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Abstract: The successful analysis of LiDAR data for archaeological research requires an evaluation 
of effects of different vegetation types and the use of adequate visualization techniques for the 
identification of archaeological features. The Ceibal-Petexbatun Archaeological Project conducted a 
LiDAR survey of an area of 20 × 20 km around the Maya site of Ceibal, Guatemala, which comprises 
diverse vegetation classes, including rainforest, secondary vegetation, agricultural fields, and 
pastures. We developed a classification of vegetation through object-based image analysis (OBIA), 
primarily using LiDAR-derived datasets, and evaluated various visualization techniques of LiDAR 
data. We then compared probable archaeological features identified in the LiDAR data with the 
archaeological map produced by Harvard University in the 1960s and conducted ground-truthing 
in sample areas. This study demonstrates the effectiveness of the OBIA approach to vegetation 
classification in archaeological applications, and suggests that the Red Relief Image Map (RRIM) 
aids the efficient identification of subtle archaeological features. LiDAR functioned reasonably well 
for the thick rainforest in this high precipitation region, but the densest parts of foliage appear to 
create patches with no or few ground points, which make the identification of small structures 
problematic. 

Keywords: LiDAR; archaeology; Maya; tropical lowlands; object-based image analysis (OBIA); 
vegetation classification; visualization techniques; Red Relief Image Map (RRIM) 

 

1. Introduction 

Since the groundbreaking work at Caracol, Belize [1], the application of airborne LiDAR (Light 
Detection and Ranging) has been making revolutionary effects in archaeological investigations in the 
Maya lowlands [2–6], the Mexican Pacific Coast [7,8], and other tropical regions [9,10]. With its ability 
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to penetrate the canopy, LiDAR allows archaeologists to rapidly map archaeological features with 
topographic signatures in areas where dense vegetation makes extensive ground surveys difficult. 
Nonetheless, it is still important to evaluate the effectiveness of LiDAR for different vegetation types 
and geological settings, and to improve techniques for the detection of archaeological remains. This 
paper aims to contribute to the LiDAR-based study of archaeological features by refining the process 
of LiDAR data evaluation. 

Important issues in this regard are vegetation classification [11–15] and the visualization of 
LiDAR data [16,17]. As to the first issue, types of land cover affect the rate of laser pulses reaching 
the ground and thus the detection of archaeological features. The effectiveness of LiDAR for 
archaeological studies needs to be evaluated separately for different vegetation classes, making 
vegetation classification an indispensable step of analysis. As we developed a classification of 
vegetation in our study region, we combined vegetation characteristics that likely affected LiDAR 
data significantly, such as canopy density and height. For this purpose, we applied the method of 
object-based image analysis (OBIA), which offered a more effective approach to the assessment of 
LiDAR data than the traditional pixel-based classification or the use of vegetation height alone. With 
regard to the second issue, visualization techniques of ground reliefs considerably affect the 
efficiency and effectiveness of detection and interpretation of archaeological features. Many 
archaeologists and their collaborators have dedicated their effort to developing visualization 
methods rather than automated or semi-automated detections of features [18–23]. This is partly 
because archaeological remains may take diverse forms and sizes, making automated detections of 
all types challenging. Archaeological features may include stone monuments, residential buildings 
of small horizontal dimensions, extensive but low platforms, tall pyramids, as well as negative relief 
features, such as storage pits, quarries, and reservoirs. They may also consist of large-scale landscape 
modifications, such as agricultural terraces, dams, canals, roads, and defensive walls. More 
importantly, visualization techniques aid not only the detection of features but also many subsequent 
stages of archaeological analysis. Variations in the shapes and sizes of archaeological features studied 
through visualization methods reflect the history of occupation, the cultural backgrounds of builders, 
and differences in economic and political status. While we recognize the importance of developing 
automated detection methods for specific types of archaeological features, in this paper we focus on 
visualization techniques as an approach with broader effects. We evaluated different visualization 
methods and found the Red Relief Image Map (RRIM) technique particularly effective in various 
respects.  

The basis of this study was a LiDAR survey conducted over an area of approximately 20 × 20 
km2 around the Maya site of Ceibal, Guatemala, during the 2015 field season of the Ceibal-Petexbatun 
Archaeological Project (CPAP) (Figure 1). Ceibal is the largest center in the Pasión region of the 
southwestern Maya lowlands, and its main occupation spans from 1000 BC to AD 900 or 950. 
Including the zones along the edges without an overlap of flight strips, the LiDAR data covered an 
area of 460 km2. This area receives a larger amount of precipitation (roughly 1800 mm annually) and 
its rainforest tends to be higher and denser than in the central and northern Maya lowlands [24]. The 
forest around Ceibal is protected as a national park, along with the Rosario Park in the same region, 
although some parts suffered illegal deforestation by squatters in recent years. Vegetation in most 
areas outside these parks has been substantially modified for agriculture, cattle ranches, and oil palm 
plantations. Diverse vegetation types in this region present a challenge to the application of LiDAR 
data for archaeological studies.  
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Figure 1. Map of the Pasión region showing the extent of the LiDAR coverage and the locations of 
archaeological sites. 

Prior to the CPAP, Harvard University carried out archaeological investigations at Ceibal from 
1964 to 1968. As part of this research, Ian Graham mapped the area of 1.9 km2 in the Ceibal center 
[25], and Gair Tourtellot [26] surveyed an additional area of roughly 6 km2 in its surroundings along 
transects. The rest of the LiDAR-surveyed area had not been systematically studied except for some 
excavations at the satellite sites of Anonal and Caobal [26,27]. We initiated the CPAP in 2005, focusing 
on intensive excavations in the central part of Ceibal [28,29].  

2. Materials and Methods 

Our study followed the following steps: (1) the acquisition of LiDAR data in 2015; (2) the 
evaluation of visualization techniques of LiDAR data; (3) the identification of archaeological features 
in LiDAR data; (4) the ground verification of archaeological features in 2016 in sample areas with 
different vegetation types based on the preliminary vegetation classification; (5) a vegetation survey 
conducted simultaneously with the archaeological survey; and (6) the development of a refined 
vegetation classification with OBIA incorporating the results of the vegetation survey. After these 
analyses, we combined the all results to evaluate the effectiveness of LiDAR data for the study of 
archaeological features covered by different vegetation types (discussed in Section 3. Results).  

2.1. LiDAR Data Acquisition 

LiDAR data were obtained in 18–23 March 2015, by the crew of the National Center for Airborne 
Laser Mapping (NCALM) of the University of Houston, under the direction of Ramesh L. Shrestha 
and the research coordination by Juan Carlos Fernandez-Diaz. Abhinav Singhania of the NCALM 
processed the LiDAR data and produced a digital surface model (DSM, model including vegetation 
and buildings) and a digital elevation model (DEM, bare earth model after the removal of vegetation 
and buildings) at a horizontal resolution of 0.5 m. The NCALM crew used Teledyne Optech Titan 
MW, a new multichannel and multispectral LiDAR that they acquired in 2014. Titan emits laser 
pulses in the 1550 (Channel 1), 1064 (Channel 2), and 532 (Channel 3) nm wavelengths simultaneously 
through a single oscillating mirror. This multispectral LiDAR contrasts with Teledyne Optech Gemini 
with a single laser channel of a 1064 nm wavelength, which the NCALM used in their previous 
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campaigns in the Maya area and the nearby regions. With its three channels, Titan is capable of 
operating at higher pulse repetition frequencies (PRF) than Gemini, which means that it can emit a 
larger number of laser pulses per unit time. More importantly, the energy per pulse of laser pulses 
that Titan emits does not decrease significantly as the PRF increases. With Gemini, the energy per 
pulse weakens when it operates at a higher PRF, which makes the canopy penetration of each pulse 
more difficult. In other words, Titan can maintain high rates of canopy penetration per pulse when a 
higher PRF is used [30,31]. 

In the Ceibal region, the NCALM crew collected most data from a flying altitude of 700 m above 
the ground level (AGL) and at a PRF of 150 kHz per channel, that is, a total PRF of 450 kHz, but they 
also used a PRF of 250 kHz per channel or a total PRF of 750 kHz for some flight lines. All of the flight 
lines were collected with scan parameters of ±30° of scan angle and 20 Hz for the mirror scan 
frequency. In addition, the team conducted canopy penetration tests over the central part of Ceibal, 
where the forest was relatively undisturbed. These test flights involved the following settings: 700 m 
AGL and 100 kHz PRF per channel; 600 m AGL and 150 kHz per channel; and 400 m AGL and 150 
kHz per channel [31]. Whereas the regular data acquisition flights followed the north-south lines, the 
canopy penetration tests involved flight lines in roughly east-west directions (Figure 2). In the area 
for the canopy penetration test flights, 51 to 72 laser shots per m2 were emitted, whereas regular 
mapping flight lines produced 15 to 19 shots per m2.  

 
Figure 2. Laser shots per m2 measured as the number of first returns. Note that multiple test flights 
over the Ceibal center created strips of dense shots. 

As discussed in [30], the capability of an analyst to detect and identify subtle cultural features 
on a LiDAR dataset is a function of LiDAR sample density. In the case of areas covered by vegetation, 
successful detection is directly related to the effective ground sample density, which depends on the 
vegetation type (height and density) and on the ability of the LiDAR system to penetrate through the 
canopy [31]. The objective of maximizing canopy penetration is highly dependent on sensor 
configuration and flying parameters [30]. Achieving optimum penetration requires a balancing act 



Remote Sens. 2017, 9, 563 5 of 27 

 

between maximizing the number of laser shots per square meter (shot density proportional to the 
system PRF and inversely proportional to flying height) while ensuring that the energy of the laser 
pulse is high enough for the two-way trip through the canopy (dependent on laser source 
characteristics and directly proportional to the flying height). The configuration for the nominal 
mapping consisting of the flying height of 700 m AGL and sensor PRF of 3 × 150 kHz were selected 
to optimize the shot density and canopy penetration characteristics based on the canopy penetration 
test performed over the core of Ceibal.  

While accuracy assessment measurements were not conducted for this particular project within 
the mapping area, results of extensive vertical accuracy testing for the point cloud products obtained 
with the Titan sensor around the time of the Ceibal collection and under a variety of circumstances 
are reported in Section 3.5 of [31]. The reported results indicate that the vertical component of 
precision is better than 2 cm and height accuracy values are better than 10 cm, generally in the range 
of 2.5 to 6.5 cm. It is a well-known fact that the horizontal accuracy of LiDAR point cloud data is 
much harder to assess and is not as good as the vertical accuracy with typical values in the range of 
15–30 cm [30]. An experiment to assess the horizontal accuracy of Titan LiDAR point cloud data is 
reported in [32], with results indicating a horizontal accuracy of 3.2 cm under very close to ideal 
conditions (low flying heights and low aircraft dynamics). However, authors warn that under less 
ideal conditions horizontal accuracies can be significantly degraded. 

The LiDAR data obtained in the canopy test flights were included in the production of the final 
LAS dataset (a standard format for discrete return LiDAR point cloud data) [33], the DSM, and the 
DEM delivered to the CPAP. Inomata then analyzed the DEM and point cloud data, using ESRI 
ArcGIS, Trimble eCognition, and GeoCue LP360 for vegetation classification and the identification of 
archaeological features. 

2.2. Visualization Techniques 

The visualization of topographic data is a critical step in the analysis of LiDAR, and researchers 
have developed various techniques [18–23]. Scholars agree that there is no single method that 
promises the best results for all cases, and we need to consider the advantages and disadvantages of 
each technique to devise a strategy suited for specific objectives, the morphology of features of 
interests, and the local topography and vegetation. Hillshaded images or combinations of hillshades 
and DEMs represent the approach most commonly used by archaeologists. Because hillshades aim 
to reproduce the effects of shadows and illumination as incident light from a specific direction 
interact with the terrain, they produce different images for different directions of light. Thus, to gain 
a better understanding of reliefs, researchers need to compare multiple hillshade images with 
different light directions. To mitigate this problem, scholars have proposed the principal component 
analysis of hillshades (PCA), generally combining images with 16 light directions of different 
azimuths [12,19,20,23]. Another common method is slope gradient, which visualizes the steepness of 
slope [34,35]. In flat areas, such as northern Yucatan, color-classified DEMs may work well [11,19], 
but its archaeological utility is more limited in areas with undulating topography. 

As a method for the specific purpose of identifying reservoirs, Adrian Chase [36] used a map 
showing differences in elevation between neighboring cells. To produce this image, he used a moving 
window of an annulus, which calculated the difference in elevation between a given cell and the 
mean of the surrounding cells in the annulus. The Topographic Position Index (TPI) applied by Ebert 
et al. [14] represents a similar concept. Some researchers find Sky-View Factor analysis (SVF) 
particularly useful for the identification of archaeological remains [17,23]. SVF represents the amount 
of the sky visible from a particular location [37,38]. 

The method that we found most effective was Red Relief Image Map (RRIM) developed by Chiba 
et al. [39,40]. RRIM uses the measurements of topographic “openness”, originally developed by 
Yokoyama et al. [41] and combines them with slope gradient. Positive openness is a concept 
somewhat similar to SVF and is measured as the mean of zenith angles of tangent lines to the above-
ground surface within a specified radius from a given point, whereas negative openness concerns 
nadir angles of tangent lines to the under-ground surface. For each cell, RRIM expresses the slope 
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steepness as the intensity of red and the difference between the positive openness and the negative 
openness as brightness. In addition, RRIM incorporates an image in which positive and negative 
openness values are expressed by specific hues, ranging from yellow for high positive openness to 
green for high negative openness. In final products of RRIM, high, convex points, such as hilltops 
and mound summits, show bright whitish yellow, whereas low, concave points, such as bottoms of 
valleys and depressions, appear in dark green. Steep slopes exhibit intense red, and flat areas near 
white to grayish colors. In this manner, RRIM effectively visualizes small-scale natural and cultural 
features, as well as large-scale topographic reliefs.  

For this study, we produced images with hillshades, PCA, slope gradient, and moving window 
elevation difference, using the 0.5 m resolution DEM with ArcGIS. The SVF analysis of the DEM was 
conducted with free software, Relief Visualization Toolbox [42]. RRIM was produced from the DEM 
by Asia Air Survey, Japan. 

2.3. Archaeological Feature Detection in LiDAR Data 

We identified and recorded probable archaeological features primarily by visual inspection of 
the RRIM visualization. Other LiDAR data visualizations (particularly, hillshades with varying light 
angles), elevation profiles, and point cloud profiles were also examined when necessary. 
Archaeological features included structures (individual roofed buildings), platforms (constructions 
with an ample summit, which potentially could support multiple structures), walls (elongated 
buildings without roofs), terraces (leveled areas for agricultural fields or the construction of 
structures), and depressions (including human-made features and natural ones that may have been 
utilized by humans). These features were manually plotted with ArcGIS. For the purpose of 
evaluating the effectiveness of LiDAR data for archaeological feature detection under different 
vegetation types, this paper focuses on the two most common classes, i.e., structures and platforms. 
A broader range of archaeological data will be published elsewhere.  

Within the 460 km2 area covered by LiDAR, we registered 10,208 structures, 4538 possible 
structures, 724 platforms, and 253 possible platforms. When features appeared likely to be 
archaeological remains, we classified them into the categories of “structure” or “platform”. When we 
were uncertain whether they were archaeological features or those of natural or modern origins, we 
recorded them as “possible structures” or “possible platforms”.  

2.4. Field Verification of Archaeological Features 

We conducted a preliminary vegetation classification prior to the 2016 field season by applying 
pixel-based classification to the LiDAR data. We designed a strategy for the ground-truthing of 
archaeological features, considering this vegetation classification. We verified possible archaeological 
features identified in the LiDAR through two strategies. One was a comparison with the 
archaeological map of the Ceibal center produced by the Harvard Project. This allowed us to assess 
the LiDAR data in totally-surveyed areas under forested conditions. As discussed in Section 3.3, there 
were a small number of discrepancies between those identified in LiDAR and those recorded in the 
Harvard map. Instead of re-visiting these features within the area of the Harvard map, we decided 
to focus our effort during the 2016 season on the second strategy, that is, a pedestrian survey in 
previously unstudied peripheral zones. This decision was because our goal of the field season was 
not only to verify LiDAR data but also to obtain archaeological information on previously unknown 
sites through the observation of construction methods, surface collection, and test excavations.  

The ground survey was carried out from 7 February to 9 March 2016. Potential areas for the 
pedestrian survey were chosen from different vegetation areas within the peripheral zones. We also 
selected probable ceremonial buildings of the Middle Preclassic period (1000–350 BC) as important 
targets. Nonetheless, areas outside the Ceibal and Rosario Parks were privately owned, and it was 
often difficult to obtain permission from the landowners. In addition, some of the landowners were 
suspected of involvement in drug trafficking, and we avoided those areas. These restrictions strongly 
affected the distribution of survey zones. When the survey crew reached a target site, they usually 
focused on features identified in the LiDAR data to verify whether they were indeed archaeological 



Remote Sens. 2017, 9, 563 7 of 27 

 

remains, to record their construction materials, and to collect artifacts found on the surface. They also 
walked over the immediate surroundings of these targets to examine whether there are any buildings 
that were missed in the LiDAR data and to inspect other possible features, such as terraces, 
depressions, and walls. In three cases, they systematically covered areas of pasture measuring 100 × 
200 m2 to 130 × 400 m2 by walking at regular intervals. In most other cases, they walked 
unsystematically around detected features, in order to concentrate more on the recording of 
construction materials and surface collection. 

The survey crew recorded the locations of verified features with Garmin GPSMAP 64 GPS 
devices, which generally had horizontal accuracies of 3 to 15 m in areas with no or sparse canopy 
cover. In most cases, they could compare the GPS measurements with RRIM images loaded on the 
devices and could manually correct measurement errors as long as they could use archaeological 
features visible in LiDAR data as references. In total, the crew ground-truthed 981 features that had 
been recorded as structures or possible structures in the examination of LiDAR data. 

2.5. Vegetation Survey 

During the field season, the field crew also conducted a vegetation survey. Instead of developing 
a specific design for a vegetation survey, the survey team collected vegetation data as they conducted 
archaeological investigations. They recorded the vegetation around the archaeological sites that they 
visited and, in some cases, along the ways to archaeological sites. For secondary vegetation, the 
survey team recorded its age after the last clearing as reported by the landowner or as estimated by 
our local workers. In total, the survey recorded the vegetation data of 199 reference areas (24 
rainforest, 12 high secondary vegetation, 32 medium high secondary vegetation, 11 low secondary 
vegetation, 19 high grass, 79 low grass, 11 agricultural fields, 2 palm plantations, 1 low wetland 
forest).  

2.6. OBIA Vegetation Classification with LiDAR Data 

The analysis of vegetation and biomass with LiDAR data is well-developed in forestry, biology, 
and ecology [43–48]. Nonetheless, our vegetation analysis was designed specifically for the purposes 
of evaluating vegetation’s effects on LiDAR data in the detection of archaeological features and thus 
differed from forestry- or ecology-oriented studies. In the process of our vegetation classification, we 
considered common vegetation types observed on the ground, such as secondary vegetation and 
pasture, but we did not aim at the best fit to biological or ecological classifications of vegetation. 
Instead, our primary goal was to classify land cover mainly by vegetation characteristics that affect 
LiDAR data most, that is, the density and height of vegetation.  

After the pedestrian vegetation survey carried out with the archaeological investigation, we 
refined vegetation classification, using object-based image analysis (OBIA). We developed the OBIA 
classification of vegetation with eCognition software for an area of 441 km2, excluding edges of the 
LiDAR data (outside nominal survey polygon) where there is not sufficient swath overlap. In an 
OBIA approach, neighboring cells with similar values are segmented into objects of varying sizes, 
which are then used as units of classification. Researchers have traditionally used the pixel-based 
classification of remotely-sensed data [14], but the OBIA is gaining popularity in various disciplines 
recently as it is considered more accurate and versatile [49–52].  

For the vegetation classification, we primarily used LiDAR-derived datasets, including Canopy 
Density Model (CDM), window averaged Canopy Height Model (CHM), window standard deviation of 
CHM (SD CHM), and Intensity Difference Model (IDM) (Figure 3 and Table 1). In addition, Uninhabited 
Aerial Vehicle Synthetic Aperture Radar data (UAVSAR, courtesy of NASA/JPL-Caltech, Bruce 
Chapman, PI) [53,54] were used as part of the OBIA for the delineation of water. Prior to this study, 
we have been examining other remotely-sensed data of the region. These datasets, besides UAVSAR, 
were not incorporated systematically in the OBIA but were occasionally consulted for the 
examination of vegetation types. These data include Airborne Synthetic Aperture Radar (AIRSAR, 
courtesy of NASA/JPL-Caltech, Bruce Chapman, PI) [55], IKONOS, Landsat 7 and 8, and aerial 
orthophotos produced by the Instituto Geográfico Nacional de Guatemala (IGN). 
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Figure 3. Data used for vegetation classification, showing an area around the Ceibal Park. (a) Canopy 
Density Model (CDM). (b) Window averaged Canopy Height Model (CHM). (c) Window standard 
deviation Canopy Height Model (SD CHM). (d) Intensity Difference Model (IDM). (e) UAVSAR. (f) 
IKONOS. The object based image analysis (OBIA) classification primarily used LiDAR-derived data 
(CDM, CHM, SD CHM, and IDM). The UAVSAR data were used for the delineation of water, and 
IKONOS data were consulted occasionally. 

Table 1. Datasets used for the current and previous studies for the analysis of vegetation in the region. 

Dataset Acquisition 
Horizontal
Resolution 

Coverage Use 

LiDAR-derived Canopy 
Density Model (CDM) 

2015 4 m 441 km2 
OBIA (Classification of dense 

and sparse vegetation) 
LiDAR-derived window 
averaged Canopy Height 

Model (CHM) 
2015 4 m 441 km2 

OBIA (Vegetation classification 
by height) 

LiDAR-derived window 
standard deviation of CHM 

(SD CHM) 
2015 4 m 441 km2 

OBIA (Separation of rainforest 
and secondary vegetation) 

LiDAR-derived Intensity 
Difference Model (IDM) 

2015 4 m 441 km2 
OBIA (Primarily the 

identification of agricultural 
fields) 

LiDAR-derived DEM 2015 0.5 m 460 km2 OBIA (Delineation of wetlands) 
Uninhabited Aerial Vehicle 
Synthetic Aperture Radar 

(UAVSAR) 
2010 6 m 

1637 km2 (439 km2 
of the LiDAR area) 

OBIA (Delineation of water) 

IKONOS 
2006 and 

2007 

4 m (red, green, 
blue, and NIR) and 
1 m (panchromatic) 

104 km2 within the 
LiDAR area 

Previous studies and occasional 
comparison with OBIA 

Orthophotos 2006 0.5 m Entire LiDAR area 
Previous studies and occasional 

comparison with OBIA 
Airborne Synthetic 

Aperture Radar (AIRSAR) 
2004 5 m 

452 km2 (254 km2 
of the LiDAR area) 

Previous studies 

Landsat 7 and 8 
Multiple 

dates 30 m for most bands Entire LiDAR area Previous studies 
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Among the indices used for OBIA, CDM, which represents the density of vegetation above 
ground and is also called Percentage Canopy hit Model (PCM), is most closely related to the 
effectiveness of LiDAR in the detection of ground-level features. CDM (Figure 3a) is given as a ratio 
of above-ground points to all points within a spatial unit of a chosen size. A resultant value of 1 
indicates dense vegetation which no laser pulses penetrated, whereas a value of 0 or close to 0 means 
sparse vegetation or bare earth without vegetation. Although the density of ground points can be 
used for similar purposes [8], CDM provides normalized data better suited for further analysis. To 
calculate CDM, we used ArcMap’s point to raster tool to create a 4 m resolution raster that recorded 
the counts of above ground points and another with the counts of all points. We chose 4 m cell size 
to have statistically sufficient numbers of points. After replacing no-data cells with a value of 0, we 
divided the above ground point raster by the all point raster, using ArcMap’s raster calculator. 

CHM, also called height above ground (HAG), approximates to vegetation height [8,11]. We 
calculated CHM (Figure 3b) by subtracting the value of DEM from that of DSM for each cell, using 
ArcMap’s raster calculator. An advantage of CHM is that it can be intuitively translated to different 
vegetation types, such as high forests and low shrubs. We then created a 4 m resolution CHM raster 
by calculating the average of neighboring 0.5 m cells within a 4 meter window with ArcMap’s 
aggregate function. Thus, cell values of the 4 m CHM raster may be substantially lower than the 
highest points of trees. Outlier values in the DEM and DSM produced outlier values for the CHM 
raster, which could be negative (vegetation below ground level) or significantly larger values than 
the highest vegetation in the study area. The raster nodes with negative values were set to zero, and 
all values larger than 50 m were set to 50 m. Then, to produce the 4 m SD CHM raster (Figure 3c), we 
calculated standard deviations of canopy heights, based on the 4 m CHM raster after the correction 
of outlier values. We assigned to each cell the standard deviation for the values of 29 cells of the 4 m 
CHM raster, using ArcMap’s focal statistics tool with the sample method of 3-cell-radius circle. This 
SD CHM raster reflects canopy surface texture, that is, whether an area contains vegetation of similar 
heights or a mix of tall and short plants. 

Another LiDAR-derived dataset comprises the intensities of laser return pulses, which are 
correlated to land cover types [43,56]. In particular, the low intensities of first returns allow us to 
separate bare or sparsely covered agricultural fields from areas of dense vegetation cover in our study 
area. The intensity of our LiDAR data is multispectral, meaning that each laser return contains 
intensity information at either the 1550, 1064 or 532 nm bands, which with a nuanced processing can 
potentially provide better information for land cover classification than traditional single wavelength 
LiDAR data [31]. However, because of (a) the malfunctioning of a laser source causing laser pulses 
of the 1064 and 532 nm channels to have weaker energy than normal and (b) flight lines flown at 
different PRFs producing varying return intensities, rigorous multispectral intensity analysis was not 
attempted. As a simple yet effective alternative, we created IDM, representing differences between 
the intensities of first returns and last returns [43]. We first created two intensity rasters, by averaging 
the intensities of first returns of all channels within 4 meter cells and those of the last returns of all 
channels. These calculations utilized ArcMap’s point to raster tool with binning interpolation and the 
cell assignment type of average, which filled cells without any point with the averages of values from 
the surrounding cells. Remaining no-data cells were then assigned a value of 0. The final intensity 
data product named IDM (Figure 3d) was produced by subtracting the averaged last return intensity 
raster from the averaged first return intensity raster. Like the case of CHM, outlier values in the point 
cloud data resulted in anomalously large or anomalously small values in IDM (a range of −164 to 263 
with a mean of 0.62 and a standard deviation of 1.81). Cells with values smaller than −15 were set to 
−15, and those with values larger than 15 were set to 15.  

Figure 4 summarizes the workflow of our OBIA vegetation classification. Before this analysis, 
the cell values of CDM, SD CHM, and IDM were scaled in a range from 0 to 50 to be equivalent to 
the CHM values. Although the scaling of data is not necessary for OBIA classification using threshold 
values, it facilitates the intuitive understanding of variation among different data sets. In addition, 
scaled data can be used without additional manipulations in case we decide to conduct supervised 
or unsupervised classification with Erdas Imagine or other programs, for which such data 



Remote Sens. 2017, 9, 563 10 of 27 

 

normalization is recommended. In the OBIA analysis, we first classified bodies of water, using 
UAVSAR data. UAVSAR uses L-band radar (1.26 GHz/0.2379 m with a bandwidth of 80 MHz), and 
its dual-polarized SAR data (polarization of radar waves at transmission and reception) distinguishes 
water clearly even under thin vegetation [57,58]. As indicated by other scholars [59,60], we found the 
HH polarization (horizontal transmit and horizontal receive) the most effective in the discrimination 
of water bodies (Figure 3e). We used a multiresolution segmentation scale value of 30, which 
generally produced a single segment for a small pond. A threshold value of 2 for the UAVSAR 
HHHH product gave the best delineation of water when compared to the orthophotos. Then we 
manually delineated palm plantations, which can be easily identified in the DEM and DSM. The 
automated classification of palm plantations is difficult because they include diverse vegetation 
cover, including palms of different growing stages and dense undergrowth (see Section 3.3). 

For the rest of the area, we created four vegetation height categories, using the CHM: rainforest, 
high secondary vegetation, medium-high secondary vegetation, and low vegetation. For these steps, 
we used a multiresolution segmentation scale value of 10, which generated segments, each of which 
typically included canopies of a few trees in the rainforest. For the classification of the rainforest we 
chose a threshold value of 15 to include most of the Ceibal Park, and an additional use of SD CHM 
with a threshold value of 12 further separated the rainforest from known areas of high secondary 
vegetation. The CHM values for secondary vegetation exhibited continuous distribution from low to 
high, and we separated arbitrarily into high secondary vegetation and medium secondary vegetation 
with a threshold value of 7. We further subdivided each of the rainforest, high secondary vegetation, 
and medium secondary vegetation categories into dense (mostly undisturbed or uncut) and sparse 
(partially cut or disturbed) areas, using CDM. We chose threshold values for these separations at 
breaks in the histograms of CDM.  

Since it was difficult to separate wetland forest from secondary vegetation, we delimited 
wetland areas after separating rainforest. For this, we first delimited the wetland land with a 
threshold value of 115 for the DEM raster because orthophotos, UAVSAR, and Landsat images 
showed that the divisions between wetlands and well-drained terrains were located around this 
elevation throughout our study areas. We then conducted multiresolution segmentation for 
wetlands, using the same scale value of 10 as rainforest and secondary vegetation. We did not conduct 
a ground survey of wetlands, except one location, but the examination of orthophotos, UAVSAR, and 
LiDAR point cloud profiles suggested that a threshold value of 7 for CHM separated high wetland 
forests covering areas that became dry during the dry season from low wetland forests of more moist 
zones. Wetlands with CHM values below 1 appeared to consist of low secondary vegetation and 
wetland grasses. 

Our ground survey of well-drained terrains showed that areas with CHM values below 2 
included agricultural fields (milpas), low secondary vegetation, high grass, and low grass (pasture). 
These areas were segmented with a scale value of 8 because a value of 10 would produce large 
segments, in some cases including different vegetation types. The use of pedestrian survey data for 
the classification of milpas and young secondary vegetation required caution because land use might 
have switched between these types from the time of LiDAR data acquisition in 2015 and the ground 
survey in 2016. It was still clear that most milpas tended to exhibit low IDM values than other land 
cover types. We chose a threshold value of 24 for IDM to separate milpas by examining the IDM 
histogram and by comparing LiDAR data with ground survey results. We divided the remaining 
areas into low secondary vegetation, high grass, and low grass (pasture) through supervised 
classification, using ground-verified areas as references. 

After each step of classification, we merged classified areas and removed isolated small 
segments with eCognition’s minimum mapping unit function, using the following pixel sizes: 21 for 
water, 300 for rainforest and 201 for the rest, 500 for wetland forests, 90 for high secondary vegetation, 
300 for medium secondary vegetation, 63 for milpas and 50 for the rest of low vegetation areas, and 
100 for low secondary vegetation, high grass, and low grass. In addition, after the classification of 
water, we smoothed its edges with a scale value of 2. After all the classifications, we also smoothed 
the edges of classified areas, except water and palm plantations, with a scale value of 30. In the final 
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step, we exported shape files for all vegetation categories from eCognition, which were then used for 
calculating the statistics of LiDAR data and of ground-truthing results by vegetation types with the 
zonal statistics and spatial join tools of ArcMap. 

 
Figure 4. Flow chart of the OBIA vegetation classification steps. 

3. Results 

3.1. Comparison of RRIM with Other Visualization Techniques 

We compared RRIM with other visualization techniques under different conditions. Figure 5 
shows an area of pasture and three year old secondary vegetation, which appears as a strip of rough 
texture. While the high mounds, measuring 3 to 5 m in height, are clearly visible in all images, RRIM 
highlights subtle features better than other techniques. These features include those marked as 
possible structures and walls, measuring 10 to 20 cm in height above the patio areas, as well as a 
modern path. In addition, depressions stand out better in RRIM. The one near the lower right corner, 
for example, measures 1.2 m in depth. We should note that most of subtle features can be identified 
in the other images through careful examination.  
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Figure 5. Comparison of visualization techniques of the LiDAR-derived DEM in pasture and low 
secondary vegetation. (a) Red Relief Image Map (RRIM). (b) Az. 315°/El. 45° hillshade. (c) Hillshade 
PCA. (d) Sky View Factor (SVF). (e) Slope gradient. (f) SVF (gray) and slope gradient (red) overlay. 
(g) Moving-window elevation difference. (h) Archaeological feature plots over RRIM. 

Figure 6 shows an area to the south of Group C in the central part of Ceibal covered by rainforest. 
The advantage of RRIM over other visualization techniques becomes clearer in such an area with a 
lower density of LiDAR ground points, a higher noise level, and the prevalence of small-sized 
structures. The numbers of structures, platforms, and depressions identified in different images of 
this area, as well as those recorded in the Harvard map, are indicated in Table 2. We should note that 
the results of such comparison vary among individuals with different levels of familiarity with 
archaeological features and visualization techniques. In addition, as discussed in Section 2.4 we did 
not conduct time-consuming systematic ground surveys in forested areas. Nevertheless, our research 
results, as discussed in Section 3.3, suggested that our false positive identification rate based 
primarily on RRIM images was 2 out of 62 (3.2%) for rainforest areas. Although it is desirable to verify 
the figures presented in Table 2 in future studies, we believe that these numbers reasonably represent 
the relative effectiveness of different visualization techniques. Most techniques distinguish structures 
higher than 50 cm, platforms, and depressions, but RRIM better highlights smaller structures. Given 
the low false positive identification rate, it is likely that the examination of the RRIM image detected 
some structures missed during the ground survey by Harvard researchers. Structures below 30 cm 
are difficult to identify in SVF and the moving-window elevation difference image, and the detection 
of such features in hillshade images depends on the angle of light. Although depressions can be 
identified in most images, they stand out more clearly in RRIM. In the slope gradient image, such 
concave features may be confused with convex ones (structures). 

These comparisons suggest that RRIM highlights small features better than other techniques in 
various conditions. In addition, a major advantage of RRIM is that with clearer contrasts in color and 
brightness it allows researchers to spot low mounds and other subtle features quickly. For the 
analysis of LiDAR data covering large areas, such efficiency in feature detection is critical. 
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Figure 6. Comparison of visualization techniques of the LiDAR-derived DEM in rainforest. (a) Red 
Relief Image Map (RRIM). (b) Az. 315°/El. 45° hillshade. (c) Hillshade PCA. (d) Sky View Factor (SVF). 
(e) Slope gradient. (f) SVF (gray) and slope gradient (red) overlay. (g) Moving-window elevation 
difference. (h) Archaeological feature plots over slope gradient (structures = red circles; platforms = 
green squares; depressions = blue triangles). A causeway leading to a circular building is visible in all 
images. 

Table 2. Numbers of features identified in different visualizations of the LiDAR-derived DEM. 

Techniques Structures Platforms Depressions 
Harvard map 44 N/A N/A 

RRIM  49 4 8 
Hillshade 46 4 8 

PCA 46 4 8 
SVF 35 3 8 

Slope gradient 45 4 7 
SVF + Slope g. 45 4 8 

Moving-window ED 34 2 8 
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3.2. Vegetation Classification 

The prevalent rainforest taxa in the study area include high evergreen trees (Brosimum alicastrum, 
Ficus spp.), high deciduous trees (Ceiba pentandra, Leguminosae spp.), medium deciduous trees 
(Drypetes brownii, Spondias mombin), and cohune palm (Attalea cohune). The high secondary vegetation 
(12 to 30 years old) is dominated by small to medium cohune palms, deciduous medium-high trees 
(Spondias mombin, Bursera simaruba, Cedrela odorata), and its understory is characterized by young 
cohune palms, other small to medium palms (Chamaedorea tepejilote, Caryota mitis, Sabal morrisiana) 
and small to medium trees (Piper spp., Stemmadenia donnell-smithii). The medium (3 to 15 years old) 
and low (1 to 10 years old) secondary vegetation includes rapid growth small to medium trees 
(Hampea stipitata, Cecropia spp.) and their dense understory is formed mainly by young palms, shrubs 
(Hamelia patens, Piper spp.), herbaceous plants (Heliconiaceae spp., Marantaceae spp., Poaceae spp., 
Asteraceae spp.), and vines (Ipomoea spp.).  

Figure 7 and Table 3 present the results of OBIA vegetation classification, and Figure 8 and Table 
4 their characteristics. Because our resources and time were dedicated primarily to the study of 
archaeological features, we did not collect independent sets of vegetation data for the accuracy 
assessment of the vegetation classification. As noted above, our classification mainly reflects 
vegetation’s effects on LiDAR data, and the resultant types are presented as somewhat inclusive 
categories in relation to the land cover classes observed on the ground. For example, 12 to 15 year old 
secondary vegetation can belong to either “high secondary vegetation” or “medium secondary 
vegetation”. Likewise, “partially cut medium secondary vegetation” can include orchards and 
cohune palm forests. In addition, because of the uncertainty regarding milpas and low secondary 
vegetation at the time of LiDAR data acquisition, dense milpas and thin secondary vegetation less 
than one year old may be misclassified. Despite these qualifications, the resulting classification 
should serve its main purpose, that is, to provide a baseline for the evaluation of land cover’s effects 
on LiDAR data for archaeological feature detection. 

 
Figure 7. The results of the OBIA vegetation classification. Some areas exhibit straight edges because 
they correspond to divisions of land ownerships. 
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A significant number of archaeological features at the center of Ceibal and in its immediate 
surroundings are covered by the thick rainforest canopy. In this vegetation type, undergrowth is 
relatively thin, allowing some laser pulses to penetrate. Nonetheless, the distribution of ground 
points is uneven (Figure 9a). A significant portion of ground returns appear to concentrate in areas 
under thinner leafage, while few laser pulses penetrate thicker parts of foliage. These patches with 
few ground points make the identification of small archaeological features problematic (see Section 
4). High secondary vegetation contains denser lower-level cover, and point cloud profiles show some 
patches with few ground points (Figure 9b). The ground return/laser shot ratio for medium-high 
secondary vegetation is generally higher than that of high secondary vegetation, but denser parts of 
this vegetation type blocked laser pulses or in some cases vegetation returns close to the ground were 
misclassified as ground points (Figure 9c). Particularly problematic cases are low secondary 
vegetation and dense high grass consisting of guinea grass (Panicum maximum cv. Mombasa). Laser 
pulses did not penetrate these vegetation types well, producing mixed ground/vegetation returns 
which were often misclassified as ground points (Figure 9d,e). Thus, the high ground return/laser 
shot ratios for low secondary vegetation and high grass in Table 4 are misleading. They resulted from 
substantial numbers of mixed signal misclassified points. 

 
Figure 8. Examples of vegetation types (photos Nasu, Ranchos, and Pinzón). (a) Northern edge of the 
Ceibal Park with rainforest, pasture, and milpa. (b) Undisturbed rainforest. (c) Uncut high secondary 
vegetation. (d) Partially-cut high secondary vegetation. (e) Uncut medium-high secondary vegetation. 
(f) Partially-cut medium-high secondary vegetation. (g) Low secondary vegetation. (h) High grass. (i) 
Milpa. 
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Table 3. The results of vegetation classification with the basic statistics of the LiDAR-derived data. 

Vegetation Type Note Area (km2) 
CHM (m) 1 STD CHM 1 CDM 1 IDM 1 

Mean S.d. Mean S.d. Mean S.d. Mean S.d. 
Rainforest  23.30 21.56 6.90 18.67 6.30 48.89 1.91 29.88 4.00 

Rainforest partially disturbed  1.88 16.86 6.69 20.11 6.82 46.75 5.10 29.02 4.27 
Secondary vegetation high 12 to 30 years old. Includes disturbed rainforest. 25.11 11.16 5.03 11.99 5.58 47.58 4.53 28.51 3.40 

Secondary vegetation high cut Includes reforested areas. 4.83 9.07 5.26 14.21 7.01 41.20 9.96 26.99 4.79 
Secondary vegetation medium 3 to 15 years old. 26.39 4.25 2.70 6.68 3.43 44.82 6.13 26.94 2.75 

Secondary vegetation medium cut 
Includes reforested areas, orchards, cohune palm forests, and 
settlements with trees. 

21.03 3.10 3.62 9.81 5.59 27.45 12.97 24.37 4.96 

Secondary vegetation low 
1 to 10 years old. Includes very dense vegetation without 
LiDAR penetration and wetland grass. 

31.27 0.87 1.28 2.81 2.90 35.35 9.08 25.40 1.87 

Grass high 
Includes 1 year old recovery vegetation, densely covered 
agricultural fields, and wetland grass. 

50.51 0.41 1.17 2.10 3.17 23.51 8.35 25.42 1.73 

Grass low 
Includes pasture, agricultural fields with low plants, and 
wetland grass. 

172.61 0.37 1.38 2.33 3.86 12.77 8.47 25.55 2.10 

Milpa Includes maize fields and open grounds. 6.73 0.72 1.30 2.60 3.43 24.06 8.88 21.42 3.95 
Palm plantation  10.67 0.47 1.48 1.60 3.16 22.74 11.05 25.77 1.44 

Wetland forest high  17.02 8.86 3.76 9.17 4.74 47.45 3.78 27.72 2.47 
Wetland forest low  43.82 4.09 2.87 6.20 3.60 44.29 8.38 26.29 2.09 

Water  6.16 0.62 2.27 2.69 5.48 7.36 14.38 25.43 1.02 
1 The mean and standard deviation (S.d.) for each data category are calculated for the values of 4 m raster cells belonging to the category after the removal of anomalous 
values and the normalization to the 0–50 range. 
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Table 4. LiDAR canopy penetration statistics by vegetation type. 

Area Shots/m2 Return/m2 Ground 
Return/m2 

Returns/Shot Ground 
Return/Shot 

Ground 
Return/Return 

Vegetation Type 
Areas without test flights       
Rainforest 17.04 26.34 0.56 1.55 3.3% 2.1% 
Rainforest partially disturbed 17.35 27.49 1.64 1.58 9.4% 6.0% 
Secondary vegetation high 15.87 23.34 1.09 1.47 6.9% 4.7% 
Secondary vegetation high cut 15.94 24.07 3.91 1.51 24.5% 16.2% 
Secondary vegetation medium 16.98 23.06 2.35 1.36 13.9% 10.2% 
Secondary vegetation medium cut 17.47 22.20 8.87 1.27 50.8% 40.0% 
Secondary vegetation low 18.83 20.58 5.83 1.09 30.9% 28.3% 
Grass high 19.47 19.99 10.10 1.03 51.9% 50.5% 
Grass low 18.21 18.37 12.79 1.01 70.2% 69.6% 
Milpa 19.06 23.06 11.14 1.21 58.4% 48.3% 
Palm plantation 17.99 18.58 8.67 1.03 48.2% 46.6% 
Wetland forest high 17.61 24.43 1.19 1.39 6.8% 4.9% 
Wetland forest low 17.59 21.78 2.19 1.24 12.4% 10.0% 
Areas with test flights       
Rainforest 68.58 126.23 2.84 1.84 4.1% 2.3% 
Rainforest partially disturbed 72.13 134.17 8.02 1.86 11.1% 6.0% 
Secondary vegetation high 61.80 104.78 7.12 1.70 11.5% 6.8% 
Secondary vegetation high cut 56.87 109.93 19.49 1.93 34.3% 17.7% 
Secondary vegetation medium cut 51.84 61.93 27.62 1.19 53.3% 44.6% 
Secondary vegetation low 67.45 71.85 19.55 1.07 29.0% 27.2% 
Grass high 62.52 68.76 35.26 1.10 56.4% 51.3% 
Grass low 64.37 68.41 42.48 1.06 66.0% 62.1% 
Milpa 58.87 76.67 27.17 1.30 46.2% 35.4% 
Wetland forest high 68.45 104.12 3.62 1.52 5.3% 3.5% 
Wetland forest low 70.17 88.19 7.30 1.26 10.4% 8.3% 
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Figure 9. Point cloud profiles of different vegetation types (Orange = ground points; green = 
vegetation points; grid in meters). (a) Undisturbed rainforest. (b) Uncut high secondary vegetation. 
(c) Uncut medium-high secondary vegetation. (d) Dense low secondary vegetation. (e) Dense high 
grass. 

3.3. Assessment of Archaeological Features Detection in LiDAR Data 

In the central part of Ceibal completely mapped by the Harvard project, we could identify nearly 
all previously mapped structures. We judged that three small structures in the Harvard map were 
probably not archaeological features, and recorded 24 “structures/platforms” and 88 “possible 
structures/platforms” that were not on the Harvard map (Figure 10). For the reason discussed above, 
we did not ground-truth these features in the 2016 season. Nonetheless, we think that there is a 
reasonable possibility that many of the features registered as “structures/platforms” are 
archaeological remains, based on the results of our ground-truthing outside of the Harvard map 
(Table 5). Our pedestrian survey confirmed that more than 90% of locations registered as “structures” 
in various vegetation types were indeed archaeological features (false positive rates lower than 10%), 
whereas the rate of positive confirmation for those recorded as “possible structures” ranged from 40 
to 100% in most cases.  
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Figure 10. LiDAR data of a forested area in a northern sector of Group C of Ceibal. (a) Red Relief 
Image Map (RRIM). (b) Az. 315°/El. 45° hillshade with an overlay of the Harvard map; circles and 
squares indicate structures and possible structures that are not in the Harvard map. (c) Elevation 
profile of structures and terrain with vertical exaggeration. 

Our ground survey also identified additional structures that were not recorded in the LiDAR 
analysis (“Field IDed” in Table 5). For the most part these features were small in horizontal 
dimensions (around 10 m or less in length) and in vertical relief (around 30 cm or less in height). The 
ratios of such false negative identifications were relatively high for rainforest and uncut high 
secondary vegetation while those for partially cut secondary vegetation and low grass were lower 
(Table 5). In rainforest and uncut high secondary vegetation, the low rates of laser penetration and 
the patches with few ground points were most likely responsible for the higher number of missed 
small features in these areas (see Section 4). LiDAR-based identification of archaeological features is 
more reliable for partially cut secondary vegetation with higher canopy penetration rates (Tables 4 
and 5). The low numbers of missed structures for medium-high and low secondary vegetation, 
however, are probably misleading. Thorough ground survey of these areas would require substantial 
clearing of vegetation, but permission for clearing was difficult to obtain. Various scholars have 
pointed out the reduced effectiveness of LiDAR for dense and short secondary vegetation [12,30], 
and we assume that more detailed ground surveys of these areas in the future will reveal a 
considerable number of structures not present in the interpolated LiDAR data.  

For bare fields and areas with low grasses or pastures, LiDAR provided high-resolution data 
that allowed us to identify many of subtle features. Our field investigations demonstrated that the 
vertically precision of LiDAR better than 2 cm allowed us to identify cultural features measuring 10 
to 20 cm in height in ideal conditions. These low structures commonly consisted of one course of 10 
to 30 cm high stones that were partially buried in the ground. For example, Structure E shown in 
Figure 11c,d were 20 cm higher than the patio area, and Structure F (also seen in the foreground of 
Figure 11b) were 10 cm higher. Calibration errors of LiDAR resulted in vertical discrepancies of 2 to 
8 cm between different flight paths, which is seen as east-west stripes in DEM visualizations (Figure 
11c) and subtle undulations in north-south elevation profiles (Figure 11d bottom). Although 
Structures E and F were still identifiable, these errors made the detection of features lower than 10 
cm nearly impossible. The configurations of structure groups, often surrounding a patio, also aided 
the identification of low buildings. Since the Maya nearly always built structures in elevated locations 
for better drainage, the back sides of these buildings usually formed downslopes. Structure D, for 
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instance, did not show recognizable difference in elevation from the patio area (Figure 11d), but its 
well-defined edges on its back and lateral sides facilitated its detection. Nonetheless, when the edge 
of a structure and that of the underlying platform coincided or when structures were located on 
slopes, some misidentifications occurred (Structure A in Figure 11c,d). When low structures did not 
exhibit regular configurations of patio groups, their identifications were more difficult. 

Table 5. Ground-truthing results. 

Area 
LiDAR Analysis Ground-Truthing 1 Accuracy 1 

Identification Count 
Tar. Pos.

Dis. 
Field Det. Fal. Fal.

Ver. Ver. IDed Acc. Pos. Neg.
Vegetation Type   
Areas without test flights (low point density)               
Rainforest Structure 950 49 48 1 22 69% 1% 31% 
 Possible str. 717 6 6   100% 0% 0% 
Rainforest partially disturbed Structure 27 10 9 1 3 75% 8% 25% 
 Possible str. 30        
Secondary vegetation high Structure 440 41 39 2 17 70% 4% 30% 
 Possible str. 281 5 3 2  100% 67% 0% 
Secondary vegetation high cut Structure 97 13 13  3 81% 0% 19% 
 Possible str. 50 6 6   100% 0% 0% 
Secondary vegetation medium Structure 171 10 10   100% 0% 0% 
 Possible str. 156        
Secondary vegetation medium cut Structure 608 67 62 5 10 86% 7% 14% 
 Possible str. 263 11 5 6  100% 120% 0% 
Secondary vegetation low Structure 227 24 24   100% 0% 0% 
 Possible str. 215 2 2   100% 0% 0% 
Grass high Structure 629 40 40  13 75% 0% 25% 
 Possible str. 303 9 6 3  100% 50% 0% 
Grass low Structure 5336 519 497 22 88 85% 4% 15% 
 Possible str. 1878 72 46 26  100% 57% 0% 
Milpa Structure 493 20 20  7 74% 0% 26% 
 Possible str. 181 2 2   100% 0% 0% 
Palm plantation Structure 157        
 Possible str. 142        
Wetland forest high Structure 0        
 Possible str. 0        
Wetland forest low Structure 0        
 Possible str. 2        
Outside the classified area Structure 573 7 7  7 50% 0% 50% 
 Possible str. 155 1 1   100% 0% 0% 
Areas with test flights (high point density)        
Rainforest Structure 407 13 12 1 2 86% 7% 14% 
 Possible str. 154 1 1   100% 0% 0% 
Rainforest partially disturbed Structure 18 1 1   100% 0% 0% 
Secondary vegetation high Structure 14 9 9   100% 0% 0% 
Secondary vegetation medium cut Structure 6 5 5   100% 0% 0% 
 Possible str. 1        
Secondary vegetation low Structure 5 4 4   100% 0% 0% 
 Possible str. 2        
Grass high Structure 28 21 21   100% 0% 0% 
 Possible str. 3        
Grass low Structure 12 5 4 1 1 80% 20% 20% 
Milpa Structure 10 8 8  2 80% 0% 20% 
  Possible str. 5        

1 Tar. ver. = Features identified in the LiDAR data and targeted for ground verification. Pos. ver. = 
Positively verified. Dis. = Discarded (not structures). Field IDed = features not detected in LiDAR data 
but identified in the field. Det. acc. = Detection accuracy (Pos. ver./[Pos. ver. + Field IDed]). Fal. pos. = 
False positive rate (Dis./[Pos. ver. + Field IDed]). Fal. neg. = False negative rate (Field IDed/[Pos. ver. 
+ Field IDed]). 
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Figure 11. LiDAR data of a pasture. (a) RRIM showing groups of structures. (b) View of the groups 
from south (photo Ranchos). (c) Archaeological feature plots over a Az. 315°/El. 45° hillshade. (d) 
Elevation profiles of structures with vertical exaggeration. 

Oil palm (Elaeis guineensis) plantations, which have spread in our study area in the last decade, 
pose a significant challenge. Point cloud profiles indicate that laser pulses penetrate leaves of palm 
trees planted at regular intervals of 9 to 10 m and sparse undergrowth below them, but they are 
blocked by extremely dense undergrowth of about 1.5 m high which covers the ground between palm 
trees (Figure 12). Under such conditions, LiDAR-derived DEMs give honeycomb-like appearances. 
We could not ground-truth these plantations because permission for entrance was not given. 
Nonetheless, the examination of point clouds suggests that the identification of structures lower than 
1 m is difficult in those areas. 

 
Figure 12. LiDAR data of an oil palm plantation. (a) RRIM showing a probable group of structures. 
(b) View of an oil palm plantation (not the same area) (photo Nasu). (c) Point cloud profile showing 
palm trees and probable structures (Orange = ground points; green = vegetation points). 
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4. Discussion 

The effectiveness of RRIM in archaeological studies derives from its clear visualization of both 
small and large topographic reliefs, using gradations in colors and brightness. This technique also 
retains relatively natural appearances of topography, facilitating the identification of cultural and 
natural features of diverse morphologies, including structures, platforms, walls, terraces, roads, 
canals, and depressions. SVF images overlaid with slope gradient produce somewhat similar effects 
(Figures 5f and 6f). However, SVF usually generates close values for convex points and flat areas 
although it provides distinct values for concave points. This is probably the reason that Hutson [11] 
found SVF less effective than color-classified DEMs for the identification of low platforms in the flat 
terrain of northern Yucatan. An advantage of RRIM over SVF is that its use of positive and negative 
openness, as well as its visualization through brightness rather than gray scale, leads to clearer 
distinctions between concave points, flat areas, and convex points. In addition, our comparison 
suggests that RRIM distinguishes small features better than SVF in areas covered by dense forests 
(Figure 6 and Table 2). RRIM has been used in geosciences [61–63], but its archaeological application 
outside of Japan has been limited, except for investigations at Angkor Tom, Cambodia [64]. As a 
product of mathematical operations, RRIM, as well as SVF, facilitates feature detection through the 
exaggeration of vertical differences and convexities, but these effects can also lead to 
misunderstandings of features’ shapes. For this reason, it is often desirable to compare RRIM with 
regular hillshade images, in which humans can intuitively understand the shapes of reliefs. In 
particular, RRIM tends to highlight the edges of platforms and terraces with flat summits. We often 
needed to inspect hillshades and elevation profiles to examine the presence or absence of low 
structures along the edges of platforms and terraces.  

This study also demonstrates that the OBIA approach to vegetation classification is effective in 
evaluating the effects of vegetation types on LiDAR data. Our ground-truthing of archaeological 
features shows that there tends to be more errors in the detection of archaeological features in land 
cover types that block more laser pulses (Tables 4 and 5). In this sense, our classification of vegetation 
serves its main purposes of providing a baseline for the evaluation of LiDAR data for archaeological 
applications. Nonetheless, we should note that other ways of vegetation classification are also 
possible. Examples may include classifications of a larger number of secondary growth types and the 
distinction of intentionally managed forests and orchards from naturally-grown secondary 
vegetation. An additional issue to consider is that the category of partially cut high secondary 
vegetation in our classification tends to have higher trees than uncut high secondary vegetation, and 
the same is true for partially cut medium-high secondary vegetation and uncut medium-high 
secondary vegetation (Figure 8). This is because partially cut forests with some open parts often result 
in lower average values in the 4 m CHM raster. An alternative approach in this regard is to use the 
maximum values, instead of the averages that we used, for 4 m windows in generating a CHM raster.  

In terms of vegetation’s effects on LiDAR data and the identification of archaeological features, 
a significant problem is posed by dense and low secondary vegetation, which blocks substantial part 
of laser pulses and can produce mixed ground-vegetation returns, leading to misrepresentations of 
the terrain. Oil palm plantations add to this problem. These plantations are rapidly expanding in 
Guatemala and in other parts of the tropics in the world. The mix of regularly planted palm trees and 
extremely dense undergrowth makes the detection of small archaeological features in LiDAR data 
difficult. The development of palm plantations often involves the construction of substantial canals 
with heavy machineries, which may destroy archaeological remains. It is desirable to conduct 
archaeological and environmental studies in areas of planned palm plantations prior to their 
development to assess their impacts. 

Another important issue concerns different types of rainforest. The Maya lowlands comprise 
diverse vegetation types, including high and dense rainforest with high precipitation around Ceibal, 
less dense rainforest in the central lowlands, and deciduous scrub in the northern areas. The ground 
return/laser shot ratios of 3.3 to 4.1% for rainforest in our dataset (Table 4) are significantly lower than 
those in Yaxnohcah, Calakmul, Mayapan, and Cansahcab in the central and northern Maya lowlands, 
ranging from 9.4 to 37.0% [30]. Although those figures taken with different equipment and in 
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different configurations are not directly comparable, the low ratios for Ceibal accord with our 
expectations for the dense rainforest coverage in our study area. Our LiDAR data still detect small 
archaeological features under the rainforest canopy reasonably well, but there are also considerable 
numbers of small structures that were not identified in the LiDAR data but found during the 
pedestrian survey (false negative identifications).  

Our study suggests that an important factor contributing to the high false negative rates in the 
rainforest and high secondary vegetation is the presence of patches with no or few ground points, 
possibly caused by particularly dense parts of foliage. We could not confirm whether false negative 
locations indeed correspond to such areas of no ground points because the thick canopy also blocked 
GPS signals, making it difficult to plot field identified features accurately. We, however, suspect that 
the effects of these occluded areas are significant because some patches without any ground point 
measure up to 20 × 20 m (Figure 13). Archaeological features smaller than this size can go undetected 
in LiDAR data, and the shapes of larger structures can be misinterpreted. In the areas where multiple 
test flights produced denser distributions of laser shots, the false negative rates for rainforest and 
uncut secondary vegetation are lower (Table 5). The higher density of laser shots, as well as the 
increased penetration resulted possibly from lower flying altitudes, appears to mitigate this problem 
to a certain degree. Nonetheless, a substantial portion of ground returns still appear to concentrate in 
areas under thinner leafage (Figure 13). Certain occluded regions might not be accurately mapped 
despite firing higher numbers of laser shots. In this sense, although a higher number of laser shots 
enhance results, their benefits may gradually diminishes in terms of cost-effectiveness as the number 
of laser shots increases. 

 
Figure 13. 1 m raster indicating the counts of ground points/m2 for a northwestern sector of the Ceibal 
Park with rainforest and a close-up of an area. Areas along the upper and left edges of the left image 
are outside the park limits and include pastures, milpas, and low secondary vegetation. Note 
significant patches with no ground point in the regular flight area. In the area of test flights, occluded 
regions are smaller but still present. 

These observations indicate that the successful identification of small archaeological features 
depends not only on average densities of ground returns but also on evenness in the distribution of 
ground points. Examining the frequencies and sizes of occluded regions in the rainforests of other 
parts of the Maya lowlands may represent an effective research strategy. Such data should help 
design cost-effective LiDAR data acquisition strategies in regions of similar ecological settings and 
allow researchers to estimate the sizes of archaeological features that may go undetected in LiDAR 
data. Geiger-mode LiDAR, which emit laser pulses at varying angles, may reduce occluded regions 
as laser pulses shot at certain angles may illuminate parts of ground that are not reached by pulses 
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from different angles. In addition, photon-counting LiDAR, which may record weak ground returns, 
also presents an important potential in this regard. Nonetheless, their effectiveness needs to be tested 
in future research. 

5. Conclusions 

As noted by various scholars, vegetation classification is an important step for the evaluation of 
LiDAR data for the detection of ground-level features. The OBIA classification using LiDAR-derived 
datasets, combined with a ground vegetation survey, presents a productive approach, which allows 
researchers to generate LiDAR-related statistics for the entire study area efficiently. The methods of 
vegetation classification developed in forestry and ecology provide an important basis for this study, 
but the specific goal of vegetation classification in archaeological applications is different from those 
in forestry or ecology. Instead of aiming at classifications that best reflect biological or ecological ones, 
vegetation classifications in archaeological studies need to focus on the purpose of examining 
vegetation’s effects on LiDAR data. As archaeologists dedicate a significant part of their resources 
and time into the investigations of archaeological remains, they need to develop efficient, yet 
reasonable methods to classify vegetation that reflect the ways vegetation blocks and reflects laser 
pulses.  

For the visualization of LiDAR data, RRIM presents an effective method for the identification of 
subtle cultural and natural features. While many visualization techniques work reasonably well in 
the detection of structures larger than 50 cm in height in near ideal conditions, RRIM is particularly 
effective in highlighting smaller features covered by dense rainforest canopy. In addition, with clear 
differentiations of concave and convex points with different colors, RRIM allows researchers to spot 
small features quickly. The use of RRIM allowed us to examine archaeological features rapidly over 
a wide area. Nonetheless, combinations of different visualization techniques are desirable, depending 
on the types of local topography and the morphologies of targeted features. 

Our study suggests that LiDAR detects nearly all structures higher than 1.5 m under most 
conditions and a significant portion of structures higher than 0.3 m in optimal settings. Nonetheless, 
the dense rainforest in this high precipitation region, as well as thick, low to medium-low secondary 
vegetation and palm plantations, presents problems for the identification of small features. For the 
rainforest, higher densities of laser shots appear to improve feature identification, but do not 
eliminate the problem of patches with few ground returns, possibly caused by the thickest parts of 
foliage. 
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