method; (b) Proposed classification method.

Table 6. Overall classification accuracies (%) for AIRSAR data with different filter sliding window sizes.

7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 25 × 25

Conventional (SVM) 89.07 91.17 92.43 93.21 93.87 95.17
Proposed (SVM) 91.93 93.53 94.41 94.86 95.37 96.63

Conventional (DT) 88.66 91.04 92.39 93.50 94.12 95.57
Proposed (DT) 93.06 94.58 95.32 96.22 96.38 97.28

4.4. Classification Comparison with Multi-Temporal UAVSAR Data

Using the SVM classifier, with the conventional and proposed classification methods, the
classification results for the filtered multi-temporal UAVSAR data over seven known land covers are
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shown in Figure 13. The classification accuracies are listed in Table 7. It is clear that the performance
of the proposed classification method is much better than that of the conventional one. The mean
overall classification accuracy for four temporal data of the proposed classification method is 97.47%,
which is much higher than the 89.59% of the conventional one. Additionally, the overall classification
accuracy increments for the four temporal data are 6.45% (17 June: from 90.19% to 96.64%), 6.30%
(22 June: from 90.75% to 97.05%), 10.24% (5 July: from 88.03% to 98.27%), and 8.54% (17 July: from
89.39% to 97.93%), respectively. Moreover, the proposed classification method has better robustness
for the different temporal PolSAR data. Especially for oats, wheat, and forage crops, the classification
accuracy ranges for the four temporal data of the conventional classification method are 77.29–94.61%,
76.85–97.89%, and 56.36–64.51%, while those of the proposed classification method are 94.09–97.39%,
97.79–98.88%, and 83.77–94.16%, respectively. Besides, the computational costs of the training and
validation processing are listed in Table 8. It can be seen that the computational costs of the training
and validation processing with the proposed classification method are mainly comparable to or less
than those with the conventional one. Since the total known samples of each UAVSAR data are about
four times as many as those of AIRSAR data, the computational costs with each UAVSAR data are
much more than those with AIRSAR data. Finally, the classification results over the full-scene area
of these four temporal UAVSAR data with the conventional and proposed classification methods are
shown in Figure 14.
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Figure 13. Classification results for multi-temporal UAVSAR data over seven known land covers
using SVM classifier. (a1–d1) are 17 June, 22 June, 5 July, and 17 July in 2012 with the conventional
classification method respectively; (a2–d2) are 17 June, 22 June, 5 July, and 17 July in 2012 with the
proposed classification method respectively.

In addition, with the DT classifier, the classification results for the multi-temporal UAVSAR data
over seven known land covers are shown in Figure 15. The classification accuracies are listed in Table 9.
We can see that the performance of the proposed classification method is still better than that of the
conventional one. The mean overall classification accuracy for four temporal data of the proposed
classification method is 99.39%, which is still higher than the 97.55% of the conventional classification
method. In addition, the overall classification accuracy enhancements for the four temporal data are
1.79% (17 June: from 97.48% to 99.27%), 1.65% (22 June: from 97.63% to 99.28%), 1.91% (5 July: from
97.65% to 99.56%), and 2.00% (17 July: from 97.45% to 99.45%), respectively. Moreover, the proposed
classification method still has better robustness for the different temporal PolSAR data especially
in the areas of oats, rapeseed, and forage crops. Besides, the computational costs of the training
and validation processing are listed in Table 10. From it, the computational costs of the validation
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processing are comparable. Finally, the classification results over the full-scene area of these four
temporal UAVSAR data with the conventional and proposed classification methods are shown in
Figure 16.

Table 7. Classification accuracies (%) for multi-temporal UAVSAR data using SVM classifier.

Classification
Method Oats Rapeseed Wheat Corn Soybeans Forage

Crops Broadleaf Overall

17 June
Conventional 86.37 91.70 93.63 96.12 92.64 62.24 98.47 90.19

Proposed 96.72 96.60 98.06 98.58 96.59 88.92 98.49 96.64

22 June
Conventional 77.29 93.82 97.89 97.30 94.14 61.38 98.05 90.75

Proposed 97.21 97.76 98.88 98.93 97.68 83.77 97.75 97.05

5 July Conventional 94.61 99.24 76.85 99.55 92.31 56.36 98.63 88.03
Proposed 97.39 99.26 98.58 99.45 99.35 90.87 98.60 98.27

17 July Conventional 82.98 92.19 84.76 99.78 97.38 64.51 96.86 89.39
Proposed 94.09 99.74 97.79 99.75 99.47 94.16 97.20 97.93

Mean
Conventional 85.31 94.24 88.28 98.19 94.12 61.12 98.00 89.59

Proposed 96.35 98.34 98.33 99.18 98.27 89.43 98.01 97.47

Table 8. Computational costs (s) of the training and validation processing for multi-temporal UAVSAR
data using SVM classifier.

Dates Classification Method Training Validation

17 June
Conventional 610.3 558.0

Proposed 699.6 407.4

22 June
Conventional 957.0 594.7

Proposed 520.1 410.5

5 July Conventional 784.7 578.6
Proposed 633.9 285.8

17 July Conventional 764.7 435.4
Proposed 591.5 291.5
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Figure 14. Classification results over the full-scene area of multi-temporal UAVSAR data using SVM
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Figure 15. Classification results for multi-temporal UAVSAR data over seven known land covers
using DT classifier. (a1–d1) are 17 June, 22 June, 5 July, and 17 July in 2012 with the conventional
classification method respectively; (a2–d2) are 17 June, 22 June, 5 July, and 17 July in 2012 with the
proposed classification method respectively.

Table 9. Classification accuracies (%) for multi-temporal UAVSAR data using DT classifier.

Classification
Method Oats Rapeseed Wheat Corn Soybeans Forage

Crops Broadleaf Overall

17 June
Conventional 98.98 95.79 98.59 98.28 97.09 94.42 98.71 97.48

Proposed 99.56 98.72 99.55 99.55 99.25 98.68 99.12 99.27

22 June
Conventional 97.66 97.45 97.87 99.00 98.24 92.72 98.46 97.63

Proposed 99.55 99.02 99.47 99.47 99.46 97.82 98.97 99.28

5 July Conventional 98.39 99.46 97.16 99.80 97.64 91.62 98.64 97.65
Proposed 99.46 99.59 99.66 99.81 99.78 98.46 98.77 99.56

17 July Conventional 94.88 97.77 97.06 99.78 98.61 95.74 97.94 97.45
Proposed 99.23 99.53 99.34 99.85 99.83 98.47 98.47 99.45

Mean
Conventional 97.48 97.62 97.67 99.22 97.90 93.63 98.44 97.55

Proposed 99.45 99.22 99.51 99.67 99.58 98.36 98.83 99.39

Table 10. Computational costs (s) of the training and validation processing for multi-temporal UAVSAR
data using DT classifier.

Dates Classification Method Training Validation

17 June
Conventional 3.89 0.13

Proposed 7.21 0.12

22 June
Conventional 3.67 0.13

Proposed 7.37 0.12

5 July Conventional 3.33 0.13
Proposed 7.06 0.12

17 July Conventional 3.17 0.13
Proposed 6.54 0.11
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Figure 16. Classification results over the full-scene area of multi-temporal UAVSAR data using DT 
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classification method respectively. 
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Figure 16. Classification results over the full-scene area of multi-temporal UAVSAR data using DT
classifier. (a1–d1) are 17 June, 22 June, 5 July, and 17 July in 2012 with the conventional classification
method respectively; (a2–d2) are 17 June, 22 June, 5 July, and 17 July in 2012 with the proposed
classification method respectively.

Besides, based on the original UAVSAR data acquired on June 17, 2012, the overall classification
accuracies with different filter sliding window sizes (7 × 7, 9 × 9, 11 × 11, 13 × 13, 15 × 15, and
25 × 25) are investigated and listed in Table 11. Similar conclusion can be obtained as that obtained
from AIRSAR data.

Table 11. Overall classification accuracies (%) for UAVSAR data acquired on June 17, 2012 with different
filter sliding window sizes.

7 × 7 9 × 9 11 × 11 13 × 13 15 × 15 25 × 25

Conventional (SVM) 88.23 88.95 89.46 89.86 90.19 91.49
Proposed (SVM) 94.88 95.57 96.06 96.38 96.64 97.31

Conventional (DT) 95.17 96.16 96.76 97.18 97.48 98.04
Proposed (DT) 98.44 98.84 99.06 99.16 99.27 99.44

5. Conclusions and Outlook

This work validates that added benefits can be gained for PolSAR data investigation by mining
and utilization of hidden polarimetric information in the rotation domain along the radar line of
sight. A PolSAR land cover classification method by combining roll-invariant features and selected
hidden features is established. With the added benefits, the land cover discrimination ability is
enhanced and the followed classification accuracies are improved significantly. The comparison
experiments based on NASA/JPL AIRSAR and multi-temporal UAVSAR data respectively clearly
demonstrate the efficiency and advantage of the proposed classification methodology. Moreover, the
proposed classification method is also able to achieve better robustness for multi-temporal PolSAR
data. Besides, with the SVM/DT classifier, the computational costs of the proposed classification
method are always comparable to those of the conventional one. These added benefits are general for
the PolSAR land cover classification and the proposed classification technique can be suitable for other
kinds of PolSAR data.

This work provides a new vision for PolSAR image interpretation and application. Moreover,
other better feature selection schemes, some region-based classification methods, and more advanced
classifiers such as CNN classifier are all worth conducting in future.
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