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Abstract: Large-scale coastal reclamation has caused significant changes in Spartina alterniflora (S. 
alterniflora) distribution in coastal regions of China. However, few studies have focused on 
estimation of the wetland vegetation biomass, especially of S. alterniflora, in coastal regions using 
LiDAR and hyperspectral data. In this study, the applicability of LiDAR and hypersectral data for 
estimating S. alterniflora biomass and mapping its distribution in coastal regions of China was 
explored to attempt problems of wetland vegetation biomass estimation caused by different 
vegetation types and different canopy height. Results showed that the highest correlation coefficient 
with S. alterniflora biomass was vegetation canopy height (0.817), followed by Normalized 
Difference Vegetation Index (NDVI) (0.635), Atmospherically Resistant Vegetation Index (ARVI) 
(0.631), Visible Atmospherically Resistant Index (VARI) (0.599), and Ratio Vegetation Index (RVI) 
(0.520). A multivariate linear estimation model of S. alterniflora biomass using a variable backward 
elimination method was developed with R squared coefficient of 0.902 and the residual predictive 
deviation (RPD) of 2.62. The model accuracy of S. alterniflora biomass was higher than that of 
wetland vegetation for mixed vegetation types because it improved the estimation accuracy caused 
by differences in spectral features and canopy heights of different kinds of wetland vegetation. The 
result indicated that estimated S. alterniflora biomass was in agreement with the field survey result. 
Owing to its basis in the fusion of LiDAR data and hyperspectral data, the proposed method 
provides an advantage for S. alterniflora mapping. The integration of high spatial resolution 
hyperspectral imagery and LiDAR data derived canopy height had significantly improved the 
accuracy of mapping S. alterniflora biomass. 

Keywords: Spartina alterniflora; biomass estimation model; LiDAR data; hyperspectral image; 
coastal region; China 

 

1. Introduction 

Spartina alterniflora (S. alterniflora) is a perennial deciduous grass which is found in intertidal 
wetlands, especially estuarine salt marshes. Some biologists and geographers have conducted 
various researches on ecological characteristics of S. alterniflora and its impacts on environment [1–7]. 
In recent years, some evidence has been reported that S. alterniflora could compete with native plants, 
threaten native ecosystems and coastal aquaculture, and cause declines in local biodiversity [2–4]. In 
invasive studies research, the invasion and control of S. alterniflora has been important and drawn 
attention in China and abroad [1,5]. In China, S. alterniflora is widely distributed along the eastern 
coastal region of China from Tianjin to Beihai, with a concentration in Jiangsu Province. Large-scale 
coastal reclamation has resulted in significant changes in distribution of S. alterniflora in Dafeng 
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coastal zone of Jiangsu. The formation, expansion, and distribution of the plant in Jiangsu coastal 
zone has been studied [4,6,7]. However, no data have been published on the spatial-temporal 
distribution and biomass of S. alterniflora in Dafeng because of the difficulty in accessing salt marshes 
using traditional biomass measurement methods and observation estimation methods. 

Remote sensing data, such as optical remote sensing images, aerial images, radar data and 
LiDAR point cloud data, have been widely used in wetland vegetation classification, information 
extraction of canopy structure characteristics, and vegetation biomass estimation. However, these 
investigations generally focused on horizontal surface information of vegetation, because optical 
signals cannot penetrate the upper vegetation or other sheltered features, and Synthetic Aperture 
Radar (SAR) could be disturbed by the topographic relief and no longer sensitive when the biomass 
was very high, which restricted its application in regional estimation [8–14]. Developments of LiDAR 
technology have enabled penetration of the high density vegetation canopy to obtain accurate and 
detailed vegetation structure parameters. Many studies have attempted to estimate wetland 
vegetation biomass and extract information of forest canopy structure characteristics using LiDAR 
data [11-12,15–19]. Moreover, several studies also focused on wetland vegetation biomass estimation 
using SAR data, CBERS images, fusion of Landsat TM and ENVISAT ASAR, etc. [20,21]. Long-term 
monitoring of biophysical characteristics of tidal wetlands using MODIS was also studied [22]. 
Recently, some studies focused on estimating forest vegetation, crop biomass, leaf nitrogen content, 
and land cover mapping using fusion data of hypersectral and LiDAR data. They showed its 
advantage for producing better results than hyperspectral images or LiDAR data [23–27], such as on 
tropical forest biomass [28], forest canopy height and biomass [10], maize biomass [29], and crop 
species classification [30]. Using LiDAR, hyperspectral and radar data, some researchers have 
discriminated some wetland species and made efforts on estimation of wetland biomass, water 
content and leaf area index (LAI) [31,32]. The integration of hyperspectral imagery and LiDAR 
derived elevation data for mapping salt marsh vegetation has also been studied [33]. In these studies, 
biomass estimation for multiple types of wetland vegetation used to based on differentiation of 
vegetation types with coverage. For S. alterniflora research, O’Donnell ever examined the influence of 
abiotic drivers on its biomass using Landsat 5 satellite imagery [34]. However, there have been some 
estimation problems of wetland vegetation biomass caused by different vegetation types and by 
different canopy height. Few studies have focused on estimating wetland vegetation biomass, 
especially S. alterniflora, in coastal regions using high spatial resolution hyperspectral image and 
LiDAR data. The objective of this study was to explore the applicability of LiDAR and hypersectral 
data for estimating S. alterniflora biomass and mapping its distribution in coastal regions in China. 

2. Materials and Methods  

2.1. Study Area 

The study area was in Dafeng County in Jiangsu coastal region of China (latitude from 32°56′ to 
33°36′ N, and longitude from 120°13′ to 120°56′ E). The Dafeng coast comprises a typical silt mud 
plain coast with a 112-km coastline and more than 1000 km2 of coastal tidal flats. It is one of regions 
in China with the most abundant coastal tidal flat resources and frequent beach reclamation activities 
(Figure 1). S. alterniflora was introduced in Dongtai, Jiangsu in 1988 and spread to the north along the 
coast. A large amount of S. alterniflora were distributed in Dafeng coastal tidal flats over the past few 
decades.  
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Figure 1. Study area: Dafeng, Jiangsu Province. 

2.2. Data Collection 

Hyperspectral data with 0.78 m spatial resolution, airborne LiDAR data with ground spot 
diameter less than and equal to 0.6 m, and aerial image with 0.14 m spatial resolution were acquired 
by a Cessna 208B multipurpose aircraft in November 2014. It covered a ground area of approximately 
20 km2. This multipurpose aircraft was equipped with an airborne hyperspectral scanner (Finland 
SPECIM AISA EAGLE II), aerial digital camera (Hasselblad H4D), and airborne laser radar system 
(Austria RIEGL LMS Q-680i). 

The airborne LiDAR data obtained by RIEGL LMS Q-680i was echo data with a 1550 nm laser 
wavelength and a 200 KHz pulse repetition frequency in the airborne radar system. Hyperspectral 
data with a 0.78 m spatial resolution by SPECIM AISA EAGLE II was acquired as 400–970 nm 
visible/near infrared data with all 64 bands. The three-dimensional structures of the respective LiDAR 
and hyperspectral data, as well as detailed two-dimensional spectral information, were used in the 
study. 

2.3. Collection of Vegetation Samples and Spectra 

Numerous field surveys and experimental studies on wetland vegetation in the Dafeng County 
study area were performed. Fifty-four vegetation samples were collected in November 2014. 
Sampling sites were positioned by a Trimble Pro XRR global positioning system (GPS) unit. The 
vegetation samples were 1 m × 1 m in size (vegetation cover > 20%) and 3 m × 3 m (vegetation cover 
≤ 20%). Because when the average coverage of a vegetation sample is less than or equal to 20%, that 
means the vegetation is too sparse, artificial error of collecting vegetation sample could be larger 
using 1 m × 1 m sample. Vegetation types included reed, Artemisia halodendron (A. halodendron), and 
S. alterniflora. Vegetation sample biomass was collected and weighed. Reflectance spectra of these 
vegetation samples were measured in the field and in the laboratory at 1 m above the soil and 
vegetation surface with an 8% field of view both using a high spectral resolution analytical spectral 
device (ASD), respectively. ASD operates in visible, near infrared and shortwave infrared bands (350–
2500 nm). A reference panel by Labsphere Incorporated, Sutton, New Hampshire was used as 
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reference before and after each measurement. Six individual spectra were averaged for each 
measured sample. 

2.4. Data Pre-Processing 

Airborne LiDAR dada were pre-processed through multi-strip stitching, singular-point deletion, 
and point-cloud filtering pre-processing under the Terrasolid platform. The canopy height mode was 
used to generate and extract vegetation height information. Figure 2 depicts the classification results 
of the LiDAR point cloud data. The images of the digital elevation model (DEM) and digital surface 
model (DSM) were created through pre-processing of point cloud filtering. Figure 3 is the DSM result 
extracted from point cloud data. 

 

Figure 2. Classification of wetland vegetation derived from LiDAR point cloud data. * High 
vegetation: high vegetation canopy height (>250 cm); medium vegetation: medium vegetation canopy 
height (30–250 cm); low vegetation: low vegetation canopy height (<30 cm). 

 
Figure 3. DSM information derived from LiDAR point cloud data. 
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The preprocessing process for hyperspectral image data, including mosaic, radiation calibration, 
geometric correction was handled by data producer. The point cloud data of LiDAR system is three-
dimensional data, while hyperspectral image data is two-dimensional flat surface data. If directly 
registration is done for the two kinds of data, more complex algorithms and data processing processes 
could be needed. It was not the focus of this study. The study was only to extract vegetation canopy 
height information from point cloud data. The geometric correction and registration of hyperspectral 
images were performed based on ground-control points (ten ground-control points) and DEM from 
point cloud data in order to have the same geographical coordinates, the same spatial resolution. The 
relative geometric correction residual error was 0.827 pixels. Atmospheric correction of hyperspectral 
images was conducted using the ENVI Fast Line-of-sight Atmospheric Analysis of Hypercubes 
(FLAASH) modular in ENVI 5.3.1 software (Exelis Visual Information Solutions Corporation, USA). 
The image data were converted to relative reflectance using the internal average relative reflectance 
for image calibration. Resampling was carried out using the nearest neighbor method in order to not 
severely alter the pixel values. 

2.5. Biomass Estimation Model 

Multivariate statistical analysis was conducted on vegetation biomass and spectral data using 
SPSS 17 software (International Business Machines Corporation, USA). Nonparametric test methods 
such as one-sample K-S test method were employed for normal distribution analysis. Correlation 
using Pearson correlation coefficient between measured vegetation parameters and absorption 
feature at the obtained wavelength, as well as the vegetation index, were calculated in SPSS software. 
The Pearson correlation coefficient is calculated by dividing the covariance by the standard deviation 
of two variables. Multi-regression analysis between spectral reflectance and associated vegetation 
parameters were conducted.  

In this study, according to the classification of wetland vegetation types, two types of biomass 
estimation models were respectively established to reduce estimation error caused by different 
vegetation types. Thus, these two types of biomass estimation models were analyzed and compared. 
One focused on a single type of vegetation, S. alterniflora. Another focused on all types of wetland 
vegetation as a whole, including reeds, A. halodendron, and S. alterniflora. Eighteen S. alterniflora 
samples and fifty-four wetland vegetation samples were randomly divided into two groups. One 
group was used for developing the model (up to 70% of the total number of samples); the other was 
used for validation (up to 30% of the total number of samples). Taking into account the practicality 
of the experiment, a multiple linear regression model (MLR) was used to develop the biomass 
estimation model of vegetation. 

Firstly, the spectral absorption features of wetland vegetation were analyzed. There were 
sensitive absorption features at blue band (452 nm), green band (534 nm), red band (694 nm) and near 
infrared band (865 nm) for wetland vegetation. So the correlation coefficients of spectral reflectance 
at these four wavelengths and biomass content of wetland vegetation and S. alterniflora were 
analyzed. Vegetation indexes derived from hyperspectral images were also used as indicators of 
vegetation performance. Ten kinds of vegetation indexes including RVI (Ratio Vegetation Index) [35], 
NDVI (Normalized Difference Vegetation Index) [36], GNDVI (Green Normalized Difference 
Vegetation Index) [37], DVI (Difference Vegetation Index) [38], RDVI (Ratio Difference Vegetation 
Index) [39], TVI (Transformed Vegetation Index) [40], VARI (Visible Atmospherically Resistant 
Index) [41], ARVI (Atmospherically Resistant Vegetation Index) [42], GEMI (Global Environment 
Monitoring Index) [43]) and EVI (Environment Vegetation Index) [44] were calculated from 
hyperspectral spectral bands (Figure 4), and vegetation canopy height was also derived from LiDAR 
data. The correlation coefficients of above ten kinds of vegetation indexes and vegetation canopy 
height with biomass content of wetland vegetation and S. alterniflora were also analyzed.  

Secondly, the variables with high correlation coefficient with biomass content were used as 
independent variables of biomass estimation model. In the study, the spectral reflectance at 
wavelengths of 452 nm, 534 nm, 694 nm and 865 nm, and ten kinds of vegetation indexes derived 
from hyperspectral images could be as independent variables of biomass estimation model. 
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Vegetation canopy height derived from airborne LiDAR point cloud data was introduced into the 
biomass estimation model. The biomass estimation model of vegetation employed a multiple linear 
regression model (MLR). 
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Figure 4. Blue, green, red and near infrared bands and vegetation indexes derived from hyperspectral 
images ((a): blue band; (b):.green band; (c): red band; (d): NIR; (e): RVI; (f): NDVI; (g): GNDVI; (h): DVI; 
(i): RDVI; (j): EVI; (k):TVI; (l):VARI; (m): ARVI; (n): GEMI). 

The detailed multiple linear regression model equation is: 

Y = b + a1X1 + a2X2 + a3X3 +…+ anXn  

where Y is the vegetation biomass (wet weight), and X denotes the spectral reflectance at wavelengths 
of 452 nm, 534 nm,694 nm and 865 nm, vegetation indexes, and vegetation canopy height. In addition, 
b is the regression model constant, and a is the coefficient of the independent variables of X. 

At last, the reliability and accuracy of biomass estimation models were conducted using 
measured sample data in the field. In the study, R squared coefficient, root mean square error (RMSE) 
value, the residual predictive deviation (RPD) (the ratio of standard deviation to RMSE) [45] and the 
estimation error (p value) were used as assessment indicators of biomass estimation models. 

3. Results and Discussion 

3.1. Biomass Estimation Model of Wetland Vegetation 

A comparative experiment was conducted for evaluating the biomass estimation accuracy. One 
included reeds, A. halodendron, and S. alterniflora in the study area for multivariate statistical analysis. 
The other included only S. alterniflora for multivariate statistical analysis. 

Correlation analysis between spectra reflectance in field and biomass content (wet weight) of 
wetland vegetation samples was conducted (Table 1). Results showed that correlation coefficients 
were higher at a wavelength of 452 nm (blue), 534 nm (green), 694 nm (red), and 865 nm (near 
infrared). The correlation analysis between the biomass content and vegetation indexes (RVI, NDVI, 
GNDVI, DVI, RDVI, EVI, TVI, GEMI, VARI, ARVI, and vegetation canopy height) was also 
performed (Table 1). The above correlation coefficients were significant at α = 0.05 level. The biomass 
content was significantly correlated with the following parameters: the reflectance at a wavelength 
of 534 nm (0.639), 865 nm (0.546), and 452 nm (0.515); GEMI (0.507), TVI (0.506), and DVI (0.488); and 
vegetation canopy height (0.421).  

Table 1. Correlation coefficients between wetland vegetation biomass and spectral parameter. 

VI R452 R534 R694 R865 RVI NDVI GNDVI DVI
Wetland  0.515 ** 0.639 ** 0.087 0.546 ** 0.007 0.006 0.071 0.488** 

VI RDVI TVI VARI ARVI GEMI EVI Height  
Wetland 0.294  0.506 ** 0.109 0.013 0.507 ** 0.007 0.421 **  

**: significantly correlated at significant level α = 0.05. 

The vegetation parameters with correlation coefficients greater than 0.5 were chosen as 
independent variables in the wetland vegetation estimation model. R534 (x1), R865 (x2), R452 (x3), GEMI 
(x4), and TVI (x5) were introduced in the wetland vegetation biomass estimation model. The different 
multivariate statistical models using four types of variable introduction methods are listed in  
Table 2. 
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Table 2. Multivariate linear estimation models of wetland vegetation biomass. 

Independent Variables Introduction Multivariate Linear Estimation Models R2 Value 
Variables forced entry Y=35.684X1-3.531X2+7.582X3-0.078X4+0.18X5-1.061 0.650 

Variables forward entry 
Y=48.517X1-0.686 0.620 
Y=35.411X1+0.124X5-1.228 0.704 

Variable backward elimination 
Y=38.665X1-2.681X2+0.165X5-1.085 0.691 
Y=35.446X1-3.559X2+7.582X3+0.179X5-1.083 0.672 
Y=35.684X1-3.531X2+7.582X3-0.078X4+0.18X5-1.061 0.650 

Variable stepwise entry 
Y=35.411X1+0.124X5-1.228 0.704 
Y=48.517X1-0.686 0.620 

Note: X1 for R534, X2 for R865, X3 for R452, X4 for GEMI, and X5 for TVI. 

As shown in Table 2, the model using the stepwise regression method by variable forward entry 
has the highest R squared coefficient and lowest estimation error p value. Therefore, it was chosen to 
estimate the biomass content of the wetland vegetation. This regression model was significant at α = 
0.05, where α is the significance level. The regression model could be formulated as: 

Y = 35.411X1 + 0.124X5 − 1.228  

where Y is the biomass content of the wetland vegetation, X1 is the band reflectance at 534 nm, X5 is 
vegetation index TVI, the R squared coefficient is 0.704, and the root mean square error value (RMSE) 
is 0.24. 

3.2. Biomass Estimation Model of Spartian Alterniflora 

To overcome the disadvantages of the obvious differences in spectral features and canopy 
heights of reeds, A. halodendron, and S. alterniflora for the wetland vegetation estimation model, an 
estimation model for S. alterniflora is proposed. The correlation between S. alterniflora spectra 
reflectance and biomass content (wet weight) of S. alterniflora samples was analyzed (Table 3). The 
results showed that correlation coefficients between the biomass content of S. alterniflora and spectral 
reflectance were higher at wavelengths of 452 nm (blue), 534 nm (green), 694 nm (red), and 865 nm 
(near infrared). Correlation coefficients of S. alterniflora biomass content were also higher with RVI, 
NDVI, GNDVI, DVI, RDVI, EVI, TVI, VARI, ARVI, and vegetation height. The above correlation 
coefficients were significant at α = 0.05 level. The correlation coefficient values decreased in the 
following order: vegetation canopy height (0.817), NDVI (0.635), ARVI (0.631), VARI (0.599), and RVI 
(0.520). These correlations were statistically significant at α = 0.05 significance level. The vegetation 
canopy height derived from LiDAR data was highly correlated with the biomass content of S. 
alterniflora with the highest correlation coefficient of 0.817, while it was less correlated with wetland 
vegetation in the above analysis (0.421). 

Table 3. Correlation coefficients between S. alterniflora biomass and spectral parameter. 

VI R452 R534 R694 R865 RVI NDVI GNDVI DVI
S. alterniflora 0.090  0.135  0.024 0.196 0.520 ** 0.635 ** 0.241 0.238 

VI RDVI TVI VARI ARVI GEMI EVI Height  
S. alterniflora 0.320  0.254  0.599 ** 0.631 ** 0.284 0.288 0.817 **  

**: significantly correlated at significant level α = 0.05. 

The vegetation parameters with correlation coefficients that was greater than 0.5 were chosen as 
independent variables for the S. alterniflora biomass estimation model. Thus, the vegetation canopy 
height (x1), NDVI (x2), ARVI (x3), VARI (x4), and RVI (x5) were introduced in a multivariate statistical 
analysis for developing the model. Different multivariate statistical models using four types of 
variable introduction methods were developed (Table 4). 
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Table 4. Multivariate linear estimation models of S. alterniflora biomass. 

Independent Variable Introduction Multivariate Linear Estimation Models R2 Value 
Variables forced entry Y=0.54X1-0.802X2-1.004X3+2.714X4+0.053X5+1.101 0.841 

Variables forward entry 
Y=0.514X1+1.11X4+0.388 0.902 
Y=0.765X1+0.119 0.811 

Variable backward elimination 

Y=0.514X1+1.11X4+0.388 0.902 
Y=0.512X1-0.812X3+2.626X4+0.787 0.891 
Y=0.533X1-1.829X3+3.106X4+0.056X5+1.018 0.880 
Y=0.54X1-0.802X2-1.004X3+2.714X4+0.053X5+1.101 0.841 

Variable stepwise entry 
Y=0.514X1+1.11X4+0.388 0.902 
Y=0.765X1+0.119 0.811 

Note: X1 for vegetation canopy height, X2 for NDVI, X3 for ARVI, X4 for VARI, and X5 for RVI. 

As shown in Table 4, the model using the stepwise regression method by variable backward 
elimination is characterized by the highest R squared coefficient and lowest p value. Thus, it was 
chosen to estimate the biomass content of S. alterniflora. This regression model was statistically 
significant at α = 0.05 level with R squared coefficient of 0.902. The regression model could be 
formulated as: 

Y = 0.514X1 + 1.11X4 + 0.388  

where Y is the S. alterniflora biomass content, X1 is the vegetation height, X4 is VARI, the R squared 
coefficient is 0.902, and the RMSE is 0.15. 

The vegetation canopy height showed significant effects on the biomass estimation models of S. 
alterniflora using LiDAR and hyperspectral data with high spatial resolution. On the other hand, the 
reflectance at wavelengths of R534, R865, and R452 had a significant effect on the estimation model of the 
wetland vegetation in the study area. The results further demonstrated the importance of vegetation 
canopy variables, such as vegetation height, as a major factor affecting the S. alterniflora biomass 
distribution. Vegetation canopy variables should be introduced into estimation models of vegetation 
biomass using remote sensing images. The results also implied that the fusion of LiDAR and 
hyperspectral data can improve the accuracy of vegetation biomass estimation using remote sensing 
techniques. 

3.3. Model Accuracy Verification 

Reliability and accuracy of biomass estimation models should be assessed for mapping 
biomasses of different types of vegetation using hyperspectral images and airborne LiDAR data. Two 
types of biomass estimation models for S. alterniflora and wetland vegetation were respectively 
verified using the same measured sample data in the field. The R squared coefficient (R2), root mean 
square error (RMSE) value, the residual predictive deviation (RPD) and the estimation error (p value) 
were used as assessment indicators of biomass estimation models. Results indicated that the 
estimation error of wetland vegetation was up to 36.14%, whereas that of S. alterniflora was 10.55%. 
The RMSE value of estimation model for S. alterniflora was 0.15, which was much lower than that of 
wetland vegetation (0.24). The RPD value of estimation model for S. alterniflora and wetland 
vegetation was both more than 2.0. The result indicated S. alterniflora was readily estimated (R2 = 0.902, 
RPD = 2.62). Estimation accuracy of S. alterniflora for a single type of vegetation was higher than that 
of wetland vegetation for mixed vegetation types. The predicted biomass content of S. alterniflora 
using the stepwise regression model by the variable backward elimination method showed a linear 
distribution with test biomass content (Figure 5).  
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Figure 5. Estimation error of S. alterniflora (a) and wetland vegetation (b). 

Many obvious differences exist in spectral features and canopy heights of reeds, A. halodendron, 
and S. alterniflora. These differences may be due to the estimation accuracy of wetland vegetation 
biomass model being relatively lower on account of large differences of independent variables. 
Results showed that the proposed estimation model of vegetation biomass based on vegetation 
classification in coastal regions was beneficial to improving its accuracy by fusing airborne LiDAR 
and hyperspectral data. 

3.4. Mapping the S. alternniflora Biomass Distribution 

The classification map of reeds, A. halodendron, and S. alterniflora was derived from high spatial 
resolution images with a 0.14-m resolution in the study area. Distribution information of S. alterniflora 
was extracted from hyperspectral images by mask processing. The processed hyperspectral image 
was used to map the distribution of S. alterniflora biomass using the stepwise regression model 
(Figure 6). Results indicated that most S. alterniflora were continuously distributed and clustered 
together in the coastline region, whereas others were primarily scattered within the inland region of 
the study area. S. alterniflora flourished with a higher vegetation density in the coastline region. There 
were few differences in the growth status of S. alterniflora in the study area. Statistical analysis on the 
pixel number for the S. alterniflora estimated biomass showed that the number of pixels with biomass 
distribution between 0 and 15.63 kg/m2 was the largest and very concentrated. That is, the estimated 
biomass of S. alterniflora occurred within this range. Based on the known biomass values of individual 
pixels and the number of pixels, the total biomass of S. alterniflora was estimated to be up to 681.18 t, 
or 6.88 t per hectare in the study area. The distribution of biomass content for S. alterniflora is in 
agreement with the field survey results and the decreasing trend from the coastline to the inland area 
of Dafeng County. 

As most of wetland vegetation types in the mature period, its growth density is large, the 
vegetation biomass estimation using ordinary hyperspectral image has been unable to meet the 
research accuracy requirements. Under the same vegetation coverage and the same canopy height, 
the biomass of different vegetation types is different, and under the same vegetation coverage and 
the same vegetation type, the biomass of vegetation at different heights is also different. The study 
for mapping S. alternniflora biomass using high spatial resolution hyperspectral image and LiDAR 
data was to overcome the intertype error (caused by different vegetation types) and error of height 
difference (caused by different canopy height). It is consistent with Klemas’s result that the 
integration of hyperspectral imagery and LiDAR derived elevation data has also significantly 
improved the accuracy of mapping salt marsh vegetation [33]. The ability of the method to estimate 
the S. alternniflora biomass may be due to correlations with vegetation properties having a response 
in blue, green, red, near infrared bands and vegetation indexes and vegetation canopy height using 
linear regression model. Many studies indicated vegetation properties have a primary response in 
the 400–970 nm visible/near infrared light region. Developing regression models of S. alternniflora 
biomass estimation for each one of the sixty-four spectral bands or determining sensitive bands using 
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other regression models such as partial least square regression (PLSR) should be discussed in future. 
On the other hand, the above estimation accuracy may be improved due to the inability of the linear 
regression models to accurately represent the relationship between the biomass of S. alternniflora and 
wetland vegetation, and/or that other vegetation properties not measured may influence the spectra. 

 
Figure 6. Mapping biomass content of S. alterniflora using LiDAR data and hyperspectral images. 

Furthermore, the biomass estimation method using fusion of LiDAR data and hyperspectral 
data provides an advantage for S. alterniflora mapping. This method combines spectral and texture 
information of vegetation derived from hyperspectral images, canopy information derived from 
LiDAR data, vegetation types derived from high spatial resolution images, and field survey 
information. This result is consistent with research results on maize biomass estimation by Wang et 
al. [29], mapping biomass and stress by Swatantran et al. [24], crop species classification by Liu et al. 
on [30], estimation of above ground biomass for moist forest by Vaglio et al. [25]. It is significant for 
rapid monitoring of vegetation situation using multi-source data. It can therefore notably contribute 
to ecosystem management by providing a tool for remotely monitoring vegetation parameters at a 
regional scale. Although the distribution of estimated biomass content for S. alterniflora with LiDAR 
and hyperspectral data had only a spatial variation in the study area, the method is less time-
consuming and more cost-effective than traditional methods. The latter methods on a regional scale 
require a large number of vegetation samples on account of the high spatial heterogeneity of 
vegetation. Hence, this study provides an advanced method compared to traditional vegetation 
surveys.  

Nevertheless, some issues should be identified for mapping S. alterniflora biomass content at 
regional scale. Hyperspectral data and airborne LiDAR data directly acquired by aircraft may be 
affected by natural surface conditions, atmosphere, and illumination conditions. These impacts will 
be finely identified and corrected using ample reference data in the field, which will be combined 
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with ancillary data. The adoption of this estimation method may be promising in operational terms, 
while the accuracy of mapping S. alterniflora biomass content should be further improved. 

4. Conclusions 

Biomass content of wetland vegetation, including reeds, A. halodendron, and S. alterniflora as a 
whole, as well as the single type of S. alterniflora, were estimated in this study using a multivariate 
statistical method using hyperspectral image and LiDAR data. Correlation coefficients of wetland 
vegetation biomass with spectral reflectance at wavelengths of R534 (0.639), R865 (0.546) and R452 (0.515), 
and vegetation indices of GEMI (0.507), TVI (0.506) and DVI (0.488), and vegetation canopy height 
(0.421) were higher than other variables. The multivariate regression model of wetland vegetation 
using the variable forward enter method with R squared coefficient of 0.704 was proposed to estimate 
biomass content of wetland vegetation.  

To overcome the disadvantages of differences in spectral features and canopy heights of wetland 
vegetation, S. alterniflora estimation model was proposed. Correlation analysis results showed that 
the highest correlation coefficient was 0.817 for vegetation canopy height, followed by NDVI (0.635), 
ARVI (0.631), VARI (0.599), and RVI (0.520). The estimation model using the variable backward 
elimination method with R squared coefficient of 0.902 was proposed to estimate the S. alterniflora 
biomass. Estimation accuracy of S. alterniflora for a single type of vegetation was higher than that of 
wetland vegetation for mixed vegetation types. The predicted biomass of S. alterniflora showed a 
linear distribution with test biomass. The total S. alterniflora biomass was estimated to 6.88 t per 
hectare in the study area. The distribution of S. alterniflora biomass is in agreement with the field 
survey results from Dafeng County.  

This study demonstrated that the vegetation canopy height variable should be introduced into 
vegetation biomass estimation models, which can improve the estimation accuracy. Furthermore, the 
proposed estimation model of vegetation biomass based on vegetation classification was beneficial 
to improving its accuracy using the fusion of LiDAR and hyperspectral data. Mapping S. alternniflora 
biomass using high spatial resolution hyperspectral image and LiDAR data could improve the 
estimation error caused by different vegetation types and different canopy height. It is advantageous 
for S. alterniflora mapping, compared to traditional survey. This research thus significantly 
contributes to ecosystem management by providing a tool for remotely monitoring vegetation 
parameters at regional scale. However, the impacts of natural surface conditions, atmosphere, and 
illumination conditions should be further studied for mapping S. alterniflora biomass content. 
Moreover, the mapping accuracy of S. alterniflora biomass should be further improved. 
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