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Abstract: Doppler LiDARs have become flexible and versatile remote sensing devices for wind 
energy applications. The possibility to measure radial wind speed components contemporaneously 
at multiple distances is an advantage with respect to meteorological masts. However, these 
measurements must be filtered due to the measurement geometry, hard targets and atmospheric 
conditions. To ensure a maximum data availability while producing low measurement errors, we 
introduce a dynamic data filter approach that conditionally decouples the dependency of data 
availability with increasing range. The new filter approach is based on the assumption of self-
similarity, that has not been used so far for LiDAR data filtering. We tested the accuracy of the 
dynamic data filter approach together with other commonly used filter approaches, from research 
and industry applications. This has been done with data from a long-range pulsed LiDAR installed 
at the offshore wind farm ‘alpha ventus’. There, an ultrasonic anemometer located approximately 
2.8 km from the LiDAR was used as reference. The analysis of around 1.5 weeks of data shows, that 
the error of mean radial velocity can be minimised for wake and free stream conditions. 

Keywords: data density; spatial normalisation; temporal normalisation; carrier-to-noise-ratio; line-
of-sight velocity; radial velocity; threshold filter 

 

1. Introduction 

The basis of any empirical work, whether in the commercial or scientific context, is data that 
have been acquired through a measurement process. Recording measurement data needs a carefully 
planned measurement campaign, the selection of suitable instruments with sufficient resolution for 
the desired purpose and an adequate measurement period. In recent years, the scanning aerosol 
heterodyne Doppler LiDAR—hereafter LiDAR—has become a standard device when flexible, 
versatile measurements are needed that go beyond standard point measurements in the wind energy 
sector [1–6]. Due to the measurement method of pulsed devices, it is possible to capture a plurality 
of quasi-instantaneously measurements along the laser beam. The internal processing of the raw 
measurement data in commercial LiDAR systems can mainly be seen as a black box for standard 
users. Although the general principle is known [7], manufacturers tend not to publish their exact 
processing algorithms. Invalid measurement data are occurring due to device-dependent reasons, 
measuring-dependent influences such as hard targets, measurements outside of the permissible 
parameter range and those appearing for unknown reasons. Once the measurements are conducted, 
it is no longer possible to determine whether physical or technical reasons formed the source of errors 
[8]. Thus, seemingly random outliers can arise despite good measuring conditions. Independently of 
the objective of analysis, it is necessary to filter valid from invalid measurements to produce accurate 
results. 
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While the primary measurement value is the radial speed, the LiDAR devices measure the 
backscattering intensity as a secondary value. Based on the manufacture, the backscattering is 
calculated as carrier-to-noise-ratio (CNR), respectively signal-to-noise-ratio (SNR), that can be 
interpreted as a quality indicator for the calculation of the radial speed from the spectral raw data. 
Frehlich [9] state that the accuracy of the radial velocity determination decreases with decreasing 
mean CNR level. While this conclusion from Frehlich represent a stochastic statement, this does not 
imply that individual measurement points with low CNR values must be inaccurate or invalid. 

Our experiences with LiDAR data show that the CNR baseline is a critical criterion. LiDAR 
measurements carried out after rain are characterised by low CNR values whereas measurements 
tend to have increased backscattering in foggy situations because of temporal and spatial variations 
of the aerosol concentration. Pal et al. [10,11] state that the aerosol transport and distribution depend 
on the atmospheric boundary layer (ABL). In combination with local environmental influences, the 
aerosol distribution varies on timescales in the magnitude from seconds to months and thus 
represents an influence which justifies the need for an adaptive filtering.  

The most common method for filtering LiDAR data is the fixed CNR-threshold filtering based 
on recommended values [12–14]. Due to the simplicity and the establishment of common filtering 
methods, there have been very few studies dealing with the effects of LiDAR filtering to date. The 
first critical examination of the influence of CNR-filtering on wind speed distributions was presented 
by Gryning et al. [15]. From Gryning et al. [15] and Pal et al. [10,11], we interpret that LiDAR data 
filtering based on a rigid CNR-threshold can lead to inaccurate velocity determination. For quality 
assurance of the measurement data, a variety of filters may be combined to obtain an outlier free data 
set [16,17]. Although many of the filters that Newman et al. [16] and Wang et al. [17] used, are 
designed, not explicitly for stationary measurements, but are applied point-wise, the question arises 
how smaller amount of data (for a point in space) influences the filtering in case of non-stationarity. 
While combinations of filters seem to be a promising approach, their application can mainly be found 
in scientific related work. Meyer Forsting et al. [18] investigated the adaption of a despiking method 
from stationary to scanning situations and thus took an important step towards the filtering of 
scanned LiDAR measurements. Nevertheless, those methods were not specifically designed for an 
application in LiDAR remote sensing and represent more or less a best practice for general time series 
processing. Despite these occasional studies, LiDAR data filtering and addressing their impact 
remain a vacant topic. 

Each filter discussed in the following of this paper is based on an assumption to distinguish the 
validity. Namely, the CNR-threshold filter is based on the accuracy of the radial velocity with respect 
to the CNR, the interquartile-range filter is based on the data distribution and the standard deviation 
filters on the assumption of normal distribution. All these assumptions, however, do not rely on 
factors which affect specifically LiDAR measurements. Atmospheric conditions, but also location-
specific incidents such as hard targets, terrain topography or measurement properties such as the 
trajectory, magnitude of measurement velocity, pulse length and accumulation time influence the 
data distribution and thereby the filter approach. In consequence, it seems logical to pre-filter 
measurement data on the basis of purpose. For example, velocity azimuth display (VAD) or Doppler 
beam swinging (DBS) measurements, which are designed for the calculation of wind speed and wind 
direction distributions easily exceed the mixing layer height and measure above the ABL. With the 
knowledge of a significant CNR drop at a certain height, an effective filter approach needs to behave 
different than a filter for stationary measurement over a constant height. 

With the increase of LiDAR devices for research applications and in the future for a stronger 
commercial use, the amount of data will exceed the capacities of manual verification of 
processing/filtering results and lead to the need of robust, accurate and highly adaptable routines. 
Because the measurement conditions differ with each device, location and time, it seems sensible and 
necessary to filter LiDAR data in a dynamically adaptive way to ensure high data availability and 
accuracy of the data set. The simultaneous use of different filter combinations is limited by the 
available computational power; thus, universal filters are favoured. 
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While within combined filter approaches methods are applied successively we believe that all 
measurements outputs may and should be used in a multi-variate manner to satisfy their specific 
behaviour to determine the measurement data validity. One assumption, we find that adapt to 
atmospheric and external influences is the self-similarity of the measurement data. To the best of our 
knowledge, this approach has not been used so far to filter LiDAR data, wherefore we explain this 
assumption, the advantages and disadvantages in the following of this work. 

We introduce a highly self-adapting methodology that demonstrate how line-of-sight velocity 
measurements of pulsed long-range LiDAR devices can be filtered dynamically to maximise accuracy 
and data availability of mean radial velocities. The filter approach is designed for determining the 
mean velocity, and may not be appropriate for turbulence measurement applications. Further, we 
show that it is possible to decouple the commonly associated data availability of valid measurement 
data with increasing distances on the assumption of self-similarity using a temporal and spatial 
normalisation. A validation of the new filter approach based on temporal high resolved, low elevated 
Leosphere Windcube 200s data in the range of 2864 m has been carried out against ultrasonic 
anemometer data captured at an offshore meteorological mast in comparison to commonly 
established and research filters. 

2. Methodology 

In the handling with LiDAR data, we have difficulties to use filters that consider prevailing 
measurement influences. While the assumption of the LiDAR data behaviour included in every 
LiDAR data filter may appear to be uncritical for some applications, it seems paradox to filter this 
data for scientific studies investigating this behaviour. In order to filter LiDAR data in an adaptive 
dynamic way, we developed two methodologies based on the same approach to identify valid and 
invalid measurement points in an adaptive, dynamic way. Below, these filters are described along 
other filters found in the literature. 

 
(a) (b)

Figure 1. Example of a staring mode LiDAR measurement in the – 	diagram for a duration of 30 
min in distances in the range of 361 m to 2911 m. (a) Blue points represent single measurements points, 
the red horizontal line indicates the lower CNR-threshold of −24 dB. (b) Visualisation of data density 
of measurement point distribution. Colours indicate different values of frequency distribution. 

2.1. Threshold Filter 

The CNR and SNR, , are quality indicators of the measurement and extend the data 
examination from only radial wind speed to two dimensions. Looking at individual measurement 
points in the radial-speed–carrier-to-noise-ratio diagram ( – –diagram) in Figure 1a, a correlation 
of CNR values and validity can be found. It can be seen that data points below the red line indicating 
a –24 dB level have high deviations in the range of –32 m/s to 32 m/s wind speed, thus, we assume 
that the points are invalid. The high scattering in this region may be caused by the LiDAR internal 
peak-fitting-algorithm of the frequency spectrum when there is no significant peak within the 
background noise. This results in a multimodal data distribution scattered around =	0 m/s 
forming a comb shape. From this comb-shaped distribution the assumption arises that the peak-
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fitting-algorithm is not a homogenous process but is more attracted by certain frequencies, leading 
to a detectable accumulation at corresponding wind speeds.  

While we assume that high data-density regions (HDDR) contain valid measurement points by 
the assumption of self-similarity and comparing means with the ultrasonic anemometer velocity 
measurements, here indicated by yellow and green regions in Figure 1b, we think that there is no 
indication based on the measurement distribution that data belonging to HDDR below a lower CNR 
limit, here =	–24 dB, is invalid (Figure 1a). 

Main challenge of LiDAR data filters is the distinction of valid data from overlaid invalid 
scattered data. Outliers could have a real physical meaning, however, they may fall far away from 
the HDDR. 

The threshold filter is commonly applied on CNR values of a data set. Data points beyond a 
certain range, will be filtered out. The low end edge, , indicates the level of signal gain where it is 
assumed that no information can be extracted anymore, while the upper edge, , filters out hard 
targets with high backscattering. ≤ ≤  (1)

where  represents CNR values of a valid measurement points. Depending on the manufacturer, the 
recommended  and  vary.  

2.2. Static Standard Deviation Filter 

One way of filtering wind speed data, when there is no secondary information such as signal 
quality or process quality indication, is the application of a standard deviation filter. Looking at the 
radial speed, all data with a higher scattering around the average radial speed, , than defined by a 
standard deviation depending tolerance will be filtered out. − ⋅ ≤ ≤ ⋅ +  (2)

where  is the radial speed of a measurement point and  is a multiplier of the standard deviation 
. In a data set, outliers can be eliminated with the right choice of	 . With the unsuspectingness of 

the measurement quality and existence of outliers, the -sigma interval may lead to a detectable data 
loss. The influence of different averaging times of  is discussed in Section 4. 

2.3. Iterative Standard Deviation Filter 

The static standard deviation filter has low computational requirements; thus, it may be applied 
with multiple parametrisation at the same time. In contrast, the iterative standard deviation approach 
from Højstrup [19], adapted by Vickers & Mahrt [8] has higher computational costs due to a two 
looped application.  

The standard deviation within a point-wise moving temporal interval is calculated. A 
measurement point is considered to be an outlier if the value exceeds the range of more than 3.5 
standard deviations within the interval. The point is replaced by a linear interpolation. Outliers will 
not be replenished if four or more consecutive values are detected. This procedure is repeated until 
no outliers can be found. With each iteration the standard deviation factor will be increased by 0.1. 

Appling both types of standard deviation filters imply the assumption of a Gaussian distributed 
filtering signal.  

2.4. Interquartile-Range Filter 

The interquartile filter or box plot filter descripted by Hoaglin et al. [20] is not based on a specific 
data distribution. For filtering, the interquartile-range (IQR) is calculated and will be subtracted to 
the first and added to the third quartiles. It is a threshold filter based on statistical dispersion. We 
used the following common parametrisation for valid measurement points : 

, − 1.5 ≤ ≤ 1.5 + ,  (3)

where ,  is the first quartile, ,  is the third quartile and IQR is the interquartile range.  
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2.5. Combined Filter—Newman  

A combined filter approach of LiDAR data can be found in the work of Newman et al. [16]. They 
applied a consecutive CNR-threshold filter and an iterative standard deviation filter described in 
Section 2.3 as quality control. 

2.6. Combined Filter—Wang 

As a second combined filter approach, we would like to mention the quality control of radial 
speed from Wang et al. [17]. In the original research, a CNR-threshold filter was applied to the data 
set before filtering with the interquartile-range filter from Section 2.4. As a third control body, all 
absolute radial wind speed differences smaller than two IQR of the deviations are marked as valid. |∆ | < 2 ∆  (4)

2.7. Dynamic Data Filtering 

The main assumption of the newly proposed filter approach is based on the self-similarity of a 
measurement at a point in space. Assuming that the technical integrity of the measuring system is 
given and the measurement parameters are chosen well, we consider that repetitive measurements—
stared or scanned—will not change their behaviour in an unpredictable way in a defined time 
interval. 

In an idealised theoretical experiment without atmospheric and error influence a single point 
would appear in the –  diagram for a steady flow. Taking into account the distance dependency 
of  adds vertical scattering, while temporal fluctuations of  causes horizontal scattering. In 
reality individual measurements of  and  fluctuate around mean values, which depend on the 
chosen time interval. Valid measurement points are closer to these mean values, while outliers are 
characterised by a greater distance. This changes the density of the –  data distribution.  

In general, it can be said that well parameterised measurements form valid HDDR, which may 
be overlaid by invalid data. In order to distinguish between those, the dynamic filtering approach is 
based on two subsequent process steps, temporal & spatial normalisation and data-density 
calculation. Two different implementations of the density calculation are presented and described in 
the following sub-sections. 

 

Figure 2. Visualisation of segmentation of the overall filtering time interval ∆  in normalisation 
intervals ∆ . 

2.7.1. Normalisation 

The intention of normalisation is to bring the measurement data to a relative frame of reference 
to reduce the absolute differences due to time and space. The effect is a compression of the data-
density distribution. Considering the spatial and temporal dependency of the measurement values 

 and  we apply a corresponding normalisation. The definition of the normalisation time interval ∆  can be seen in Figure 2.  
The overall filtering time interval is defined as ∆ =  – , whereas the normalisations 

interval is set as ∆ =  – . Thus, =	 , =	  and >	 . For each measurement  

∆  

 
∆  

 … … 
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and , ∈ 	 1, . . . , 		 ,	within one time interval  and distance , we define the normalised values 
 and : = −  (5)

and  = −  (6)

The calculation of 		  and 		  is based on a one-dimensional Gaussian kernel, which may be 
expressed as  

		 = argmax 1	 12 ( ) ( )( ) 	  (7)

and  

		 = argmax 1	 12 ( ) ( ) 	  (8)

where 		  is the amount of measurements within the time interval from  to  in the distance . 
The calculation of the bandwidth  and  follows the work of Botev [21]. Thus, each 
measurement value has been normalised individually based on their distance  and time instant .  

 
Figure 3. Example of data-density distribution of a 30-min time interval of LiDAR staring mode 
measurements in the original 	 –  frames of reference. Iso-lines show levels of probability of 
occurrence of the measurement with in a bin of 0.32 m/s width and 0.2 dB height. 

In the following, we consider individually normalised values  and  in the entire time 
period  with ∈ 	 1, . . , 	 , where 	  is the amount of measurements point in the time interval ∆ . 

The effect of normalisation can be seen by comparing Figures 3 and 4. Both are based on the 
same dataset extracted from the measurement campaign descripted in Section 3.1 and represent an 
example of ∆ = 30 min. Changes of wind speed within this time interval leads to a change of radial 
velocities, resulting in three HDDR located at different radial speed values (Figure 3). The distance 
dependency of the CNR causes an additional expansion of the data distribution on the	 -axis.  
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Applying the normalisation means switching the reference frame from 	 –  to – . This 
compensates spatial and temporal inhomogeneities and results in a denser data distribution where 
outliers can be identified with less effort. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4. Visualisation of different normalisation times ∆  of the LiDAR data distribution in the 
normalised frame of reference (a) ∆ = 0.5	s, (b) ∆ = 1	s, (c) ∆ = 5	s, (d) ∆ = 15	s, (e) ∆ = 30	s, 
(f) ∆ = 60	s, (g) ∆ = 120	s, (h) ∆ = 300	s, (i) ∆ = 600	s. 
The influence of normalisation for different ∆  to the data density can be taken from Figure 4. 

In general, it can be said that the data-density distribution becomes softer and wider with increasing ∆ . For a better description of this behaviour, we fitted the resulting data density distributions with 
a bi-variate Gaussian function. We do not assume that the data density behaves in this way but we 
used the simplicity and reproducibility to characterise the change of parameterisation. The residual 
can be interpreted as the fitting quality. From Figure 5, it can be seen that the width of the bi-variate 
Gaussian function increases for  and  with increasing ∆ . The maximum value of the data 
density is subject to exponential decay.  

The normalisation is independent of data-density calculation methods which will be presented 
in the following. The use of the data-density approach may as well be applied without prior 
normalisation. 
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Figure 5. Behaviour of parametrisation of fitted bi-variate Gaussian distribution of data density in 
relation to the different normalisation time intervals ∆ . The -axis fitted standard deviation is 
shown in turquoise, -axis fitted standard deviation in dark blue, the maximum probability of 
occurrence in green and the residual of the original and the fitted data distribution. 

2.7.2. Histogram-Based Data-Density 

The first method to calculate the data-density is based on binning the normalised data in a 2D 
histogram. A suitable bin width for  and  is given by Scott [22] as ℎ = 3.49 ⋅√  (9)

and ℎ = 3.49 ⋅√  (10)

where  is the standard deviation of , respectively  is the standard deviation of , 
and  is the amount of data points for time interval	∆ .  

Scott assumes that the corresponding variable has to be normally distributed to use this 
parametrisation. Although it has not been proven conclusively that the wind speed is normally 
distributed, Morales et al. [23] have shown a great consistency of this theory for 10 min time intervals. 

Instead of normalising the amount of data within a bin with the total number of data points, we 
normalise with the maximum bin count. Thereby the data distribution dynamically refers to the 
measurement and requires no absolute values.  

The determination of validity is based on a correlation of data in the normalised reference frame – . Calculating the contours for different densities, iso-lines form almost concentric circular 
shapes (Figure 4). Measurement points within the final contour will be marked as valid. To find the 
final contour that represents the separation line of valid and invalid data, we define an upper and 
lower threshold: 

• The lower threshold value represents the lower percentage limit from which iso-lines will be 
calculated. 

• The upper threshold can be seen as the reference shape that is based on the contour shape of the 
corresponding percentage density value. 

By empirical testing, we found a correlation to determine the separation line. The easiest 
reproducible condition with the least computationally effort is presented in the following:  

If the centre of a contour shape within the –  reference frame lies within the contour of the 
referenced shape corresponding to the upper threshold, all data points within this shape are marked 
as valid.  
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2.7.3. 2D-Gaussian Kernel Data-Density 

The second method to determine the data density is based on the calculation of a two-
dimensional kernel. We assume that  and  are subjected to random error processes; thus, their 
variability can be represented with a bi-variate Gaussian distribution [24], even when the overall 
behavior may be non-Gaussian. The validity ( , ) for each measurement point with  and  
in the time interval , with ∈ 	 1, . . . , 	 , can then be assigned by the normalised data-density 
kernel in the –  reference system: ( , ) = ( , )max ( , )  (11)

with 

( , ) = 	 1 12 , ,  (12)

As the one-dimensional case from Section 2.7.1, the selection of ,  is based on a Botev-
estimator [21]. 

The distinction between valid and invalid data is now made by the calculation of the validity for 
each measurement point using Equation (11). The following classification is based on a threshold,	 , 
which refers to the validity. Measurement point with a validity  ( , ) ≥  (13)

may be seen as valid. The influence of  to the resulting error is shown in the Appendix A.  

3. Measurement Setups 

The data for this study are drawn from three LiDAR measurement campaigns with different 
research objectives—an offshore campaign and two nacelle-based onshore campaign in the first half 
of 2015. 

3.1. Offshore Ground-Based Comparative Measurement Campaign 

In the framework of the German research project “GW Wakes”, three scanning long-range 
Doppler LiDAR systems of type Leosphere Windcube WLS-200S [6] were operated in the offshore 
wind farm “alpha ventus” in the German North Sea. The wind farm comprises six 5 MW wind 
turbines Senvion 5 M with rotor diameter of  = 126 m and hub height of ℎ  = 92 m that are located 
in the northerly two rows and six 5 MW wind turbines Adwen AD5-116, formerly called M5000-116, 
with rotor diameter of  = 116 m and hub height of ℎ  = 90 m in the two southerly rows (Figure 6). 
The LiDAR used for the measurements was operated on the substation of the wind farm in the south 
east corner. “alpha ventus” is located close to the research platform FINO1 that is equipped with a 
meteorological mast [25]. In the following, all directions in the context of the offshore measurement 
campaign refer to the meteorological reference system, if not explicitly mentioned. 

3.1.1. LiDAR Measurements 

The used data was captured from 21.12.2013 15:35h (UTC) till 19.01.2014 7:55h (UTC). During 
this time period, the LiDAR was operated in a so called staring-mode with a fixed azimuth angle  
and a low elevation angle of  = 0.2°, aiming at the ultrasonic anemometer at 41.5 m height at FINO1. 
The measurement frequency was set to = 2	Hz with a pulse repetition frequency of 20 kHz, 
while capturing 82 equidistant range gates from 361 m to 2811 m with a range step of 30 m and 100 
equidistant range gates from 2811 m to 2911 m with a 1 m range step. The pulse length was set to 200 
ns or 59.96 m (FWHM).  

Within the measurement duration of 28 days 16 h and 20 min, we were forced to interrupt the 
measurements for a total of 18 days 8 h and 30 min. The resulting comparable time intervals are 
comprised of 10 days 7 h and 50 min. 
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The positioning of the measurement near the anemometer on the FINO1 platform was ensured 
by an iterative hard-target method. First, we tracked the meteorological mast via horizontal PPI 
measurements (Plan-Position-Indicator scan) followed by vertical RHI measurements (Range-
Height-Indicator scan) to identify the boom with the anemometer. We adjusted the final positioning 
of the measurement volume with the accuracy of the LiDAR system of 0.1° in azimuth and elevation. 
When the wind induced movements of the mast-boom-system are neglected, the maximum possible 
deviation of height of the anemometer and the centre of the range gate can be calculated as  ∆ℎ = ±sin(0.1°) ⋅ 2864 m = ± 5.00 m (14)

The inclined measurement of 0.2° in combination with a pulse length of 59.96 m leaded to a 
negligible height difference within a range gate of 0.21 m. We verified the positioning of the LiDAR 
device by long term GPS measurements in combination with the geometrical dimensions of the 
substation. This resulted in an azimuthal orientation referred to the ultrasonic anemometer of  = 
306.47°. 

In this data set, wind directions have been measured at FINO1 within a range of 110° and 285°. 
Due to the fixed measuring geometry of the staring LiDAR, this could only measure the in-beam 
wind speed component. The result is a cosine relation between the wind speed in the wind direction 
frame of reference, , and the projected wind speed,  (Equation (17)). For an incoming wind 
direction of 216.47°, the LiDAR measured perpendicular to the wind direction. Thus, the lateral wind 
speed component tends to become zero in average, which is why the turbulence intensity converges 
to infinity (Figure 7). 

 
Figure 6. Layout of the wind farm “alpha ventus” with measurement geometry of staring mode 
LiDAR with an azimuthal orientation of 306.47° and an elevation of 0.2° (red). Crosses represent wind 
turbines, the circle the platform FINO1 and the square the substation AV0. The measurement 
positions are indicated by the red line. 

3.1.2. Ultrasonic Anemometer Measurements 

The 3D ultrasonic anemometer used for the comparison with the LiDAR data is a Gill R3-50 
mounted at the meteorological mast FINO1 at the height of ℎ  = 41.5 m on a 6.5 m long boom 
orientated at 308°. Vertical wind speed, horizontal wind speed, wind direction and air temperature 
data have been recorded with a sampling frequency of = 20	Hz. The original wind direction 
measurements have been corrected on the basis of the approach of Schmidt, et al. [26] by using staring 
LiDAR measurement to determine misalignments. The correction of Schmidt, et al., includes the 
previous correction of the mast influence performed by Westerhellweg, et al. [27]. Figure 8 shows the 
frequency of the wind speed and wind direction distribution within the time period. The temporal 
change of the wind speed and wind direction can be seen in Figure 9. Horizontal lines within Figure 
9 indicate a possible wake shading of the named turbines for that particular wind direction. Due to 
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simplicity, these wind directions have been calculated on the basis of geometric correlations, and we 
neglect wake expansion and meandering effects. 

 
Figure 7. Visualisation of the line-of-sight velocity turbulence intensity in dependency of the wind 
direction measured by the ultrasonic anemometer from 21.12.2013 15:35h (UTC) till 19.01.2014 7:55h 
(UTC). Gaps in the plot visualise unavailability of anemometer data. Individual 10 min mean values 
are shown in light blue whereas the binned averaged is marked in dark blue. Black vertical dashed 
lines indicate the wind direction of possible wake shading of the anemometer on FINO1 based on 
geometrical correlations. The red line shows the perpendicular wind direction to the azimuthal 
orientation of the laser beam. 

 
(a) 

 
(b) 

Figure 8. Histogram of 10 min averaged ultrasonic anemometer inflow conditions from 21.12.2013 
15:35h (UTC) till 19.01.2014 7:55h (UTC) (a) horizontal wind speed in the meteorological reference 
frame is marked in dark blue, whereas the LiDAR laser beam projected wind speed  (Equation 
(17)) is shown in green. The bin width is 1 m/s, (b) wind direction with a bin width of 3°. 
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Figure 9. Time series of the 10 min averaged wind direction measured by the ultrasonic anemometer 
from 21.12.2013 15:35h (UTC) till 19.01.2014 7:55h (UTC). Gaps in the plot demonstrate unavailability 
of LiDAR data. Horizontal lines indicate the wind direction of possible wake shading of the 
anemometer on FINO1 based on geometrical correlations. 

3.1.3. Onshore Nacelle-Based Wake Measurements 

The second and third data set were acquired within the German project “CompactWind”, in 
which two of the previously described LiDAR devices have been installed on the nacelle of an eno114 
3.5 MW wind turbine with a rotor diameter  = 114.9 m and a hub height of ℎ = 92 m. The onshore 
wind farm consists of two wind turbines from the same type and is located near Rostock in the village 
Brusow. The surrounding terrain is slightly hilly with a compact forest to the east.  

The first measurements were performed from 14.05.2015 02:30h (UTC) till 14.05.2015 06:00h 
(UTC). Here, we show only one LiDAR in measuring horizontal PPI scans with 0°elevation at nearly 
hub height with a total azimuthal opening angle of 40° centred in downstream direction. Each of the 
571 scans took 20 s, resulting in a repetition period of 22 s, including an initialisation time. We 
parameterised the Leosphere Windcube 200s with a pulse length of 200 ns respectively 59.96 m 
(FWHM) and an accumulation time of 200 ms with a pulse repetition frequency of 20 kHz. In this 
time period in which the turbine was operating a significant wake was measureable. Within the 
framework of “CompactWind”, we were able to alternate the nacelle mounted LiDAR from the 
described Leosphere device with a Stream Line XR LiDAR by Halo Photonics. The here used Stream 
Line XR dataset is shown as an example of general applicability of the dynamic data filtering 
approach.  

The corresponding third data was captured from 31.10.2016 00:00h (UTC) till 31.10.2016 00:30h 
(UTC). In that time period, the LiDAR was operating in PPI mode using the above mentioned opening 
angle, accumulation time and scan speed. The measurement was parameterised with a pulse length 
of 100 ns or 29.98 m and a pulse repetition frequency of 10 kHz. 

4. Results 

For the validation and comparison of the new proposed dynamic filtering approach in Section 
2.3, we applied all described filters on the data of the three measurement campaigns from Section 3. 
The influence of filtering on the data availability and the velocity error regarding the ultrasonic 
anemometer from the offshore campaign are shown in the following. Moreover, the behaviour of the 
velocity error will be discussed. 

4.1. Evaluation of Filtering Based on Staring Measurements 

For the error calculation of ultrasonic anemometer data and the LiDAR data, the initial question 
arises how different measurement concepts can be mutually compared. The metric used to validate 
the new and other filters is based on average velocities. We present also results for the velocity 
standard deviation for sake of completeness. However, we consider that the data available is not 
adequate for drawing conclusions in our ability to derive turbulence properties. Although both 
devices measure within a certain volume—in an idealised case, the same volume—this differ in 
spatial dimensions. While we estimate the ultrasonic measurement volume from technical drawings 
as a cylinder with ≈ ∙ (0.24	m) ∙ 0.48	m, the corresponding equivalent volume for the LiDAR 
laser beam of the Leosphere device in the here used configuration is approximately ≈ ∙ (0.1	m) ∙60	m. By this, the LiDAR measurements use around 22 times the ultrasonic anemometer volume. If 
we consider that the individual ultrasonic transmitter and receiver heads measures on the surface 
shell of this cylinder, the ratio  is in the magnitude from 10 to 100. The effect of spatial averaging 

of LiDAR measurements on the variance of the line-of-sight measurements and the associated 
challenge of deriving turbulent properties, in a substantial scientific manner, from LiDAR 
measurements is discussed in a plurality of publications. First, LiDARs filter out high frequencies 
depending on the effective sampled volume. This distorts the velocity variance. Moreover, Sathe and 
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Mann [28] show that atmospheric conditions play an important role affecting the ability to measure 
turbulence. Sathe and Mann [28] published an extensive review of turbulence measurements since 
the beginning of LiDAR based remote sensing in which they highlight that the variance is very 
dependent on atmospheric conditions. We conclude from the work of Frehlich [9] and Sathe and 
Mann [28] that an adequately determination of the wind speed variance is possible, with a 
comprehensive approach including raw LiDAR data. Such treatment was out of the scope of this 
work, wherefore we focused in the following inter-comparison of the LiDAR filter on the average 
wind speed. 

To minimise the different volume averaging effects and to comply with other comparisons of 
LiDAR measurements and met mast anemometers [29–33], we applied filtering in clustered temporal 
segments of ∆ =10 min. We have deliberately refrained a data availability pre-filtering for the 
calculation of the 10 min average velocity and velocity standard deviation. This is intended to create 
a greater transparency to the overall filter behaviour. 

We evaluated the effect of variable averaging times for all filters with a smaller data set from the 
already presented campaign. The impact on the total error in combination with the normalisation 
time ∆  for the dynamic data filters can be seen in the Appendix B. We conclude from Figure A1, 
Figure A2 and Figure A3 that the results of the dynamic data filters vary depending on the used 
parametrisation. The parameters should be adjusted with respect to the purpose of data analysis and 
the desired error calculation, as can be seen in Figure A3. For a better readability, we opted for one 
parameterisation each. The selection of the validity value  regarding the error behaviour in 
Appendix A was chosen as a compromise between the average error and the root-mean-square error 
(RMSE) of each, velocity and velocity standard deviation. The histogram-based dynamic filter has 
been used with a lower filter threshold of 0.02% and an upper filter threshold of 0.29%, through the 
Gaussian kernel based implementation was set to a validity level of 16.94%.  

In total 4325 10 min time intervals have been processed for the following results. The standard 
deviation filter was used in a two-sigma configuration and the CNR-threshold filter, as well used in 
the combined filter approaches, in a parametrisation of =	−24	dB and =	−8	dB. To the best 
of our knowledge, we were also porting the filter approach by Wang et al. [17] for the first time to 
staring mode and horizontally scanned LiDAR data. So far, this filter approach has been applied only 
for VAD measurements. Further, we tested the proposed quality control from Newman et al., with 
Leosphere Windcube 200s data for distances beyond those in the original publication [16]. 

4.1.1. Data Availability 

We define the here titled data availability as the ratio of the amount of data for one point in space 
of the filtered to the unfiltered LiDAR data within a time interval:  =  (15)

Only 10 min time intervals were considered that amounts to the theoretically number of 
measurement points. A data availability of 100% within a time interval implies that all measurement 
points are marked as valid. To calculate the data availability, a spatial based comparison (Figure 10) 
for all ranges and the corresponding closest volume to the ultrasonic anemometer has been made and 
was summarised in Table 1. For the data availability calculation we considered only in non-
overlapping time intervals of 10 min. 
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Figure 10. Data availability of staring mode measurements for different filter methods. (a) time 
dependent behaviour for range at 2864 m and (b) averaged data availability over all ranges. The 
dashed line marks the distance of the anemometer at FINO1. 

While all filters show a consistent mean result above 75% data availability, the behaviour with 
respect to the range is dependent on the type of filter. All filters using the CNR-threshold approach 
show the same decay in availability related to the distance dependency of . With the decrease of the 
CNR over the distance, temporal fluctuations of  are partially filtered out if they exceed the CNR-
threshold. By this, the data availability decreases continuously. We assume that the here shown 
behaviour of all CNR-threshold containing filters is similar to the theoretical and empirically stated 
data availability decay with increasing distance described by Boquet [34].  

It appears that the combined filter by Newman et al. [16] does not produce any visible deviation 
from the CNR-threshold filter even when they applied an addition iterative standard deviation filter 
that, when applied alone, provides an availability of 98.5%. It seems that as well the filter approach 
by Wang et al. [17] leads to a higher data availability compared to a sequential calculation from the 
individual availabilities. The output of the two-sigma standard deviation filter exhibits an overall 
availability of over 95% for the entire distance and increases slightly with more distant range gates. 
Because it is based on the deviation around the average of wind speed, this behaviour can be 
explained with the geometric correlation of the measurement setup. From a distance of 
approximately 2100 m, the laser beam measured outside the wind farm where the flow was not 
affected by wind turbine wakes. In contrast, the data availability of the iterative standard deviation 
filter decreases by 1% over distance. It is shown that the interquartile-range filter produces a smaller 
availability of 94% compared to 99.3% in theory for normal distributions. This may be an indication 
that the data distribution within the 10 min intervals does not exactly follow a normal distribution. 

If we neglect all filters that do not take into account the distance dependency of , we can 
compare all CNR-based filter with the dynamic data filters. It can be seen that the histogram-based 
filter results in a nearly constant data availability of 90%. The kernel-based dynamic data filter shows 
a drop of data availability in closer distances followed by a constant slight decrease over the distance. 
From this behaviour it cannot be confirmed that the data availability of the dynamic data filters follow 
the decay stated by Boquet [34]. We assume that the main reason for this is based on the temporal 
and spatial normalisation of the LiDAR data. By normalising  with the most probable value 		  
within the normalisation interval, measurement points close to 		 , which would exceed the CNR-
threshold, are marked as valid and contribute to high data availability.  

Figure 11 shows the error distribution of the velocity and the velocity standard deviation in 
dependency of the data availability on the basis of 10 min means. A high correlation of the general 
appearance of Figure 11a,b suggests a causal connection of the velocity and the velocity standard 
deviation error. While both standard deviation filters and the interquartile range filter mainly show 
error values above 80% data availability, the data distributions of the dynamic data filter and CNR-
threshold based filters are widely scattered. We see a repeating pattern of data point clusters in Figure 
11a,b that appears to be individually scaled for each of the dynamic and the combined filters. 

Although both dynamic data filters use the same normalised dataset, the observed differences 
in data availability appear for unknown reason. In this test case, the full potential of conservation of 
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data availability by the kernel-based dynamic data filter cannot be seen. We assume that based on 
the behaviour shown (Figure 10), the data availability of the CNR-threshold based filters will drop 
significantly faster with increasing distances than of the dynamic data filters. 

  

(a) (b)

Figure 11. Absolute error of staring mode measurements in dependency of data availability. Markers 
represent 10 min values of (a) the velocity error and (b) the velocity standard deviation. 

4.1.2. Comparison of LiDAR and Anemometer Velocity Measurements 

In the following section, we quantify the accuracy of all filtering methods. For this we assess the 
discrepancy of estimated velocities taking into account filtered, unfiltered data and the reference data 
of the ultrasonic anemometers. We distinguish between the average error, which is defined as the 
arithmetic mean, and the RMSE. As we mentioned previously the assumption of LiDAR data 
behaviour is included in every filter. The resulting errors of the following comparison can be seen as 
a measure of correctness of this filter included LiDAR data behaviour. 

Because the fixed LiDAR measurements can strictly measure the in-beam directed wind vector, 
the ultrasonic anemometer data has been projected to the LiDAR measurement geometry. The 
original anemometer velocity information has been adjusted on the basis on the study of 
Westerhellweg [26] to compensate the mast wake. Due to the marginal changes of the wind speed 
magnitude of the low elevation measurement of the LiDAR of  = 0.2° 1 − cos(0.2°) = 5.48 ⋅ 10  (16)

we used the filtered radial line-of-sight velocities of the LiDAR without additional projection to the 
horizontal plane. By this assumption, the projection of the ultrasonic anemometer is reduced to a 
single rotation around the z-axis. The index  refers to the LiDAR reference frame, whereas index 

 stands for the meteorological reference frame. = cos( ) − sin( )sin( ) cos( )  (17)

where =–53.53° is the directional offset of the LiDAR reference frame and the meteorological 
reference frame. In advance, we carried out correlations of wind speed time series of each range gate 
with the ultrasonic anemometer time series to find the closest measurement range gate. 

The direct comparison of wind speed and the calculation of deviations of the filter associated 
time series show that all filters behave in a similar manner for the greater part (Figure 12a,b). The 
CNR threshold and both standard deviation filter did not select all outliers as accurate as the dynamic 
data and combined filter approaches. High average velocity errors seem to correlate with 
recognisable peaks in the velocity standard deviation curve (Figure 12a,b), which is an indicator of 
high scattering in the filtered data. This may occur when the invalid data from the “comb”-shaped 
data distribution (Figure 1) is classified as valid. 
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(a) (b)

  

(c) (d)

Figure 12. Behaviour of the 10 min averaged filtered staring mode measurements of (a) the projected 
wind speed over time; (b) the standard deviation over time; (c) average wind speed error over wind 
direction; (d) average standard deviation error over wind direction. Vertical dashed lines indicate the 
wind direction of possible wake shading of the anemometer on FINO1 based on geometrical 
correlations. 

The velocity error and the velocity standard deviation error over the wind direction show high 
values for several inflow directions (Figure 12c,d). Based on the turbulence intensity distribution 
from Figure 9 and the standard deviation error from Figure 12d, it cannot be differentiated whether 
the visible increase between 110°–145° is due to the mast shadow or by the wake of the turbines AV09, 
AV08, AV12 and AV11. Indicated by peaks of the average velocity error (Figure 12c) close to the 
theoretical turbine directions we could conclude that these arise by wake shading. Meandering 
effects, wake-induction-zone interaction, turbine and wind farm circulation could not be taken into 
account; thus, differences in the turbine positions and the corresponding peaks may occur. The 
smallest increases can be determined for AV09 in a distance of 2230 m and AV11 (2069 m), whereas 
significant peaks may be caused by AV10 (1669 m), AV08 (1512 m) and AV07 (916 m). Because AV08 
and AV12 are close to each other, we cannot differentiate individual proportion of the wakes to the 
error.  

It is surprising that the average error in the mast wake (<145°) is less for unfiltered LiDAR data 
than for processed ones. This could be indicating that the filters sort out physical reasonable values. 
While all filters have increased errors in determining the correct velocity standard deviation, the two-
sigma standard deviation filter produced noticeably low values in this region. The increase of the 
errors for this inflow range may be explained due to different measuring volumes. While the 
anemometer is exposed to increased fluctuation directly in the mast wake, the LiDAR measures a 
mixed velocity of free and affected flow within the elongated volume. It can further be seen from 
Figure 12c,d that the LiDAR is not capable of capturing perpendicular wind speed components (216° 
inflow direction) in a good manner. According to the errors shown in Figure 12c,d an undisturbed 
inflow occurred from 180° to 210° and from 220° to 265°. 
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(a) (b)

  

(c) (d)

Figure 13. Behaviour of the 10 min averaged filtered staring mode measurements of (a) the projected 
wind speed over time, (b) the standard deviation over time, (c) average wind speed error over time, 
(d) standard deviation error over time. 

In Figure 13a,b linear correlation of the ultrasonic anemometer data and the LiDAR data has 
been done for the velocity and the standard deviation. Here, all data are presented without a 
containment of wind direction. Therefore, these results include situations where the ultrasonic 
anemometer, as well the LiDAR measurement is in free flow, in wake flow of the mast and in the 
wake of the wind farm. We observe regression slopes in the range from 0.866 to 0.974 and regression 
coefficients from 0.78 to 0.9. These relatively low coefficients are driven by outliers, which are not 
very frequent, but have a large deviation. These wrong data points evidence in our opinion the 
discrepancy between point and volumetric flow interrogation in complex flows. In effect, these large 
deviations occur for data in the mast wake predominantly. In the study of Schmidt et al. [26] a subset 
of these data, specifically restricted to free flow, showed a very high correlation. These results are 
confirmed here as shown in Table A2. Since this is mainly a physical effect, it is impossible for any of 
the filters to reduce the error. It is to be noted that the large deviations concentrate in a certain wind 
speed range. This is due to the wind conditions during the measurement period, where wind speeds 
above 6 m/s were found very often for wind directions where the ultrasonic anemometer was shaded 
by the mast, whereas lower velocities occurred in free flow conditions. 

While the velocities correlate quite well, the regression of the standard deviation is widely 
spread for the different filters. All linear regression parameters are reported in Table 2. In 
combination with Figure 13a,b, Figure 13c,d extend the linear regressions with an uncertainty interval 
equal to the RMSE. For better visibility, we omit these ranges in Figure 13a,b, and plotted them 
separately in Figure 13c,d. It can be recognized that ultrasonic anemometer data in a wide range 
around 10 m/s is associated with high deviations of LiDAR velocities (Figure 13a). A corresponding 
behaviour is also present in Figure 13c. Even Figure 13c,d give the RMSE for specific velocities 
respectively velocity standard deviations a conclusion about the overall performance needs to 
consider the error frequencies in Figure 14.  
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In general, it can be said that the application of the combined and dynamic filter approaches 
leads to smaller errors of the velocity and velocity standard deviation compared to other filters. With 
the exception of the combined filter approach from Wang et al. [17] that was able to reduce the 
average velocity standard deviation error to 0.0 m/s, both dynamic data filters generated the smallest 
error in the comparison of three out of four error calculation categories. To give an overview of the 
overall performance, we distinguish between all wind directions in Table 1, wake affected situations, 
110°–180° wind direction, and free inflow, 180°–210° wind direction, in Tables A1 and A2 in the 
Appendix C. In each of those data classifications, we see mostly a similar behaviour of the filters in 
mutual perspective as well in relation to the results in Table 1.  

4.1.3. Error Analysis 

In order to gain a better understanding of the error behaviour and insight into the resulting error, 
we performed an error analysis. For this, the frequency distribution of the errors is calculated.  

Figure 14 illustrates histograms for the RMSE of the mean velocity and the velocity standard 
deviation of all 4325 10 min intervals with a non-constant bin width increasing exponentially. It can 
be seen that the errors are subject to a double log-normal distribution or Pareto distribution. 
Explaining the cause of this specific distribution is out of the scope of this paper. Nevertheless, we do 
a qualitative analysis supported by the cumulative distribution presented in Figure 15. While the 
distribution of absolute average velocity error of the unfiltered LiDAR data (red line) follows this 
behaviour very well, local deviations of all used filters can be found from a value on of approximately 
3 m/s (Figure 14a). The error distribution of the Gaussian kernel dynamic data filter seems to be 
displaced towards higher errors. We fitted a double logarithm distribution to the histogram to 
determine the most probable error of the fitted distribution which is provided in Table 3. 

The error behaviour of the standard deviation shows double peaks at 0.1 m/s and 4.4 m/s for the 
unfiltered case and suggests that two functions overlap here. The frequencies of the velocity standard 
deviation error, for the filtered data, show as well a second peak shifted to ca. 1 m/s. These error 
behaviours are also confirmed by Figure 15a,b that shows the resulting errors for error values below 
a certain threshold (x-axis). It turns out that Figure 15 is equivalent to the cumulative distribution of 
error from Figure 14. While the resulting RMSEs increase up to 3 m/s error threshold for all filters, 
this is a turning point followed by a split in behaviour. As expected, the unfiltered LiDAR data results 
in the highest error up to a threshold of 17 m/s. This error is exceeded from the combined filter 
approach of Newman et al. [16] and the CNR-threshold filter respectively the combined filter of Wang 
et al. [17] at the error thresholds of 26 m/s and 29 m/s. While the average error of those three filters 
are below the unfiltered data, it turns out that the RMSE, as a measure of velocity dynamic accuracy, 
are the highest with in the test case shown in Table 1. A possible explanation may be that all three 
filters are based on the CNR-threshold filter. While these three filters produce the smallest error up 
to a threshold of 13 m/s, an enormously increase is followed till the maximum error is reached.  

The maximum error can be determined by following the error threshold to the maximum value. 
By comparing the error behaviour from Figure 15a,b with the theoretical accumulated function of a 
Pareto distribution (root function), the assumption of multiple overlapping distributions may be 
confirmed. We see the typical increase of a root function several times in Figure 15a,b. E.g., the 
behaviour of the histogram based dynamic data filter standard deviation curve in Figure 14b shows 
a root functional increase from 0 m/s to 10 m/s and again from 10 m/s to the maximum error. This 
hypothesis is supported by the second peak of the same graph in Figure 14b around about 10 m/s. 
Similar behaviour can be seen for the remaining filters in Figures 14b and 15b. 

 
 

Table 1. Comparison of different filtering methods applied on staring mode measurements from 
21.12.2013 15:35h (UTC) till 19.01.2014 7:55h (UTC) for all wind directions. 
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Avg. 

Availability 
FINO1 

Avg. 
Availability 
All Ranges 

Abs. Avg. 
Velocity 

Error 

RMS 
Velocity 

Error 

Abs. Avg. 
Velocity Std. 

Dev. Error 

RMS
Velocity Std. 

Dev. Error 
Dyn. data histogram 90.0% 90.4% 0.34 m/s 2.38 m/s 0.14 m/s 1.82 m/s 

Dyn. data Gauss. kernel 75.1% 78.2% 0.30 m/s 2.10 m/s 0.18 m/s 0.90 m/s 
CNR threshold 81.9% 87.6% 0.45 m/s 3.02 m/s 0.36 m/s 2.24 m/s 

Std. dev. two sigma 96.2% 95.9% 0.49 m/s 2.50 m/s 0.73 m/s 3.00 m/s 
Iterative std. dev. 98.1% 98.5% 0.54 m/s 2.54 m/s 0.79 m/s 3.45 m/s 

Quartile filter 93.5% 94.0% 0.40 m/s 2.42 m/s 0.35 m/s 2.77 m/s 
Combined Wang 77.5% 83.0% 0.40 m/s 3.10 m/s 0.00 m/s 1.87 m/s 

Combined Newman 81.8% 87.5% 0.42 m/s 3.02 m/s 0.20 m/s 2.14 m/s 
No filter 100% 100% 0.76 m/s 2.58 m/s 2.17 m/s 4.10 m/s 

Table 2. Correlations and residuals of the linear regression between the ultrasonic anemometer and 
the LiDAR for the velocity and the standard deviation of the velocity. From 21.12.2013 15:35h (UTC) 
till 19.01.2014 7:55h (UTC) for all wind directions. 

 
Dyn. 
Data 
Hist. 

Dyn. 
Data 

Gauss. 

CNR 
Thres-
hold 

Std. 
Dev. 

Iter. 
Std 

Quar-
tile Wang New-

man 
Unfilt
-ered 

Velocity          
Reg. slope 0.92 0.95 0.96 0.92 0.91 0.93 0.97 0.97 0.86 

Offset [m/s] 0.31 0.26 0.22 0.33 0.32 0.32 0.22 0.22 0.44 
R2 0.85 0.84 0.90 0.83 0.79 0.85 0.90 0.90 0.78 

Velocity std. dev.          
Reg. slope 1.50 1.39 0.73 1.27 1.05 0.86 0.50 0.62 3.04 

Offset [m/s] 0.42 0.33 0.63 0.45 0.74 0.49 0.50 0.58 0.08 
R2 0.06 0.04 0.02 0.04 0.02 0.02 0.01 0.01 0.15 

Table 3. Most probable velocity and standard deviation error of fitted double log-normal distribution 
to 10 min error histogram. 

 
Dyn. 
Data 
Hist. 

Dyn. 
Data 

Gauss.  

CNR 
Thres
-hold 

Std. 
Dev. 

Iter. 
Std 

Quar-
tile Wang 

New-
man 

Unfilt-
ered 

Velocity [m/s] 0.09 0.20 0.09 0.09 0.09 0.10 0.11 0.09 0.11 
Vel. std. dev. [m/s] 0.09 0.12 0.06 0.12 0.06 0.10 0.11 0.06 0.07 

4.2. Evaluation Based on Scanning Measurements 

The goodness of the filters must be evaluated in a broad range of applications. The previous 
staring study does not include the additional spatial effect given in scanning trajectories. Such 
validation work, is, however, limited by a missing reference. In effect. it is very costly to setup an 
experiment to validate a scanning LiDAR at least at some points within the trajectory. Therefore, such 
evaluations have to be done here only at the qualitative level. In this respect, we processed the nacelle-
based PPI-scanned measurements analogous to the staring mode measurement data, with the 
exception of the application of the standard deviation filter and the spatial normalisation within the 
dynamic data filter. Due to lower spatial measurement frequency of = 0.045	Hz compared to the 
staring mode measurements of = 2	Hz, we enlarged the selection of radial wind speed data in 
beam-wise and azimuthal direction to form an equivalent amount of data to calculate the standard 
deviation within a 10 min segment. All CNR-threshold based filters have been used with a 
parametrisation of =	−25	dB and =	−8	dB. The normalisation of CNR and radial speed for 
PPI-measurements has been extended by calculating the temporal and spatial averages for azimuthal 
bins of 1°. Thus, we expect to consider different characteristics of the wake regions and allow 
potential different backscattering properties due to the complex flow structure. All other filters were 
used as described in the referenced publications and were applied thereon range- and angle-wise. 
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(a) (b)

Figure 14. Histogram in double logarithmic scaling with exponential increasing bin width of the (a) 
absolute average velocity error and (b) the absolute velocity standard deviation error. Vertical dashed 
lines indicate the centre of a fitted Gaussian curve.  

  

(a) (b) 

Figure 15. Influence of maximum error threshold to the resulting error (a) RMS velocity error over 
velocity error threshold and (b) RMS velocity standard deviation error over velocity standard 
deviation error threshold. 

 
(a) (b) (c) 

 
(d) (e) (f) 



Remote Sens. 2017, 9, 561 21 of 30 

 

 
(g) (h) (i) 

 
(j) (k) (l) 

 
(m) (n) (o) 

 
(p) (q) (r) 

Figure 16. Influence of different filtering methods on a 10 min averaged horizontal LiDAR scans. (1st 
column) radial speed, (2nd column) CNR mapping, (3rd column) standard deviation of radial speed. 
(a–c) histogram-based dynamic data filter, (d–f) Gaussian kernel based dynamic data filter, (g–i) 
CNR-threshold filter, (j–l) combined filter approach by Wang et al., (m–o) combined filter approach 
by Newman et al., (p–r) unfiltered. 

(a) (b) (c) 
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(d) (e) (f) 

(g) (h) (i) 

Figure 17. Results of application of different filtering methods in the 	 –  diagram. (a) histogram-
based dynamic data filter, (b) Gaussian kernel based dynamic data filter, (c) CNR-threshold filter, (d) 
two sigma standard deviation filter, (e) iterative standard deviation filter, (f) interquartile-range, (g) 
combined filter approach by Wang et al., (h) combined filter approach by Newman et al., (i) no 
filtering. 

(a) (b)

Figure 18. Visualisation of the data density distribution of Stream Line XR PPI data from 31.10.2016 
00:00h (UTC) till 31.10.2016 00:30h (UTC) in (a) 	 –  diagram and (b) in the normalised reference 
frame. 

Next, we filtered the PPI scans in 10 min segments and interpolated them scan-wise to a regular 
Cartesian grid. We averaged the individual scans afterwards to 10 min means.  

In the visualisation of the unfiltered data, it can be seen that high CNR-structures (Figure 16r) 
correlate with structures in the wind speed (Figure 16p) and its standard deviation (Figure 16q). The 
probability of occurrence of those structures in a 10 min average is improbable. It is unphysical in the 
sense of a flow field that sharp, irregular structures emerge in the beam direction (Figure 16r). 
Therefore, we assume that these structures occur due to invalid measurements. However, to produce 
an interference-free data set, we tried to exclude those by filtering.  

We may explain those structures regarding the 	 –  diagram and the functioning of the 
individual filters (Figure 17). The data accumulation of measurements points close to 0 m/s in a wide 
range of  may appear due to partly shading of hard targets or unknown reason. Obstacles, such as 
meteorological masts, overhead transmission lines or rotor blades of other turbines influence the laser 
beam partly, complete or multiple times and affect the backscattering. Therefore, a second distinct 
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peak, besides the one of the wind speed appears in the frequency spectrum. Thus, obstacles causing 
high-backscattering high-amplitude peaks are fitted as often as the wind speed peaks. Figure 17 gives 
an indication of the functioning of the different filters. It can be seen that only the dynamic data filters 
and the combined filter approach by Wang et al. [17] managed to eliminate the high scattering of 	  
in the “comb”-shaped data distribution and prior described the data accumulation close to 0 m/s.  

Regarding Figures 16 and 17, a relation between the mentioned exposed structures and the 
filtering can be made. Based on this test case of scanned data, we observed that dynamic data filters 
are capable to identify more outliers than the other filters. 

As a proof that the dynamic data filtering approach is not system specific, we present an example 
of PPI data from the second part of the nacelle-based measurement campaign from Section 3.1.2 
captured with a Stream Line XR. In the following, we will illustrate the data-density distribution in 
the 	 –  diagram and the normalised LiDAR data in the –  reference frame as a proof of 
similar data behaviour in comparison to the Leosphere LiDAR. 

As can be derived from Figure 18a, the overall data density of the Stream Line XR dataset shows 
similar behaviour in comparison to the Leosphere Windcube 200s LiDAR data in Figure 3. A 
horizontal scattering in the radial velocity in combination with a vertical scattering of the CNR is 
shown in both visualisations. The application of the temporal and spatial normalisation from Section 
2.7.1 results in a comparable data density distribution.  

It is noticeable that the density distribution of the normalised LiDAR data of the Stream Line XR 
device tend to form a pyramid distribution (Figure 17b), whereas the density shown in Figure 4 
resembles a bi-variate Gaussian distribution. The normalisation provided here was applied with a ∆  
= 60 s and may therefore be compared with Figure 4f. From similar behaviour of forming a dense 
data distribution in the –  reference frame, we confirm the suitability of the possibility of 
application of the dynamic data filter as presented in this paper. 

5. Conclusions  

We introduced a new approach to filter line-of-sight long-range Doppler LiDAR data 
dynamically. This considers the influences of atmospheric conditions, device dependencies and the 
measurement setup. The new methods take into account the radial velocity and the signal quality in 
a bi-variate manner based upon the assumption of self-similarity of valid data. Here we performed a 
benchmark of two implementations of the new dynamic filtering approach together with five state-
of-the-art filter methods used in research and industry applications. First, a temporal high resolved 
time series of approximately 1.5 weeks measured in a distance of 2864 m by a minimal inclined long-
range LiDAR was compared against an ultrasonic anemometer with means of 10 min to make a 
quantitative evaluation. Second, we performed a qualitative analysis to infer filter performance for 
cases of scanning interrogation of the wind field. Within this study the combined research filter 
approaches by Newman et al., and Wang et al. have been ported to a Leosphere Windcube 200s 
dataset.  

This study demonstrates, that the common practice of using fixed CNR-threshold based filters 
may lead to unnecessarily reduced data availability. This limitation can be overcome by more 
elaborated methods, which implementation is technically feasible with low computational cost. We 
were conditionally able to decouple the commonly associated distance dependent data availability 
on the CNR by introducing a temporal and spatial normalisation of measurement properties within 
the dynamic data filter approach that are also capable of complex changing flow situations and 
variations of the CNR over time. However, their general application must be thoroughly studied. 
Regarding the mean velocity errors, it is shown that high data availabilities do not necessarily lead 
to good accuracies and lower data availabilities not imply poor agreement with the reference.  

The resulting errors of this test case are in the range from 0.30 m/s to 0.76 m/s for the average 
velocity, from 2.1 m/s to 3.1 m/s for the RMS velocity error, from 0.00 m/s to 2.17 m/s for the standard 
deviation error and from 0.9 m/s to 4.1 m/s for the RMS velocity standard deviation error. 

The overall results of all filters and the parametrisation study of the Gaussian kernel based 
dynamic data filter indicates, that filtering can be done with the focus on the velocity dynamics in 



Remote Sens. 2017, 9, 561 24 of 30 

 

terms of the standard deviation or the average velocity. Moreover, the error evaluation varies 
whether the average error or the RMSE is considered. In comparison to all filters, both 
implementations of the new approach produce the smallest error in three of four error calculation 
categories whereas the combined filter approach by Wang et al., was able to diminish the standard 
deviation velocity error to 0.0 m/s.  

Depending on the discipline, the application of wind LiDAR filters and the magnitude of 
commonly accepted errors vary, wherefore the here shown differences in the results should not be 
underestimated. Even small differences in the average wind speed can be the decisive argument in 
the resource assessment with respect to the realisation of a wind park. It is up to each user to balance 
the computational effort with the needed accuracy. The selection of a filter should comply with the 
analysis requirements. While the commonly used fixed CNR-threshold filter is used for fast and 
robust results, the histogram based dynamic data filter can be used to increase the data availability 
while maintaining a high accuracy. Critical applications in which a certain maximum error may not 
be exceeded require a more stringent filter than applications where the frequency of certain errors is 
a relevant criterion. The conducted error analysis has shown that the frequency distributions of errors 
do not show a normal distribution and are very distinct from each other. 

In the valuation of filtering results of scanned measurements in full-scale experiments with two 
different LiDAR devices, it was shown on basis of temporal means that certain error structures in the 
flow field and the CNR-mapping were filtered by Wang et al., and the dynamic data filter approach 
in a good manner. 

Due to the behaviour of the dynamic data filter approach within the here presented test cases, 
we conclude the assumption of self-similarity to identify valid data points as very reasonable. An 
accompanying limitation within this approach is the need of a certain amount of valid data to form 
dense clusters for the calculation of the data density. At the same time, this limitation can be seen as 
an advantage, since large quantities of data can be processed at once and thereby the proportion of 
valid data can be increased. Because of the applicability of scanned as well as stared measurement 
setups we see the dynamic filter approach as a promising tool for different types of LiDAR 
measurement setups. The results shown here are a further step in the development of filter techniques 
for explicit LiDAR applications and prove that self-similarity can be used as a criterion for LiDAR 
data filtering. Regarding the reproducibility of the comparison results, further investigations of the 
behaviour and limitations of this approach should be performed with a plurality of different 
measurement situations that could not be part of this study. 
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Abbreviations 

The following abbreviations are used in this manuscript: 

LiDAR Light detection and ranging 
ABL Atmospheric boundary layer 
LOS Line-of-sight velocity 
CNR Carrier-to-noise-ratio 
SNR Signal-to-noise-ratio 
HDDR High data-density region 
PPI Plan-Position-Indicator 
RHI Range-Height-Indicator 
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PRF Pulse Repetition Frequency 
FWHM Full Width at Half Maximum 
RMS Root-mean-square 
Avg Average 
Std Standard deviation 
Abs Absolute 

Appendix A – Infuence of the normalization time on the validity 

The discretisation of the main averaging interval ∆  in different normalisation intervals ∆  
changes the data density as shown in Section 2.7.1. The calculation of the Gaussian kernel based on 
different data densities influences the choice of a suitable validity value . Based on the entire data 
set from Section 3.1.1, we performed a parameter study that considered the resulting average errors 
and the RMS of velocity and velocity standard deviation. For this purpose, we used different 
combinations of ∆ , in a range from 0.5 s to 300 s used and validity values from 10% to 100% for an 
averaging interval ∆ = 10 min. The resulting errors can be seen in Figure A1. 

(a) (b)

(c) (d)

Figure A1. Visualisation of the influence of the normalisation time ∆  and validity value  on the 
resulting total error. Staring mode LiDAR data from 21.12.2013 15:35h (UTC) till 19.01.2014 7:55h 
(UTC) form the basis for this calculation. (a) Average velocity error, (b) the average velocity standard 
deviation error, (c) RMS velocity error and (d) RMS velocity standard deviation error.  

Appendix B – Influence of the averaging and normalization time on the error 

For the investigation of the influence of the averaging interval ∆  and the normalisation 
interval ∆  on the error, corresponding combinations were calculated (Figures 18 and A1). We 
evaluated ∆  for 15 s, 30 s, 60 s, 120 s, 300 s and 600 s and ∆  for 0.5 s, 1 s, 5 s, 15 s, 30 s, 60 s, 120 s, 
300 s and 600 s with a reduced data set. A time interval of 24 h was selected with the focus to represent 
a balanced ratio of wake and free flow situations. The data was captured from 04.01.2014 7:30h (UTC) 
till 05.01.2014 7:30h (UTC). 

Even if all other used filters are defined on prescribed time intervals, we have examined these 
for variable ∆ . A relation of the non-dynamic data filters to the normalisation time ∆  was not 
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given. While the average error and the RMSE behave contrary for the velocity error, there is no clear 
indication for the velocity standard deviation error. Regarding both implementations of the dynamic 
filter, it is only possible to derive a suggested parameter set directly from Figures A2a and A3a for 
the average error. The RMS velocity error reduces with increasing average time. 

To be able to choose a parameter set from Figures A1 and A2 that fulfil the compromise of a 
small error for all calculated error classes, the error behaviours of the histogram-based and the 
Gaussian kernel based dynamic data filter have been normalised and averaged. The results can be 
seen in Figure A4. For both filters, a parameter set of averaging time and normalisation time can be 
found that produces the smallest mean error of all errors. 

Figure A5 illustrate the influence of the averaging time ∆  for all filters on the resulting errors. 
Because the dynamic filters are dependent on the normalisation time, the corresponding value of ∆  
was chosen from Figures A2 and A3. While all non-dynamic data filters are subjected relative 
comparable results for variable averaging times, the strongest impact can be seen for the RMS velocity 
error which decreases quadratically over ∆ . 

 

(a) (b)

(c) (d)

Figure A2. Visualisation of the influence of the normalisation time ∆  and the averaging time ∆  on 
the resulting error of staring mode LiDAR data from 04.01.2014 7:30h (UTC) till 05.01.2014 7:30h 
(UTC) from the histogram-based dynamic data filter (a) Average velocity error, (b) average velocity 
standard deviation error, (c) RMS velocity error and (d) RMS velocity standard deviation error. 

(a) (b)
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(c) (d)

Figure A3. Visualisation of the influence of the normalisation time ∆  and the averaging time ∆  on 
the resulting error of staring mode LiDAR data from 04.01.2014 7:30h (UTC) till 05.01.2014 7:30h 
(UTC) from the Gaussian kernel based dynamic data filter. (a) Average velocity error, (b) average 
velocity standard deviation error, (c) RMS velocity error and (d) RMS velocity standard deviation 
error. 

(a) (b)

Figure A4. Averaged and normalised error behaviour of the average velocity error, the RMS velocity 
error, the velocity standard deviation error and the RMS velocity standard deviation error of (a) the 
histogram-based dynamic data filter and (b) the Gaussian kernel based dynamic data filter. Staring 
mode LiDAR data from 04.01.2014 7:30h (UTC) till 05.01.2014 7:30h (UTC) form the basis for this 
calculation. 

(a) (b)
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(c) (d)

Figure A5. Visualisation of the influence of the averaging time ∆  for all filters to the resulting errors. 
(a) Average velocity error, (b) average velocity standard deviation error, (c) RMS velocity error and 
(d) RMS velocity standard deviation error. 

Appendix C – Comparison of waked and free inflow 

The following results were calculated in analogues way as described in Section 4.1. To obtain a 
better understanding of the filter behaviour, we distinguished between waked and free inflow 
conditions. We defined waked affected inflow wind direction from 110° to 180° and implied turbine 
wakes and the mast wake. This results can be seen in Table A1. 

Free inflow conditions at the ultrasonic anemometer was captured in a wind direction range 
within 180°–210°. Those results are provided in Table A2. 

Table A1. Comparison of different filtering methods applied on staring mode measurements for wake 
affected wind directions from 110° to 180°. 

 
Avg. 

Availability 
FINO1 

Avg. 
Availability 
All Ranges 

Abs. Avg. 
Velocity 

Error 

RMS 
Velocity 

Error 

Abs. Avg. 
Velocity Std. 

Dev. Error 

RMS
Velocity Std. 

Dev. Error 
Dyn. data histogram 89.9% 91.6% 0.50 m/s 3.13 m/s 0.21 m/s 2.14 m/s 

Dyn. data Gauss. kernel 63.6% 68.5% 0.47 m/s 2.91 m/s 0.19 m/s 1.10 m/s 
CNR threshold 76.1% 83.5% 0.75 m/s 4.10 m/s 0.50 m/s 2.68 m/s 

Std. dev. two sigma 96.6% 96.3% 0.73 m/s 3.28 m/s 1.04 m/s 3.50 m/s 
Iterative std. dev. 97.1% 97.5% 0.77 m/s 3.26 m/s 1.02 m/s 4.03 m/s 

Quartile filter 92.5% 93.3% 0.61 m/s 3.17m/s 0.53 m/s 3.28 m/s 
Combined Wang 72.1% 79.3% 0.68 m/s 4.24 m/s 0.05 m/s 2.24 m/s 

Combined Newman 76.0% 83.4% 0.70 m/s 4.10 m/s 0.29 m/s 2.56 m/s 
No filter 100% 100% 1.13 m/s 3.31 m/s 3.14 m/s 4.87 m/s 

Table A2. Comparison of different filtering methods applied on staring mode measurements for free 
inflow condition and wind directions from 180° to 210°. 

 
Avg. 

Availability 
FINO1 

Avg. 
Availability 
All Ranges 

Abs. Avg. 
Velocity 

Error 

RMS 
Velocity 

Error 

Abs. Avg. 
Velocity 
Std. Dev. 

Error 

RMS 
Velocity Std. 

Dev. Error 

Dyn. data histogram 89.3% 90.1% 0.07 m/s 0.81 m/s 0.04 m/s 1.26 m/s 
Dyn. data Gauss. kernel 70.9% 72.6% 0.02 m/s 0.91 m/s 0.18 m/s 0.63 m/s 

CNR threshold 89.3% 92.8% 0.13 m/s 0.90 m/s 0.17 m/s 1.43 m/s 
Std. dev. two sigma 96.1% 96.0% 0.24 m/s 1.32 m/s 0.32 m/s 2.11 m/s 

Iterative std. dev. 99.2% 99.4% 0.28 m/s 1.39 m/s 0.45 m/s 2.48 m/s 
Quartile filter 94.3% 94.6% 0.18 m/s 1.21 m/s 0.09 m/s 1.86 m/s 

Combined Wang 84.5% 87.8% 0.08 m/s 0.80 m/s 0.10 m/s 1.06 m/s 
Combined Newman 89.2% 92.7% 0.11 m/s 0.88 m/s 0.05 m/s 1.31 m/s 

No filter 100% 100% 0.38 m/s 1.44 m/s 1.03 m/s 2.87 m/s 
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