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Abstract: Road detection plays key roles for remote sensing image analytics. Hough transform (HT)
is one very typical method for road detection, especially for straight line road detection. Although
many variants of Hough transform have been reported, it is still a great challenge to develop a
low computational complexity and time-saving Hough transform algorithm. In this paper, we
propose a generalized Hough transform (i.e., Radon transform) implementation for road detection
in remote sensing images. Specifically, we present a dictionary learning method to approximate
the Radon transform. The proposed approximation method treats a Radon transform as a linear
transform, which then facilitates parallel implementation of the Radon transform for multiple images.
To evaluate the proposed algorithm, we conduct extensive experiments on the popular RSSCN7
database for straight road detection. The experimental results demonstrate that our method is
superior to the traditional algorithms in terms of accuracy and computing complexity.

Keywords: Hough transform; dictionary learning; road detection; Radon transform

1. Introduction

The determination of the location and orientation of a straight line road is a fundamental task for
many computer vision applications such as road network extraction [1–23], image registration [4],visual
tracking [5], robot autonomous navigation [6], hyperspectral image classification [7,8], Global
Navigation Satellite System(GNSS) [9,10], unmanned aerial vehicle images [11], and sports video
broadcasting [12,13]. A Hough transform (HT) [14–16] is one of the very typical methods and
has been widely applied to computer processing, image processing, and digital image processing.
It transforms the problem of a global detection in a binary image into peaks detection in a Hough
parameter space. Dozens of HT extensions have been developed for solving straight line road detection
problem. And particularly, these methods can be divided into the following four groups: generalized
HT (GHT) [17–21], randomized HT (RHT) [22–25], probabilistic HT (PHT) [26–29], and fuzzy HT
(FHT) [30–32].

Generalized HT (GHT) [17–21] detects arbitrary object curves (i.e., shapes having no or complex
analytical form) by transforming the curves in image space into a four dimensional parameter space.
For example, Lo et al. [18] developed a perspective-transformation-invariant GHT (PTIGHT) by using
a new perspective reference table (PR-table) to detect perspective planar shapes. Ji et al. [19] proposed
fuzzy GHT by using fuzzy set theory to focus the vote peaks to one point. Yang et al. [20] proposed
polygon-invariant GHT (PI-GHT) by exploiting the scale-and rotation invariant polygon triangles
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characteristic to accomplish High-Speed Vision-Based Positioning. Xu et al. [21] developed robust
invariant GHT (RIGHT) based on a robust shape model by utilizing an iterative training method.

Randomized Hough transform (RHT) [22–25] reduces the calculation and storage by using
random sampling in image space, converging mapping and dynamic storage. Lu et al. [23] proposed
an iterative randomized HT (IRHT) by the iteration to gradually reduce the target area from the
entire image to the region of interest. Jiang [24] determined sample points and candidate circles by
probability sampling and optimized methods to avoid false detection. Lu et al. [25] developed a direct
inverse RHT (DIRHT) by incorporating inverse HT with RHT, this method is able to enhance the target
ellipse in strong noisy images.

Probabilistic Hough transform (PHT) [26–29] defines a Hough transform in a mathematically
“correct” form with a likelihood function in the output parameters. Matas et al. [27] proposed
Progressive PHT (PPHT) utilized the difference in the fraction of votes to greatly reduce the amount of
calculation of line detections. Galambos et al. [28] controlled the vote process by gradient information
to improve the performance of PPHT. Qiu and Wang [29] proposed an improved PPHT by exploiting
segment-weighted voting and density-based segment filtering to improve accuracy rate.

Fuzzy Hough transform (FHT) [30–32] finds the target shapes in noisy images by fitting data
points approximately. Basak and Pal [31] utilized gray level images in FHT (gray FHT) to process the
shape distortion. Pugin and Zhiznyakov [32] proposed a new method of filter or fusion of straight
lines after performing FHT and thus avoiding detecting unnecessary linear features.

Although Hough transform and its many variants have achieved better results, it is still a great
challenge to develop a low computational complexity and time-saving HT algorithm. In this paper,
we propose a new method based on a generalized HT (i.e., Radon transform) and apply it for straight
road detection in remote sensing images. We adopt a dictionary learning method [33] to approximate
the Radon transform. The proposed approximation method has two significant contributions: (1) our
method treats Radon transform as a linear transform, which greatly reducing the computational
complexity; and (2) linear transformation makes it possible to realize parallel implementation of the
Radon transform for multiple images, which can save time. To evaluate the proposed algorithm,
we conduct extensive experiments on the popular RSSCN7 database for straight road detection.
The experimental results demonstrate that our method is superior to the traditional HT algorithm in
terms of accuracy and computing complexity.

The rest of this paper is arranged as follows. Section 2 briefly reviews the related works including
the Hough transform and Radon transform. Section 3 presents the dictionary learning method to
approximate the Radon transform. Section 4 describes the extensive experiments and discusses the
experimental results. Finally, Section 5 gives some conclusions.

2. Related Work

In this section, we review some related works including Hough transform and Radon transform.
A Hough transform [14–16] detects shape in binary images by using an array named parameter

space. Each point in binary images votes for the parameters space. The highest values of votes in
the parameter space represent a parameter shape with the same linear features in the original image.
Generally, linear features of a straight line on two dimensional plane (s1, s2) are parameterized by the
slope (k) and intercept (b). Each point of a straight line will focus on one point in the (k, b) parameter
space (Figure 1).

However, when the values of parameters are infinite (i.e., k = ∞), the parametrization of a straight
line exists a singularity. Duda and Hart [34] proposes that straight lines can be parameterized by ρ, θ

(Figure 2). And the mapping relations between image point (s1, s2) and (ρ, θ) parameter space satisfy
the following:

ρ = s1cos(θ) + s2sin(θ) (1)
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Figure 1. Mapping of 𝑃1and 𝑃2 from Cartesian space to the slope-intercept parameter space. 

 

Figure 2. Mapping of 𝑃1and 𝑃2 from Cartesian space to the (𝜌, 𝜃 ) parameter space. 

Considering that a Hough transform can only be used for binary images, a Radon transform 

extends this concept to the problem of straight line detection in grayscale images [35]. If we denote 

𝑦(𝑠1, 𝑠2) as an image on a two-dimensional Euclidean plane space, the Radon transform 𝑥(𝜌, 𝜃) of 

image 𝑦 can be expressed as follows [36]: 

𝑥 = ℛ 

= ∫ 𝑦(𝑠1, 𝑠2)

ℝ2

𝛿(𝜌 − 𝑠1𝑐𝑜𝑠(𝜃) − 𝑠2𝑠𝑖𝑛(𝜃)) 𝑑𝑠1 𝑑𝑠2) 
(2) 

where δ(. ) is the Dirac delta function, ℛ is the Radon operator, 𝑦(𝑠1, 𝑠2) is the grayscale value of 

the point of (𝑠1, 𝑠2), 𝜌 is the distance between the origin and the vertical of straight line, and 𝜃 is 

the angle between the normal of straight line and the 𝑠1 axis. Each point 𝑦(𝑠1, 𝑠2) can be mapped 

into a sinusoidal curve in the parameterized space, and a single point (𝜌, 𝜃) in the parameter space 

can be used to represent a line in image space.  

The inverse Radon transform is defined as  

𝑦(𝑠1, 𝑠2) = 𝒞𝑥(𝜌, 𝜃) = ∫ 𝑧[𝑠1𝑐𝑜𝑠(𝜃) + 𝑠2𝑠𝑖𝑛(𝜃), 𝜃] 𝑑𝜃
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where ℛ = 𝒞−1  is the Radon operator, 𝑋(𝜔, 𝜃) is the Fourier transform of 𝑥(𝜌, 𝜃) at angle 𝜃. In 

addition, the Formulas (3) and (4) are the filtered back projection algorithm which is introduced to 

compute the inverse Radon transform. 
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Figure 1. Mapping of P1 and P2 from Cartesian space to the slope-intercept parameter space.
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Figure 2. Mapping of P1 and P2 from Cartesian space to the (ρ, θ) parameter space.

Considering that a Hough transform can only be used for binary images, a Radon transform
extends this concept to the problem of straight line detection in grayscale images [35]. If we denote
y(s1, s2) as an image on a two-dimensional Euclidean plane space, the Radon transform x(ρ, θ) of
image y can be expressed as follows [36]:

x = R
=
∫
R2

y(s1, s2)δ(ρ− s1cos(θ)− s2sin(θ))ds1ds2) (2)

where δ(.) is the Dirac delta function,R is the Radon operator, y(s1, s2) is the grayscale value of the
point of (s1, s2), ρ is the distance between the origin and the vertical of straight line, and θ is the
angle between the normal of straight line and the s1 axis. Each point y(s1, s2) can be mapped into a
sinusoidal curve in the parameterized space, and a single point (ρ, θ) in the parameter space can be
used to represent a line in image space.

The inverse Radon transform is defined as

y(s1, s2) = Cx(ρ, θ) =

π∫
0

z[s1cos(θ) + s2sin(θ), θ]dθ (3)

z(ρ, θ) ,

+∞∫
−∞

|ω|X(ω, θ)ej2πωtdω (4)

whereR = C−1 is the Radon operator, X(ω, θ) is the Fourier transform of x(ρ, θ) at angle θ. In addition,
the Formulas (3) and (4) are the filtered back projection algorithm which is introduced to compute the
inverse Radon transform.
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3. Dictionary Learning Based Radon Transform

In this section, we introduced a dictionary learning method to approximate the Radon transform.
Specifically, we use linear transform to approximate the discretized form of Formula (3) in practice.
The relationship between the discretized parameter space image x and the discretized image data y
can be defined as [37]:

y = Cx (5)

where C is the discrete inverse Radon operator, y ∈ Rmn denotes the vectorized y ∈ Rmn, and x ∈ Rpq

denotes the vectorized x ∈ Rpq.
In this paper, we employ a dictionary learning method to obtain the matrix C. Suppose the N

training samples is Y = (y1, y2, · · · , yN) ∈ Rmn×N , where yi ∈ Rmn denotes the vectorized yi ∈ Rmn.
X = (x1, x2, · · · , xN) ∈ Rpq×N , and xi ∈ Rpq denotes the vectorized xi ∈ Rpq. Our purpose is to learn a
dictionary C ∈ Rmn×pq based on Equation (5):

(y1, y2, · · · , yN) = C(x1, x2, · · · , xN) (6)

Since X is not a square matrix, matrix C can be calculate by the least squares method through
minimizing the following objection function:

J =‖ Y− CX ‖2 (7)

where ‖ ∗ ‖ denotes the 2-norm of ∗. By minimizing the objective function (7), we have

C = Y
(

XTX
)−1

XT , when pq > N; (8)

or
C = YXT

(
XXT

)−1
, when pq < N; (9)

since matrix XXT or XTX may be a singular matrix or approach a singular matrix, we add a damping
factor α (with range from 0.1 to 1) to ensure the stability of numerical value:

C = Y
(

XTX + αI
)−1

XT , when pq > N; (10)

or
C = YXT

(
XXT + αI

)−1
, when pq < N; (11)

where matrix XT is the transpose of the matrix X and I is a unit matrix.
Hence, the Radon transform of an image can be treated as a two matrix multiplication (i.e.,

linear transform):
X = C−1Y (12)

Since C is not a square matrix, we can obtain the value of X by minimizing the following
target function:

J =‖ Y− CX ‖2 (13)

we have
X =

(
CTC

)−1
CTY, when mm > pq; (14)

or
X = CT

(
CCT

)−1
Y, when mm < pq. (15)
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Similarly, to ensure the stability of a numerical value, we add a damping factor α.

X =
(

CTC + αI
)−1

CTY, when mm > pq; (16)

or
X = CT

(
CCT + αI

)−1
Y, when mm < pq; (17)

where matrix CT is the transpose of the matrix C.
Our method treats a Radon transform as a linear transform, which can be realized by parallel

computation of the Radon transform for multiple images:

(x1, x2, · · · , xN) =
(

CTC + αI
)−1

CT(y1, y2, · · · , yN), when mm > pq; (18)

or
(x1, x2, · · · , xN) = CT

(
CCT + αI

)−1
(y1, y2, · · · , yN), when mm > pq; (19)

The advantages of our solution is two-fold. Firstly, the transform (5) of the Radon operator makes
it convenient and reasonable to leverage the performance by adding some special regularizations.
For example, we can incorporate our objective function (5) into the regularization framework:

x̂ = argmin
x
‖y− Cx‖2 + α2 ϕ(x) (20)

where ϕ(x) is a regularization term which includes norm regularizer terms, log regularizer term,
etc. Norm regularization terms take the form of ϕl1(x) = ‖x‖1 = ∑i|xi| for l1- regularization,
ϕl2(x) = ‖x‖2 = ∑i x2

i for l2- regularization, ϕlp(x) = 1/p(∑i|xi|p), (p < 1) for lp- regularization,
etc. The log regularization term is in the form of ϕlog(x) = ∑i log|xi|. We will verify the effect of
adding regularization items in the future work.

Secondly, the linear transformation makes it possible to detect a straight line road of multiple
images at one time, which will significantly reduce the time consuming aspect of this process.

4. Experiments and Discussion

In order to evaluate the performance of our method, we implement extensive experiments on
RSSCN7 [38]. The RSSCN7 database is a remote sensing database which was issued in 2015, and the
size of each remote sensing image is 400× 400 pixels. There are 2800 remote sensing scene images
in the RSSCN7 database, and they are from seven typical scene categories, which are a grassland,
forest, farmland, parking lot, residential region, industrial region, river and lake. In this paper, we
selected 170 remote sensing images with a straight line road to verify the proposed algorithm, and
those 170 color images are converted to grayscale images in the preprocessing stage. Particularly,
150 images are used as a training set and the others as a test set. Some selected remote sensing images
are shown in Figure 3.

In order to obtain sufficient training images, we rotate those 150 images from 0 to 180 degrees
with a fixed step length, i.e., 10 degrees. Thus, we totally have 2700 grayscale images with the same
size by intercepting those rotating images. Finally, the 2700 grayscale images are resized to 128× 128.
Further, all the test images are also adjusted to the size 128× 128.

In this section, we demonstrate some experimental results of test samples and illustrate how our
method is superior to the traditional algorithms in terms of accuracy and computing complexity.

Figures 4–7 illustrate the experimental results of four test samples. Now we discuss the
experimental results of our methods with the experimental results of a traditional Radon transform.
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Figure 4. a215 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).
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Figure 5. a266 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).
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Figure 6. b088 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).
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Figure 7. g146 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).

Figures 4a–7a show the Radon transform of a test sample in a two-dimensional parameter space
and Figures 4i–7i show the transform image from our method in a two-dimensional parameter space.
The one distinctly bright spot in Figures 4a–7a and Figures 4i–7i corresponds to the detected line
(i.e., a red line) overlaid on the test image. It cannot be easy to isolate this one distinctly bright
spot which matches with the straight road in test images from transform domain due to a lot of
interference highlights in Figures 4a–7a. However, Figures 4i–7i show a bright spot corresponding to
the detected line overlaid on the test image. The bright spot area in Figures 4a–7a is cluttered in visual
effect. However, our algorithm reduces the effect of cluttered interference bright spots. By comparing
Figures 4a–7a with Figures 4i–7i, we can see that the proposed method is superior to the conventional
Radon transform in terms of the visual effect.

Figures 4b–7b show the three-dimensional form of Radon transform and Figures 4j–7j show the
three-dimensional form of our method. The peak (i.e., bright spot in Figures 4a–7a) in Figures 4b–7b
and Figures 4j–7j corresponds to the detected line overlaid on the test image. As seen in Figures 4b–7b,
it cannot be easy to isolate the actual peak corresponding to the road in the test image from test samples
owing to the mess in the transform domain. Particularly, the clutter of the peak in the transform
domain will lead to false road detection or missed detection. From Figures 4j–7j, we can see that our
method greatly accentuates the peak amplitudes relative to the background and it is possible to visually
distinguish the peak point corresponding to the actual location of the straight road. Figures 4j–7j show
that our method reduces the clutter interference to a large extent, and we are very easily able to isolate
the true peak corresponding to the road in the test image.

Figures 4c–7c show the detected line from our method overlaid on the test samples and
Figures 4k–7k show the detected line from Radon transform overlaid on the test samples. The location
of the true and estimated straight line road are shown in Table 1. The ground truth parameters (ρ, θ) of
the straight road are obtained by manual marking in sample images.
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Table 1. The orientation of true and detected straight line.

Test Sample a215 a266 b088 g146

True (ρ,θ) (−56.1, 90.7◦) (−27.6, 178.4◦) (8.3, 16.95◦), (33.2, 17.6◦) (−0.8, 91.4◦)
Our Method (ρ,θ) (−56, 91◦) (−28, 179◦) (9, 18◦), (33, 18◦) (−1, 92◦)

Radon Transform (ρ,θ) (0, 46◦) (−27, 180◦) (20, 28◦), (26, 23◦) (1, −60◦)

It can be seen from the Figure 4b,c that the peak point does not match with the straight road in
test sample a215. Figure 4j,k of test sample a215 show a conspicuous peak point which corresponds
to the straight road in test sample a215. The experimental results of the test sample a215 illustrate
that our method has a better detected result than traditional Radon transform if the detection target is
not obvious.

The enlarged part in the Figure 5c shows the detected line from Radon transform. The enlarged
part in the Figure 5k shows the detected line from our method. We can see that our detected results are
closer to the true straight road.

By observing the Figure 6b, we can see that the peaks in a three-dimensional parameter space do
not focus on one point. Scattered peaks result in a wrong detection, while Figure 6j illustrates that the
peak point obtained by our method is more concentrated and easier to distinguish. From Figure 6k,
we can see that the detected lines from our method correspond to the actual location of roads.

Test sample g146 has some noises which are similar to the straight road. From Figure 7c, we see
that the detected line from the traditional Radon transform does not match with the straight road in
the noisy image very well, whereas our method has good robustness for noisy images, as is shown in
Figure 7k.

The above experimental results indicate that our method can accurately detect the position of the
straight road when the noise is high or the road characteristics are not obvious, which illustrates that
our method has stronger robustness, and our detected results are closer to the actual road location.

We also compared our method with a traditional Hough transform. A Hough transform can only
be used for binary images. Although the binary images weaken the background noise, they also cause
the loss of some road information.

Figures 4d–7d are the binary images of the test samples. By comparing the images of
two-dimensional parameter space in Figures 4–7, we see that Figures 4e–7e also have many interference
bright spots although the binary image weakens the background noise. However, Figures 4i–7i only
include true bright spots. From the transform images of three-dimensional form in Figures 4–7, we
see that our method greatly accentuates an area of high intensity in the transform domain relative to
the background.

A binary image causes the loss of some road information. It can be seen from the Figure 7g,k that
the detected line from Hough transform does not correspond to the true position of the straight road.

To clearly compare our method with the Radon transform and Hough transform, we also report
the Receiver Operator Curves (ROC) result in Figures 4h–7h. The ROC was produced by changing
the threshold parameter. Specifically, we first determine a threshold parameter, if peak points surpass
the threshold, it was classified as road pixels, or otherwise as noise pixels. The ground truth data was
obtained by manual marking in remote sensing image. The x-axis is the false positive rate (FPR) which
can be calculated by:

FPR =
Positives correctly classi f ied

Total positive

the y-axis is the true positive rate (TPR) which can be calculated by:

TPR =
negatives incorrectly classi f ied

Total negatives
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The accuracy of detected methods is measured through the area under the ROC curve. As shown
in Figures 4h–7h, we can see that the accuracy of our method outperforms the traditional Radon
transform and Hough transform.

To further demonstrate the performance of our method, we show the experimental results of
another two test samples in Figures 8 and 9. The description of the experimental results in Figures 8
and 9 is the same as above.
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Figure 8. a038 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).

Specifically, test sample a038 shows a grayscale image with a shorter straight road. Figure 8b
shows an undistinguishable peak point due to the mess in transform domain, and the detected line
overlaid on a038 does not match with the straight road. From Figure 8j, we see that our method
greatly accentuates an area of high intensity in the transform domain relative to the background.
The experimental results in Figure 8 illustrate that our method can well detect a shorter straight road.
The same conclusion can be drawn in the experimental result of test sample b230. This indicates that
our algorithm is more sensitive to a shorter line road.

Particularly, our method is able to complete the line road detection of multiple images at one time.
In dealing with a large number of images, our method facilitates parallel implementation of the Radon
transform for multiple images (i.e., replace vector yi with a matrix). Table 2 shows the time-consuming
comparison between our method and the traditional Radon transform. We record the average running
time of 20 test samples. Radon transform takes 0.106 s for per test image, but our method only takes
0.027 s. Experimental results of Table 2 show that the computation of our method is nearly 4 times
faster than Radon transform.
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(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image 
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(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained 

by our method. (j) Three-dimensional form of (i). (k) Detected line from (j). 
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Figure 9. b230 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).

Table 2. Time-consuming comparison of two methods.

Methods Our Method Radon Transform

Test Samples 20 20
Average Running Time 0.027 s 0.106 s

Above all, our method is superior to the traditional Radon transform in terms of accuracy and
computing complexity.

Table 3 illustrates the mean-error and variance of error. We can see that the mean-error of our
method is much lower than traditional Radon transform. Hence, the detected parameters (ρ, θ) using
our method is closer to the ground truth parameters. From the values of variance, we see that our
method is more stable in detecting straight line.

Table 3. The mean-error and variance of two methods.

Methods Our Method Radon Transform

Test Samples 20 20
Line Parameters ρ θ ρ θ

Mean-Error 0.32 0.911◦ 11.46 15.65◦

Variance of Error 0.089 0.286◦ 528.788 1105.48◦

5. Conclusions

Road detection plays a key role for remote sensing image analytics and has attracted intensive
attention. A Hough transform (HT) is a very typical method for road detection, especially for straight
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line road detection, and many variants have been proposed based on Hough transforms. However,
developing a low computational complexity and time-saving Hough transform algorithm is still a
great challenge. To solve the above problems, we present an approximation method by treating
a Radon transform as a linear transform, which facilitates parallel implementation of the Radon
transform for multiple images. Extensive experiments which are conducted on the RSSCN7 database
show that our method is superior to the traditional Radon transform in terms of both accuracy and
computing complexity. In the future, we will further study the regularization function being based on
our algorithm to optimize our method.
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