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Abstract: For geostationary meteorological satellite (GSMS) remote sensing image registration,
high computational cost and matching error are the two main challenging problems. To address
these issues, this paper proposes a novel algorithm named slope-restricted multi-scale feature
matching. In multi-scale feature matching, images are subsampled to different scales. From a
small scale to a large scale, the offsets between the matched pairs are used to narrow the searching
area of feature matching for the next larger scale. Thus, the feature matching is accomplished from
coarse to fine, which will make the matching process more accurate and reduce errors. To enhance
the matching performance, the outliers in the matched pairs are rectified by using slope-restricted
rectification, which is based on local geometric similarity. Compared with other algorithms, the
experimental results show that our proposed method is more accurate and efficient.

Keywords: remote sensing image registration; geostationary meteorological satellite (GSMS);
multi-scale feature matching; slope-restricted rectification

1. Introduction

Image registration is an inherent part of remote sensing image processing, since it has been widely
applied in image fusion [1,2], image mosaic [3], change detection [4,5] and 3D reconstruction [6,7].
In recent years, although geostationary meteorological satellites with higher spatial resolution
and higher accuracy have been invented, study on registration for lower accuracy geostationary
meteorological satellite (GSMS) images is still needed, especially for historical data re-processing
(e.g., climate change analysis). The aim of image registration is to match two or more images of the
same scene with different times, different sensors or different viewpoints. A number of methods have
been proposed for remote sensing image registration. These methods can be coarsely classified into
intensity-based and feature-based methods. Compared with intensity-based algorithms, feature-based
algorithms have a good ability to handle image distortions and illumination changes, and reduce the
computational cost. In this paper, we focus on the research of feature-based matching methods.

The scale-invariant feature transform (SIFT) algorithm [8], which was first proposed by Lowe,
is one of the most popular feature descriptor algorithms for remote sensing image registration.
With the attributes of rotation, scale invariance, and illumination change consistency, this method
can match two images successfully even when there are significant differences in multi-sources,
illumination and rotation. The SIFT algorithm is distinctive and robust, but it will be ineffective
if there are many repeated or similar structures in the images. Many researchers extend the SIFT
algorithm to improve the matching accuracy [9,10]. Sedaghat et al. [11] proposed an improved SIFT
algorithm called uniform robust scale invariant feature transform (UR-SIFT) to extract high-quality
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SIFT features in the uniform distribution of both scales and spaces. It can find the correspondence
between image pairs even with scale differences of five times. Qin et al. [12] introduced an algorithm
based on SIFT and CONTOURLET transform for remote sensing image registration. Fan et al. [13]
used the spatial relationship of improved SIFT to refine the matched pairs. Sedaghat et al. [14]
presented a novel descriptor based on UR-SIFT to search feature correspondences and eliminate
the mismatches. Since there are few textures in GSMS images, few features can be extracted
by SIFT. Some researchers focus on shape context [15] instead of SIFT for remote sensing image
registration. Huang et al. [16] introduced shape context for synthetic aperture radar (SAR) and
optical image registration. It captured the points distribution of a shape silhouette to develop the
representations. Shi et al. [17] improved shape context with a spatial relationship to distinguish
repetitive patterns. Gu et al. [18] employed polynomial fitting-based shape matching for multi-sensor
remote sensing images. To get more matched pairs, Jiang et al. [19] adopted the shape context to
construct the distribution of the initial matched pairs. Unfortunately, the shape context is incapable
of GSMS image matching since there are too many monotonous patterns in it. Wavelet-based
methods [20] transform images to a new domain and extract more essential features for image
registration. However, features extracted from the high-frequency sub-bands are sensitive to translation
effects. To deal with this problem, Le Moigne et al. [21] integrated steerable filters in the wavelet-based
image registration. Besides, wavelets are known to be isotropic. Murphy et al. [22,23] made anisotropic
generalization with shearlets and produced sparse, concentrated and directional features. These
approaches obtained more robust registration than classical wave-based methods. In many situations,
detecting features at the finest stable scale may not be appropriate [24]. One solution to this problem
is to extract features at a variety of scales and then integrate features to enhance the discrimination.
Brodu et al. [25] designed multi-scale dimensionality features to describe the local geometry of points.
Huang et al. [26] proposed a new ship detection approach based on multi-scale heterogeneity features.

To improve matching accuracy, there are many approaches for removing outliers. Random sample
consensus (RANSAC) [27] is a classical algorithm. It selects a sample randomly from the consensus
set in each iteration and finds the largest consensus set to calculate the final model parameters.
Inspired by this method, Wu et al. [28] proposed an improved RANSAC algorithm named fast sample
consensus (FSC) to find the correct matches from correspondence set. However, if there are too
many outliers in the correspondences, the RANSAC-based methods may be time-consuming and
unstable. Some researchers utilize the local geometric information to remove outliers. Aguilar et al. [29]
introduced a method called Graph Transformation Matching (GTM). In this method, a K-nearest
neighbor (KNN) graph was constructed to describe the relationship between the current point and
the neighbors. The point will be removed if the vertex structures are dissimilar between two images.
Liu et al. [30] proposed a point matching algorithm based on Restricted Spatial Order Constraints
(RSOC), which makes use of both local structure and global information in each iteration to remove
outliers. However, when the KNN of the outliers are all the same, RSOC failed to remove such
outliers. For images with large affine transformation and low overlapping areas, Zhang et al. [31]
proposed novel point matching based on the triangle-area representation (TAR) of the K-nearest
neighbors (KNN-TAR). Candidate outliers found by KNN-TAR will be confirmed to be real outliers
or not by the local structure of the single matching pair and the global information of the whole
matching pairs. These methods removed outliers based on affine transformation invariant and got
good results for sun-synchronous satellite remote sensing image registration. As for GSMS images
which have large scales, calculating the transformation error leads to heavy computational cost. In our
previous work, an algorithm named neighborhood coding and verification (NCV) [32] was used to
remove the mismatched pairs for GSMS images. Since this algorithm construct matrices about the spatial
location relationship of feature distribution, the computational cost is also expensive when neighborhood
is large.

Considering the methods mentioned above are almost always applied in sun-synchronous satellite
image registration, a novel method should be proposed to solve the high time cost and matching
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error for GSMS image registration. In this paper, a feature-matching algorithm named slope-restricted
multi-scale feature matching is proposed. The matched pairs are searched from coarse to fine. At first,
both the GSMS images and the landmark images are subsampled to generate multi-scale images.
The offsets between matched pairs calculated in the smaller scales are fed to next larger scales for
narrowing the searching areas, accelerating the matching, and improving the accuracy. Distinct from
the conventional removing methods, our method does not remove the outliers directly. Based on local
geometric similarity, slope-restricted rectification is employed to rectify the mismatched pairs.

The rest of this paper is organized as follows: Section 2 introduces the data and methods used
in this study. Section 3 presents experimental results with various image pairs and performance
evaluation of the proposed methods. Section 4 draws the conclusions.

2. Materials and Methods

2.1. Data

In this study, the GSMS images are provided by the Fengyun-2D geostationary meteorological
satellite system [33]. The scale of visible GSMS image is 9160× 10, 000 pixels. Due to the multi-source,
occlusion of cloud and illumination differences, it is difficult to seek reliable matching correspondences
between two GSMS images. The landmark image generated from the Global Self-consistent,
Hierarchical, High-resolution Geography (GSHHG) database [34] can serve as a transition media for
matching tasks. GSHHG database contains the latitude and longitude information about the shorelines.
With orbit radius and sub-satellite point, landmark images can be achieved by mapping GSHHG
data onto the image plane. As presented in Figure 1a,b, the shorelines contained in the landmark
image correspond to the contours in the GSMS image. The spatial resolution of landmark images is
the same as in the GSMS images. One visible pixel corresponds to 1.25 km and one infrared pixel
corresponds to 5 km. For convenience, the scale of GSMS images and landmark images is normalized
to 10, 000× 10, 000. Following works will focus on the feature matching between the GSMS images
and the landmark images.

(a) (b)

Figure 1. Some examples of landmark images and geostationary meteorological satellite (GSMS) images.
(a) Part of the landmark image generated from the Global Self-consistent, Hierarchical, High-resolution
Geography (GSHHG) database. (b) Part of the GSMS image.

Figure 1b is part of the GSMS image. Since landmark images only contain shoreline information,
the edges extracted from GSMS images are used for image matching. The common edge detection
approaches apply the first or second deviation to the smooth image and then find the local maxima,
like the Sobel detector and Canny detector. In contrast to these approaches, the structured forests
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algorithm [35] trains edge detector is based on structured learning. This approach can learn the
structured information and obtain more reliable edges relative to objects. As shown in Figure 2,
structured forests outperform the others in noise reduction. Figure 2c is an edge probability map
produced by structured forests; the intensity at row x and column y denotes the probability of a pixel
p (x, y) being edge. To generate a feature map from the edge probability map, the threshold ε1 (ε1 is
set to 0.16 empirically) is assigned to restrict the width of edges and reduce the noise of clouds, as
presented in Figure 2d. The feature point q (x, y) at row x and column y of the feature map is generated
as follows:

q (x, y) =

{
1 p (x, y) ≥ ε1

0 p (x, y) < ε1
(1)

Additionally, the feature point l (x, y) at row x and column y of the landmark map is generated
as follows:

l (x, y) =

{
1 pixel (x, y) is a landmark
0 otherwise

(2)

(a) (b)

(c) (d)

Figure 2. The edges of the GSMS image patch detected by different edge detectors. (a) The edges
detected by Sobel detector. (b) The edges detected by Canny detector. (c) The edge probability map
extracted by structured forests. (d) The feature map generated from the edge probability map.

2.2. Multi-Scale Feature Matching

The remote sensing images have radial distortions. Since the earth is not a standard sphere,
there is no projection model which can describe the transformation among the GSMS images.
Feature-to-feature matching is essential for GSMS image registration. For conventional feature
matching, the matched pairs are determined by comparing the similarity between the templates



Remote Sens. 2017, 7, 576 5 of 15

and the local regions of the image which center at the matching candidates. Assume a template Li
with the size of (2T + 1)× (2T + 1) is generated at point li (xi, yi) in the landmark map. Meanwhile,
a searching window with the size of (2S + 1)× (2S + 1) is determined in the same location (xi, yi) in
the feature map. Afterwards, a local region Qj with the size of (2T + 1)× (2T + 1) can be generated
in the searching window. To find the best matching point qj for li, the geometric similarity Egeo is used
to measure the similarity between Li and Qj.

Egeo (i, j) =
2T+1

∑
u=1

2T+1

∑
v=1
Li (u, v)×Qj (u, v) (3)

Similarly to Qj, on the edge probability map, a local region Pj centered at pj with the size of
(2T + 1)× (2T + 1) is assisted to measure the gradient similarity Egra.

Egra (i, j) =
2T+1

∑
u=1

2T+1

∑
v=1
Li (u, v)×Pj (u, v) (4)

In addition, the number of landmarks located within the template Li is calculated as follows:

Cgeo (i) =
2T+1

∑
u=1

2T+1

∑
v=1
Li (u, v) (5)

Therefore, the best matching point qj for landmark li is obtained by local feature matching [32].
After matching features between the landmark images and the GSMS images, the matched pair set
C = {cn | cn = (ln, qn) , n = 1, 2, · · · , N} is obtained. The points ln and qn are respectively located at
(xn, yn) and (x′n, y′n).

Due to the large size of GSMS images, the searching area of feature matching is large and the
computational cost is expensive. What is worse, there are too many similar features in the GSMS images
which lead to low matching accuracy. To solve these problems, the GSMS images and the landmark
images are subsampled to generate multi-scale images. The feature matching will be accomplished
from a small scale to a large scale. Combined with the offsets between the matched pairs in the small
scale images, the searching area can be narrowed for the large scale images. In this case, the matching
accuracy and efficiency will be improved. Overall, this is a coarse to fine matching process.

As seen in Figure 3, suppose an image is subsampled with sampling frequency f . m indicates the
m-th scale of the multi-scale images. The original image is of the scale 1. The larger m is, the smaller
scale is. In this way, the multi-scale landmark maps and the multi-scale feature maps are established.
lm
i and qm

i indicate the feature points in the m-th scale. Besides, maps are separated into patches to
accelerate the matching process. To make a balance between accuracy and time cost, the size of patch
is set to 400× 400 on experience. To ensure all patches are 400× 400, the patches which are smaller
than 400× 400 will be zero-padded.

For each patch pair in the m-th scale, the process of feature matching is the same as mentioned
above. The only difference is that the center

(
xs,m

i , ys,m
i
)

of searching window is determined by
Equations (6) and (7).

xs,m
i =

{
xm

i m = M
xm

i + ∆xm+1 m = 1, 2, · · · , M− 1
(6)

ys,m
i =

{
ym

i m = M
ym

i + ∆ym+1 m = 1, 2, · · · , M− 1
(7)

where ∆xm+1 and ∆ym+1 are the medians calculated from the offsets between the matched pairs in
Cm+1 =

{
cm+1

n | cm+1
n =

(
lm+1
n , qm+1

n
)

, n = 1, 2, · · · , Nm+1}. Nm+1 is the total number of matched
pairs for the (m + 1)-th scale. The points lm+1

n and pm+1
n are respectively located at

(
xm+1

n , ym+1
n

)
and(

x
′ m+1
n , y

′ m+1
n

)
.
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∆xm+1 = Median
{(

x
′ m+1
1 − xm+1

1

)
,
(

x
′ m+1
2 − xm+1

2

)
, · · · ,

(
x
′ m+1
Nm+1 − xm+1

Nm+1

)}
(8)

∆ym+1 = Median
{(

y
′ m+1
1 − ym+1

1

)
,
(

y
′ m+1
2 − ym+1

2

)
, · · · ,

(
y
′ m+1
Nm+1 − ym+1

Nm+1

)}
(9)

In this way, the searching window can be positioned more accurately and the matched pairs can
be found more precisely in the larger scale. Consequently, the complete procedures of multi-scale
feature matching are outlined in Algorithm 1.

The multi-scale landmark maps The multi-scale GSMS maps

2T+1 2S+1

M-th

(m+1)-th

m-th

1-st

Figure 3. The architecture of multi-scale maps (suppose the sampling frequency f = 2). The subsampling
is conducted from bottom to top, and the matching is inverse. The red grid corresponds to the template
and the blue grid corresponds to the searching window. The medians ∆xm+1 and ∆ym+1 calculated in the
(m + 1)-th scale are used to determine the center of the searching window in the m-th scale.

Algorithm 1 Multi-Scale Feature Matching.

Input: The multi-scale landmark maps, the multi-scale feature maps and the multi-scale edge

probability maps;
Output: The matched pair set C = {cn | cn = (ln, qn) , n = 1, 2, · · · , N};

1: for m from M to 1 do
2: for point lm

i in the m-th landmark map do
3: Determine the center

(
xs,m

i , ys,m
i
)

of the searching window with Equations (6) and (7);
4: Seek the matched pair

(
lm
i , pm

j

)
with local feature matching and add it into Cm;

5: end for
6: if m is larger than 1 then
7: Calculate the medians ∆xm and ∆ym from the offsets between the matched pairs in Cm with

Equations (8) and (9);
8: else
9: return C1 as the matching result C;

10: end if
11: end for

2.3. Slope-Restricted Rectification

Since attitude parameters are accurately predicted, the rotation offsets of GSMS images are less
than

(
10−4)◦ for the FY-2 geostationary meteorological satellite system. In this case, the impact of
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rotation on images can be estimated and the landmark images are generated under rotation condition.
Therefore, the rotation transformation can be neglected when registering GSMS images and landmark
images. This can be proved as follows:

Suppose the rotation between GSMS images and landmark images is given by:(
x′

y′

)
=

(
cosθ sinθ

−sinθ cosθ

)
·
(

x
y

)
(10)

The offsets in the horizontal and vertical directions are denoted by:

∆x = x′ − x = x · (cosθ − 1) + y · sinθ (11)

∆y = y′ − y = −x · sinθ + y · (cosθ − 1) (12)

where θ ≤
(
10−4)◦; the value of ∆x and ∆y are both relative to x and y. Note that x and y are

independent. Setting the center of the images which is close to sub-satellite point as origin of the image
coordinate, x and y are both integers within [−5000, 5000] for 10, 000× 10, 000 GSMS images. To find
the maximum of ∆x, the partial derivations are calculated.

∂∆x
∂x

= cosθ − 1 (13)

∂∆x
∂y

= sinθ (14)

According to Equations (11), (13) and (14), the maximum of ∆x is determined with (x, y) =

(−5000, 5000). Likewise, the maximum of ∆y is determined with (x, y) = (−5000,−5000).

∆x ≤ −5000×
(

cos10−4 − 1
)
+ 5000× sin10−4 = 0.500025

∆y ≤ − (−5000)× sin10−4 + (−5000)×
(

cos10−4 − 1
)
= 0.500025

As seen from above, the maxima of ∆x and ∆y are both smaller than one pixel, hence the rotation
between GSMS images and landmark images can be neglected.

However, due to the shift of sub-satellite point, there is still global translation between GSMS
images and landmark images. Moreover, the landmark images are generated based on the standard
sphere model while the earth is a non-standard spheroid. There are radial distortions between GSMS
images and landmark images. As shown in Figure 4, although the latitude and longitude of PGSHHG
and PGSMS are the same, their radii are different. It may lead to local translation between P′GSHHG
and P′GSMS. As discussed above, the relationship between landmark images and GSMS images can be
simplified by pure local translation. Therefore, the spatial context among the edge-points within two
matching regions satisfy geometric similarity. That is, when two matching regions have similar spatial
context, the matching lines are mostly parallel, as shown in Figure 5. In this case, most matching
lines have the same or similar slopes (computed by Equation (15)). If the slope of a matched pair is
different from others, this matched pair will be regarded as a mismatched pair. Hence, slope-restricted
rectification (SRR) is proposed to rectify the mismatches.

βn =
∆yn

∆xn
=

y′n − yn

x′n − xn
(15)
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Figure 4. The illustration of local translation between GSMS images and landmark images. The blue
sphere is a standard projection model for landmark images and the red spheroid is an earth model for
GSMS images. The projection transformation preserves lines, thus there is radial translation between
P′GSHHG and P′GSMS.

The landmark image

The  GSMS image

mappingmapping

Figure 5. When mapping the shoreline of the landmark image onto the GSMS image, the connections
between the matched pairs are generated. Since two images are relative by pure local translation, the
spatial context among the edge-points within two matching regions are geometrically similar. Thus, the
matching lines (green lines) are mostly parallel, and the non-parallel matches (red lines) will be rectified by
slope-restricted rectification (SRR).

In the rectification process, the matched pairs in C are refined in sequence. The slope
set β = {βn | n = 1, 2, · · · , N} contains the slopes calculated from the connections between the
matched pairs. Ln

KNN =
{

ln
1 , ln

2 , · · · , ln
K
}

contains the K-nearest neighbors of the current point ln,
and Cn

K =
{

cn
k | cn

k = (lk, qk) , k = 1, 2, · · · , K
}

is the corresponding matched pair set of Ln
KNN . For each

matched pair in Cn
K, the connection between them has the slope βk. Suppose there are J different slopes

obtained from all connections based on the matched pairs in Cn
K, Nβ =

{
Nβ j | j = 1, 2, · · · , J

}
, which

is created by counting the times of every kind of slope occurs, and Nβ j is the number of β j. If elements

of Nβ are no less than dε2 × Ke, N′β =
{

Nβ j | Nβ j ≥ dε2 × Ke , Nβ j ∈ Nβ

}
will be generated. Note that

threshold ε2 ∈ [0, 1] is used to control the reference number of slopes in terms of K. According to the
slope information contained in N′β, the matched pair set Cn

K′ =
{

cn
k′ | cn

k′ = (lk′ , qk′) , k′ = 1, 2, · · · , K′
}

is extracted from Cn
K. Hence, the average slope β

avg
n is computed by the equations as follows:

wk′ =

1
dk′

∑K′
k′=1

1
dk′

(16)
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β
avg
n =

K′

∑
k′=1

wk′ × βk′ (17)

where dk′ is the Euclidean distance between lk′ and qk′ . wk′ is the weight about βk′ .∣∣∣βn − β
avg
n

∣∣∣ ≤ 10−5 (18)

If slope βn of the connection between current matched pair satisfies the Equation (18), the matched pair
(ln, qn) will be added into rectification set Crect. Otherwise, the coordinate of qn will be rectified as follows:

xrect
n = xn + ∆xn (19)

yrect
n = yn + ∆yn (20)

with,

∆xn =
∑K′

k′=1
(
x′k′ − xk′

)
K′

(21)

∆yn =
∑K′

k′=1
(
y′k′ − yk′

)
K′

(22)

where ∆xn and ∆yn are average offsets calculated from the matched pairs in Cn
K′ .
(
xrect

n , yrect
n
)

is the
coordinate of qrect

n . Then, the rectified pair
(
ln, qrect

n
)

will be added into rectification set Crect.
However, if all elements of Nβ are smaller than dε2 × Ke, the matched pair (ln, qn) will

be neglected.
The complete processes of SRR are given in Algorithm 2.

Algorithm 2 Slope-Restricted Rectification (SRR).

Input: The matched pair set C and the slope set β;
Output: The rectification set Crect;

1: for n from 1 to N do
2: Select the K-nearest neighbor set Ln

KNN and matched pair set Cn
K for landmark ln;

3: Calculate Nβ from the slopes relative to Cn
K;

4: for j from 1 to J do
5: if Nβ j ≥ dε2 × Ke then
6: Find the matched pairs whose connections have slopes are equal to β j and add these

pairs into Cn
K′ ;

7: end if
8: end for
9: if Cn

K′ is not null then
10: Calculate β

avg
n ;

11: if
∣∣∣βn − β

avg
n

∣∣∣ ≤ 10−5 then
12: Add the matched pair (ln, qn) into Crect;
13: else
14: Calculate qrect

n and add the rectified pair
(
ln, qrect

n
)

into Crect;
15: end if
16: end if
17: end for

3. Experimental Results and Discussion

In the experiments, the sub-satellite point of Fengyun-2D is around (86◦E; 0◦N), and only
landmarks located within ±60◦ of longitude and ±60◦ of latitude around sub-satellite point are
chosen as testing data. Some shorelines in the landmark images could not be found from the GSMS
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images due to the occlusion of clouds. To measure the matching performance, the ground truth is
labeled manually: for each landmark in the landmark image, we accurately mark its corresponding
point in the GSMS image, except the landmark covered by clouds. There are in total 25 pairs of
images used in the experiments and all results are presented with average values. All experiments are
implemented on a workstation with dual Intel Xeon CPU (2.1 GHz and 12 cores for each) and 128 GB
RAM.

3.1. Initial Matching Result Based on Multi-Scale Feature Matching

3.1.1. Parameter Setting

In multi-scale feature matching, four parameters, M, f , T and S, should be considered carefully to
achieve optimal results. In scale 1, S and T are respectively set to 20 and 30 [32]. Since we find some
local offsets are larger than 400 pixels between the shorelines in the landmark images and the edges in
the GSMS images, S and T are respectively set to 20 and

⌈
500

f M−1

⌉
for other scales. It ensures the areas

which contain matching candidates exist in the searching windows of top scale. Once f and the image
size are determined, M and S can be obtained.

As for the architecture of multi-scale maps, the number of scales M and the sampling frequency f
are closely associated. As shown in Figure 6a, when f is set to 10, the matching precision and recall
are very low. This indicates that most useful information is lost in the subsampled images with a size
of 1000× 1000. The inaccurate offsets between the matched pairs lead to quantitative mismatched
pairs. Therefore, combined with different f , M is restricted to ensure the top scale image is larger than
1000× 1000. The smaller f corresponds to higher matching precision, recall and time cost. When f
changes from 7 to 9, the values of precision and recall float. In this case , the top scale images, with
size smaller than 1500× 1500, lost partially useful information and caused unstable matching results.
Figure 6b presents the time cost with different f . We can see that the local minimum occurs at f = 3.
When f is set to 3 and 4, the total number of pixels for multi-scale images are close. Meanwhile, the
value of S for f set to 3 is less than half of f set to 4. Besides, the total number of pixels for f set to 2 is
much larger than f set to 3, although they have the similar value of S. Therefore, the computational
time for f set to 3 is less than f set to 2 and 4. Making a tradeoff among precision, recall and time cost,
both f and M are assigned to 3 ultimately.

2 3 4 5 6 7 8 9 10
10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

The sampling frequency f

Precision

Recall

(a)

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

The sampling frequency f

T
im

e
/
s

(b)

Figure 6. Average precision, recall and running time are relative to the sampling frequency f :
(a) Average precision and recall with different sampling frequencies. (b) Running time with different
sampling frequencies.
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3.1.2. Comparative Analysis

Two classical feature matching algorithms, SIFT with nearest neighbor distance ratio (NNDR) [8]
and shape context with the X 2 test statistic [15] are chosen to be compared with the proposed approach.
The matching results are shown in Table 1 and Figure 7. From the table, the precision and the recall of
our method are better than the shape context-based method. For the presented example in Figure 7a,
the matched pairs obtained by SIFT-based method are much less than the required numbers. Both the
precision and recall of this method are 0. Thus, SIFT is incapable of matching the GSMS images which
have relatively few textures. As seen in Figure 7b, due to the monotonous patterns in the GSMS
image, shape context generates many resembling features and leads to plenty of mismatched pairs.
Besides, when comparing the computation time, multi-scale feature matching is more efficient than
shape context.

Table 1. Corresponding values of average precision, recall and computation time obtained by shape
context and multi-scale feature matching.

Shape Context [15] Multi-Scale Feature Matching

precision (%) 59.87 93.31
recall (%) 53.24 76.65
time (s) 4920.79 1509.18

(a) (b)

(c)

Figure 7. Comparing the matching result of multi-scale feature matching with scale-invariant feature
transform (SIFT) and shape context in a pair of patches. The left and right patches are corresponding to
the landmark image and the GSMS image, respectively. Besides, green points denote inliers and red
points denote outliers. (a) SIFT. (b) Shape context. (c) Multi-scale feature matching.

3.2. Outliers Rectifying Based on SRR

3.2.1. Parameter Setting

To rectify unreliable matched pairs, it is critical to select optimal parameters for SRR. In Figure 8,
with the increasing of K and ε2, the precision tends to increase and the recall tends to decrease.
It indicates that when ε2 is too large, the influence of neighbors is great and the constraint of geometric
similarity is strict. Besides, when K is too large, the neighborhood is large and the geometric similarity
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between the current pair is low. In this case, many true matched pairs are regarded as mismatched
pairs and removed. As a tradeoff between the precision and the recall, K is set to 24 and ε2 is set to 0.5.
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Figure 8. The effects of the number of nearest neighbors K and the slope threshold ε2 are used to rectify
the mismatched pairs. (a) The average precision of SRR with different K and ε2. (b) The average recall
of SRR with different K and ε2.

3.2.2. Performance Analysis

To evaluate the performance of the proposed method, a comparison among GTM, RSOC,
KNN-TAR, NCV and SRR is performed. These methods are all based on geometric similarity.
The results are presented in Table 2 and Figure 9. As shown in Table 2, the precision of SRR is
slightly lower than GTM but the recall is higher than the other four. Because of large radial distortions
in the GSMS images, the global information which contains noise leads to low precision values for
RSOC and KNN-TAR. Since GTM and KNN-TAR are too strict with the spatial location relationship
among feature points, their recall values are relatively low. NCV constructs the matrices about the
spatial relationship among local features, the cost for matrix computation is relatively heavy.

As far as time is concerned, the experiments show that the proposed method is more efficient than
the other four. In addition, SRR has the advantage of low computation complexity. When there are N
matched pairs in C, the computation complexity of GTM, RSOC and KNN-TAR is O

(
N3). Since NCV

and SRR construct the K-nearest neighbors of current pair, their computation complexity is O
(

N2logN
)
.

Therefore, as mentioned above, SRR has a good ability to improve the matching accuracy and
reduce the time cost for GSMS image registration.

Table 2. The performance comparison using different algorithms. GTM: Graph Transformation
Matching; RSOC: Restricted Spatial Order Constraints; TAR: triangle-area representation; KNN:
K-nearest neighbors; NCV: neighborhood coding and verification.

GTM RSOC KNN-TAR NCV SRR

precision (%) 97.13 95.77 95.88 96.61 97.08
recall (%) 47.11 68.54 40.14 68.52 70.56
time (s) 14.40 11.20 2.38 1.69 0.23
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(a) (b)

(c) (d)

(e)

Figure 9. Matching results obtained by five different algorithms. (a) GTM. (b) RSOC. (c) KNN-TAR.
(d) NCV. (e) SRR.

4. Conclusions

In this paper, a novel slope-restricted multi-scale feature matching algorithm is proposed for
GSMS image registration. This paper particularly focuses on reducing the time cost and matching error.
Our method uses multi-scale mechanism to narrow the searching areas and find the matched pairs
from coarse to fine. In the experiments, compared with SIFT and shape context, the multi-scale feature
matching has the advantages in precision, recall and time cost. To improve the matching performance,
the mismatched pairs are rectified with slope-restricted rectification, which is based on local geometric
similarity between the landmark images and the GSMS images. The experimental results show that
slope-restricted rectification is more efficient than GTM, RSOC, KNN-TAR and NCV. Based on the
matched features, our future work will focus on three-dimensional spherical stitching for multi-view
GSMS images. Additionally, we will explore to extend the proposed approaches to the registration of
optical and SAR images, in which more challenging affine transformations exist.
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