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Abstract: Using plastic mulching for farmland is booming around the world. Despite its benefit
of protecting crops from unfavorable conditions and increasing crop yield, the massive use of the
plastic-mulching technique causes many environmental problems. Therefore, timely and effective
mapping of plastic-mulched farmland (PMF) is of great interest to policy-makers to leverage the
trade-off between economic profit and adverse environmental impacts. However, it is still challenging
to implement remote-sensing-based PMF mapping due to its changing spectral characteristics with
the growing seasons of crops and geographic regions. In this study, we examined the potential of
multi-temporal Landsat-8 imagery for mapping PMF. To this end, we gathered the information of
spectra, textures, indices, and thermal features into random forest (RF) and support vector machine
(SVM) algorithms in order to select the common characteristics for distinguishing PMF from other
land cover types. The experiment was conducted in Jizhou, Hebei Province. The results demonstrated
that the spectral features and indices features of NDVI (normalized difference vegetation index),
GI (greenness index), and textural features of mean are more important than the other features
for mapping PMF in Jizhou. With that, the optimal period for mapping PMF is in April, followed
by May. A combination of these two times (April and May) is better than later in the season.
The highest overall, producer’s, and user’s accuracies achieved were 97.01%, 92.48%, and 96.40% in
Jizhou, respectively.

Keywords: mapping plastic-mulched farmland; multi-temporal Landsat-8 imagery; spectral feature;
textural feature; indices features; thermal feature

1. Introduction

Since the mid-20th century, the practice of plastic-mulched farmland (PMF) has revolutionized
agricultural production all over the world [1]. With the transparent and energy-saving covering
materials, plastic mulch can protect crops from unfavorable growing conditions, such as droughts
as well as extreme cold and heat. This manner can largely benefit the crop growth in addition to
expanding agricultural production to some unfavorable planting areas. PMF plays an increasing role
in modern agriculture. On the other hand, it is also criticized for posing environmental concerns,
such as “white pollution” and soil degradation [2,3]. Furthermore, plastic mulch also cannot be easily
decomposed in the natural environment. This might eventually result in the decrease of crop yields.
In addition, the plastic mulch used in PMF holds the special physical characteristics of high reflectance
and gas tightness. These features can alter the material and energy exchange between the land surface
and the atmosphere in the following three aspects: (1) More sunlight is reflected back to the atmosphere,
leading to an increase in the atmosphere temperature. (2) The transparency of plastic mulch allows
the transmission of shortwave radiation while blocking the emission of longwave radiation, thus
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increasing the temperature of the soil. (3) Plastic mulch prevents the water vapors produced from
evaporating. As a result, PMF might have an impact on the regional climate [4]. The environmental
problems caused by PMF have been exacerbated over recent years, creating a pressing demand to
monitor and optimize the use of PMF. For this, accurate information of the PMF distribution over
a large area is needed for policy makers and researchers in the field of land surface temperature,
evapotranspiration, crop phenology, and climate change, with this information being a prerequisite for
updating the existing land use database. Field surveys are part of the traditional approach to obtaining
this information. Nevertheless, this manner is time-consuming and labor-intensive. A long time is
needed to update the land use database. More importantly, the data reported at fixed observation
locations lack spatial details. The experience of the investigator also influences the accuracy of the
field data.

Remote sensing is considered to be a promising technique for acquiring up-to-date information
of land use with multiple temporal and spatial resolutions [5,6]. During the past years, land cover
mapping with remote-sensing data has drawn increasing attention, especially the one-class land cover
type extraction, such as a water body [7,8], impervious surface [4,9], agricultural landscape [10–12],
snow and ice [13,14], special vegetation, crop type identification [15,16], and so on.

In recent years, increasing attention has been paid to plasticulture. This includes an increased
focus on mapping the plastic greenhouses with remote sensing compared to plastic-mulched
farmland. For example, Levin et al. explored the feasibility of plasticulture landscape mapping
using hyperspectral data [17]. Agüera et al. proposed a classification scheme using the best band
combination of QuickBird images for plastic-greenhouse mapping [18]. After that, Agüera et al.
developed a pixel-based method for mapping a plastic greenhouse using texture features from
high-resolution images [19]. Carvajal et al. mapped the plastic greenhouse using QuickBird and
Ikonos images [20]. Arcidiacono et al. presented a pixel-based classification of high-resolution satellite
images for mapping crop-shelter coverage [21]. After that, Arcidiacono et al. proposed a per-pixel
classification for improving the crop-shelter coverage mapping by texture analyses of high-resolution
satellite images [22]. Tarantino et al. mapped the plastic covered vineyards using true color aerial
data [23]. Koc-San evaluated the performance of different classifiers for differentiating between glass
and plastic greenhouses using WorldView-2 images [24]. Recently, studies [25–27] have developed
an object-based approach for mapping plastic greenhouses using high spatial resolution images
(GeoEye-1 and WorldView-2). All these proposed methods mostly used high spatial resolution images.
Although they efficiently mapped plastic greenhouses in their study area, it will be limited by large
spatial extent, large data storage, and costly data procurement, in addition to having a time-consuming
process. More recently, Wu et al. [28] and Novelli et al. [29] developed an object-based approach for
mapping plastic greenhouses using medium spatial resolution images (Sentinel-2 and Landsat-8).
Yang et al. [30] presented a new spectral index for mapping plastic greenhouses with medium spatial
resolution satellite data.

However, the remote-sensing characteristics and the spatial distribution pattern of plastic-mulched
farmland is different from plastic greenhouses. The distribution area of plastic-mulched farmland
is larger than that of plastic greenhouses in China, and the spectral response of the plastic-mulched
farmland is changing more quickly than that of plastic greenhouses. Mapping PMF with remote
sensing began in the last few years. One of the earliest attempts refers to Wang et al., who probed
the feasibility of using multi-angle polarization information for to distinguish plastic-mulched paddy
fields from the water background [31]. They found that plastic mulch has distinct characteristics
of polarization reflection, with these characteristics differing with the type of plastic mulch and
wavelength channels. Lu et al. developed a decision-tree classifier for the extraction of plastic-mulched
cotton farmland in Xinjiang, China using Landsat-5 TM (Thematic Mapper) images [4]. In their work,
the effectiveness of the decision-tree classifier for PMF mapping was examined. However, the low pace
of revisiting of Landsat sensors limits its use for PMF mapping, as it is difficult to collect cloud-free
images in the “planting stage” (the time period that plastic mulch is visible). To overcome this problem,
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they performed PMF mapping utilizing the time series data of normalized difference vegetation index
(NDVI) from the moderate-resolution imaging spectrometer (MODIS) [32]. Although they identify
PMF in an efficient manner, these two methods are limited by several issues. The plastic mulch used in
different regions varies in color, thickness, and transparency, which alters the spectral characteristics
of PMF. These differences were rarely considered in the existing threshold methods, limiting their
performance when applied to other regions. Most importantly, the spectral information of PMF can be
constantly altered by the growth cycle of crops. Using the same standard to identify PMF lacks the
flexibility to capture seasonal variations, and may obfuscate the true pixel information. In addition,
the low spatial resolution imagery is not suitable for small-patched and fragmented agricultural
regions, as some smaller PMF are lost and mixed pixels become more serious. Accordingly, more
comprehensive consideration of these issues is needed to improve the rigor of PMF mapping with
remote sensing. For this, Hasituya et al. extracted the PMF information by using the spectral and
textural features from a single-temporal Landsat-8 OLI (Operational Land Imager) imagery with
a support vector machine (SVM) classifier. However, they found that the textural features from
a single Landsat-8 OLI imagery provide a limited or negligible improvement in mapping accuracy [33].
After that, they used the spectral and textural feature of the high spatial resolution GaoFen-1 satellite
image to map plastic-mulched farmland with an SVM classifier, and found that the textural features
performed better than spectral features when the spatial resolution of images was high enough [34].
However, these two studies both used the single temporal remote-sensing data.

In the field of land cover classification with remote sensing, the use of multi-temporal images
and multi-types of features is becoming mainstream. A large number of studies have examined
the performance of multi-temporal and multi-types of features—including optical and microwave
remote sensing—in mapping and change detection. For example, Zoungrana et al. detected the
land use/cover change in the Southwest of Burkina Faso using multi-temporal Landsat images and
ancillary data [35]. Yamazaki et al. developed a global water body map using multi-temporal Landsat
images [36]. Gao et al. monitored impervious surface expansion using time series medium-resolution
satellite images [37]. Fisher et al. mapped the large-area tree cover using multi-temporal SPOT-5
images [38]. Karale et al. classified crop types based on multi-temporal satellite remote sensing
data [39]. Wang et al. applied multi-temporal ENVISAT data for mapping agricultural areas in the
Pearl River Delta [40]. Larrañaga et al. completed a multi-temporal crop classification framework
using quad-polarization Radarsat-2 images [41]. The results reported that the multi-temporal images
capture the specific temporal characteristics of land cover types or the objects of special interest better
than the single temporal images.

The specific techniques used in remote-sensing image classifiers are broadly divided into:
(1) supervised and unsupervised classifiers by whether or not prior knowledge is needed; (2) parametric
supervised classifier and non-parametric supervised classifier (machine learning classifier) by whether
or not parameters are needed; (3) sub-pixel based, per-pixel based, and object-based classifiers according
to the basic operating unit; and (4) single classifier and ensemble classifier algorithms based on the
number of classifiers. The parametric supervised classifier relies on statistical descriptions of training
samples and assumes that the data are normally distributed, which is unsuitable for processing
high-dimensional and additional data. Furthermore, when using the non-parametric supervised
machine learning classifier, there is no need to make assumptions for data distribution, which can usually
result in higher accuracy. The non-parametric classifiers, including the neural network classifier, decision
tree classifier, support vector machines, and random forest, have great potential in remote-sensing
image classification [8,42–44]. The methods for mapping plastic greenhouses include conventional
supervised classification, object-based methods, machine learning classifiers (neural network, support
vector machine, random forest), index-based threshold methods, and so on. However, the methods
for mapping plastic-mulched farmland only include index-based threshold methods, decision tree
classifiers, support vector machine classifiers, and so on.
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From the review, we found that only five papers discussed mapping PMF with remote sensing.
The features include spectral reflectance, spectral indexes, and textural features. Other features
(e.g., thermal and temporal features) have not been considered until now. To this end, this paper
mainly discusses the effectiveness of multi-temporal and multi-types of features for PMF mapping by
machine learning classifiers. The goal relies on the combined use of multi-temporal Landsat-8 OLI
and Thermal Infrared Sensor (TIRS) imagery. More specific objectives were (1) to examine the optimal
period for PMF mapping; (2) to determine the most effective feature or feature set for PMF mapping;
(3) to evaluate whether the temporal combination improves the mapping accuracy of PMF; and (4) to
compare the performance of two different machine learning classifiers.

2. Study Area and Data

2.1. Study Area

China is considered to be one of the largest PMF planting countries in the world. By 2013,
PMF had a total coverage of 25 × 106 ha in China [45,46] (Figure 1). According to Liu et al., PMF has
increased the yield of economic food crops by 20%–30% and the yield of grain crops by 20%–60% [47],
contributing significantly to the sustainable development of agriculture in China.

In this study, two PMF areas (Figure 2) with different mulching practices were selected for the
development and examination of the new scheme. The first study area is located in Jizhou (latitude
and longitude range: 37◦18′40”N–37◦44′25′ ′N and 115◦09′57′ ′E–115◦41′07′ ′E), Hebei Province, China.
Covering an area of 9.22× 104 ha, Jizhou is one of the major agricultural production areas (5.93× 104 ha)
located on the North China Plain [48]. During the past year, it has experienced a considerable increase
in PMF. The area is under a temperate monsoon climate, characterized by a hot and rainy summer that
favors agricultural production. The rest of the year is relatively unfavorable for farming. The crops here
mainly include cotton, winter wheat, corn, and vegetables. According to our field survey, cotton fields
dominate the use of plastic mulch in this area. Other land use types consist of woodland, grassland,
water body, and impervious surface (traffic land, residential land, and industrial land).

The second study area is seated in Guyuan, Ningxia Hui Autonomous Region, China. It covers
an area of 5.19 × 106 ha, 21% of which is dominated by farmland [49,50]. As one of the ecological
barriers in the western part of China, Ningxia is characterized by a temperate semi-arid climate.
The annual average temperature is around 5.4–10.0 ◦C and the annual precipitation is about
169.5–611.8 mm. The area is covered by frost for most days in a year, leaving a frost-free time of around
148 days [51]. Irrigation is needed to facilitate the cultivation of crops. For the purpose of water-saving
in farmland, PMF has been widely used here for planting corn, winter wheat, and vegetables. It was
observed that early spring and autumn are the main times for crop mulching.
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2.2. Data

2.2.1. Remote-Sensing Data

Ten Landsat-8 OLI (Operational Land Imager) images (five images for each study area) were
collected to develop and validate the new scheme. The five images (path/row: 114/27) for Jizhou were
respectively taken on 16 April, 18 May, 3 June, 19 June, and 5 July in 2015. The other five images for
the Guyuan area were respectively acquired on 26 April, 12 May, 13 June, 15 July, and 31 July in 2015.
Radiometric calibration and atmospheric correction were conducted using the Fast Line of Sight
Atmospheric Analysis of Hypercubes (FLAASH) module in the Environment of Visualizing Images
(ENVI) software. The brightness temperature was also acquired from the Landsat TIRS (Thermal
Infrared Sensor) images by applying the predesigned parameters in the Metadata file.

Eight high spatial resolution GF-1 (GaoFen-1, Chinese satellite) images (2 m for the panchromatic
band and 8 m for the multispectral bands with width of 60 km) were also collected as the reference
data source for the collection of samples. This dataset contains six images for Jizhou area: four images
taken on 5 May 2015 and two images taken on 11 June 2015. Two GF-1 images (acquisition date:
8 April 2015) were collected for the Guyuan area. For the multispectral bands, radiometric calibration
and atmospheric correction were carried out using the ENVI software. The multispectral images were
then downscaled to a spatial resolution of 2 m using a Gram-Schmidt Pan Sharpening module. These
pan-sharpened GF-1 images were then mosaicked to produce the reference images for the two study
areas. Geo-referencing between the Landsat-8 OLI and the pan-sharpened GF-1 images was completed
in ENVI with 30 ground control points (GCP). The final registration error was smaller than one GF-1
pixel (i.e., 2 m) evaluated by 20 other independent GCPs.
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2.2.2. Field Survey Data

To collect the real-field information of land use, a field survey was carried out during
25–30 April 2015. In the trial, we recorded both the land use types and the coordinates of the sampling
points. The land use types mainly consist of PMF, bare soil, impervious surface, vegetation, and water
in Jizhou, while the land use types mainly consist of PMF, bare soil, impervious surface, vegetation,
water, plastic greenhouse, and mountain areas in Guyuan. After that, we digitized these sampling
points into the GF-1 and Landsat-8 OLI images to produce the region samples. Instead of using the
real-field sampling points, we enlarged the sampling region to a window of 60 m × 60 m on the
GF-1 image (2 × 2 Landsat pixels). It is important to note that we slightly relocated the windows to
guarantee the purity of each window. The samples were then modified by comparison with the Landsat
images in each season to guarantee the consistency of samples across growing seasons. As shown in
Table 1 and Figure 2, a total of 1136 samples were eventually collected for the Jizhou area and another
648 samples were collected for the Guyuan area. The samples of each study area were then equally
divided into two groups: training samples and testing samples.

Table 1. The land cover classification scheme in Jizhou and Guyuan.

Land Cover Types Remarks Jizhou Guyuan Final

Plastic-Mulched Farmland (PMF) White Plastic Film 256 167 PMF

Impervious Surface (IS) Buildings, Factories, Roads, and Dam Boundaries 301 110

Non-PMF

Vegetation Cover (VC) Crop, Vegetable Field, Grassland, Woodland 305 122
Water Body (WB) Rivers, Lakes, and Irrigation Canals 74 25

Bare Soil (BS) Bare Land, Fallow land, and Abandoned Land 200 98
Plastic Greenhouse (PG) Walk-in or medium plastic tunnel - 54

Mountain Area (MA) Mountain Area - 71

3. Methodology

The features play a key role in the extraction of PMF. A better combination of features can
significantly improve the mapping performance. Therefore, the main idea of this present study is to
optimize the selection of features for PMF mapping by integrating the temporal and spatial information.
Figure 3 shows the framework of the proposed scheme. It mainly consists of four steps: spectral
characteristic analysis, feature extraction, as well as feature selection and mapping.
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3.1. Spectral Response Analysis

Identifying the distinct spectral characteristics is critical for the development of the PMF mapping
method. In this study, pixel-based spectral curves of typical land cover types were manually extracted
from the multi-temporal Landsat-8 OLI images. As the sample area is relatively homogeneous,
we sampled a total of 200 Landsat pixels from each atmospheric-corrected image. These samples
included 40 pixels under five classes: PMF, impervious surface (IS), bare soil (BS), vegetation cover
(VC), and water body (WB). The mean spectra of each class were then derived.

Figure 4 shows the mean spectra of typical land cover types in Jizhou. It is evident that the
spectral characteristics of PMF change over time. During the planting stage, the spectrum of PMF
more resembles the BS and IS. The vegetation signal dominates the spectral response of PMF when the
plastic mulch is covered by vegetation. Therefore, it is difficult to separate the PMF from other land
cover types based solely on a single image. Accordingly, we conducted PMF mapping by combining
the multi-temporal Landsat-8 OLI images.
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3.2. Feature Extraction

In this study, a total of 84 types of features (Table 2) were derived from the multi-temporal
Landsat-8 images. These features can be categorized into four types: spectral features, textural features,
indices features, and thermal features. We extracted these 84 features for each Landsat-8 image,
eventually producing a total of 420 features for each study area.
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Table 2. The extracted features from a single temporal Landsat-8 image. NDBI: normalized difference
built-up index; NDVI: normalized difference vegetation index.

Types of Features Remarks of Features Feature Name Abbreviation Number

Spectral features

Reflectance

Coastal aerosol CA

7

Blue B
Green G
Red R
NIR NIR
SWIR 1 SWIR1
SWIR 2 SWIR2

Derivative of reflectance

1st/2nd derivative Coastal aerosol CA_1/2

14

1st/2nd derivative Blue B_1/2
1st/2nd derivative Green G_1/2
1st/2nd derivative Red R_1/2
1st/2nd derivative NIR NIR_1/2
1st/2nd derivative SWIR 1 SWIR1_1/2
1st/2nd derivative SWIR 2 SWIR2_1/2

Textural Features
Eight commonly-used
textural features computed
from seven bands

Mean Mea_CA/B/G/R/NIR/SWIR1/SWIR2

56

Variance Var_CA/B/G/R/NIR/SWIR1/SWIR2
Contrast Con_CA/B/G/R/NIR/SWIR1/SWIR2
Homogeneity Hom_CA/B/G/R/NIR/SWIR1/SWIR2
Dissimilarity Dis_CA/B/G/R/NIR/SWIR1/SWIR2
Entropy Ent_CA/B/G/R/NIR/SWIR1/SWIR2
Angular second moment ASM_CA/B/G/R/NIR/SWIR1/SWIR2
Correlation Cor_CA/B/G/R/NIR/SWIR1/SWIR2

Indices Features
Indices from tasseled cap
transformation (TCT),
Index from reflectance

Brightness Index BI

5
Greenness Index GI
Wetness Index WI
NDBI NDBI
NDVI NDVI

Thermal Features Brightness temperature from
thermal infrared bands

Brightness temperature-1 BT_1
2Brightness temperature-2 BT_2

3.2.1. Spectral Features

In this study, seven bands of Landsat-8 OLI images were selected, including coastal aerosol
(band 1, 0.433–0.453 µm), blue (band 2, 0.45–0.515 µm), green (band 3, 0.525–0.605 µm), red (band 4,
0.63–0.690 µm), near-infrared (NIR, band 5, 0.75–0.90 µm), short-wave infrared-1 (SWIR1, band 6,
1.55–1.75 µm), and short-wave infrared-2 (SWIR2, band 7, 2.09–2.35 µm). Furthermore, the derivative of
image is also considered in this study, as it can effectively delineate the variation and edge information
of the image. We used the Sobel operator to obtain the first and second derivatives of image.

3.2.2. Textural Features

The PMF always exhibits distinct textural characteristics compared with other land cover types.
For example, the PMF areas are regularly separated by non-plastic-mulched crops to prevent flooding
when there is heavy rain. This manner can largely increase the heterogeneity of the PMF area.
In addition, the plastic film used in PMF is quite smooth, which can also increase the surface
homogeneity. Therefore, it is worth taking textural information into consideration in PMF mapping.

In this study, eight types of textural features were derived from the multi-temporal Landsat
images. A gray level co-occurrence matrix (GLCM) method was applied here to obtain the textural
features to ensure good performance in texture analysis [52–56]. These features include the mean,
variance, homogeneity, contrast, dissimilarity, entropy, angular second moment, and correlation
calculated in a window of 3 × 3 pixels. We extracted the eight types of textural features for each band,
eventually generating a total of 56 textural features.

3.2.3. Indices Features

Tasseled Cap Transformation (TCT)

As plastic mulching can change the soil conditions in terms of temperature and moisture,
the indices produced by the tasseled cap transformation (TCT; brightness, greenness, and wetness)
were taken as a measure of this effect for PMF mapping.
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TCT is a linear transformation of spectral information based on experience. It reduces the
dimension of an image into three new physical features (brightness, greenness, and wetness) with
minimal inter-correlation. The “brightness” is a weighted sum of all the bands. It represents the
variability of the imagery. It is generally related to whether the soil is completely or partially bare,
the presence of natural and man-made objects, as well as the variations in topography. The “greenness”
is a measure of the conditions of the vegetation. It is determined by the coverage, leaf area, and biomass
of vegetation. Soil is characterized by a high brightness value and low greenness value, while the forest
shows a low brightness value and a low greenness value. The “wetness” is produced in an orthogonal
direction to the first two components. It is a measure of the water content in the soil and vegetation [57].
The TCT is conducted in the ENVI software using the predesigned parameters for the Landsat-8 OLI
sensor. The transformation coefficients (Table 3) recommended by Muhammad et al. [57] were adopted
here for the TCT. Equation (1) shows the linear function applying the coefficients.

Y = cX + a (1)

where X is a vector of satellite image bands; Y is the vector of brightness, greenness, and wetness;
c is the transformation coefficient vector (Table 3); and a is an increment value, which can offset the
negative values.

Table 3. TCT (tasseled cap transformation) coefficients of Landsat-8 imagery. BI: brightness index;
GI: greenness index; WI: wetness index.

TCT Blue Green Red NIR SWIR1 SWIR2

BI 0.3029 0.2786 0.4733 0.5599 0.508 0.1872
GI −0.2941 −0.243 −0.5424 0.7276 0.0713 −0.1608
WI 0.1511 0.1973 0.3283 0.3407 −0.7117 −0.4559

NDVI and NDBI

The normalized difference vegetation index (NDVI) [32] and normalized difference built-up index
(NDBI) [58] were taken into account for PMF mapping in this study. NDVI is a pixel-based measure
of the vegetation, while NDBI is a measure of built-up area within a Landsat pixel. A higher NDVI
means better vegetation conditions, while a higher NDBI means a greater built-up area. Hasituya
et al. [33] pointed out that the PMF was frequently confused with impervious surface. Therefore,
the incorporation of NDBI is expected to solve this problem. They are defined as follows:

NDVI =
b5 − b4

b5 + b4
(2)

NDBI =
b6 − b5

b6 + b5
(3)

where b4 and b5 and b6 are, respectively, the red, NIR, and SWIR-1 bands of the Landsat-8 sensor.

3.2.4. Thermal Features

In this study, we probed the potential of the thermal information for PMF mapping.
The brightness temperature was provided by the Landsat-8 TIRS images. It can be computed via the
following equation:

Tb =
K2

ln
(

K1
Lλ+1

) (4)

where Tb is at-satellite brightness temperature (K); Lλ is the TOA (top of atmosphere) spectral radiance
(W/(m2 × srad × µm)); and K1 and K2 are the thermal conversion constants from Landsat metadata
(K1−1 = 774.89, K1−2 = 480.89, K2−1 = 1321.08, K2−2 = 1201.14). In order to keep consistency between
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different indices, the brightness temperature was rescaled under Equation (5) [59], stretching to the
range of (0,1).

Tbr =
Tb −min(Tb)

max(Tb)−min(Tb)
(5)

where Tbr is the rescaled brightness temperature; Tb is the brightness temperature; min(Tb) is the
minimum value of the brightness temperature; and max(Tb) is the maximum value of the brightness
temperature.

3.3. Feature Selection and Classification Methods

3.3.1. Random Forest for Feature Selection

The efficiency and accuracy of mapping with remote sensing will be improved by selecting
the optimal feature subset [60,61]. To find effective features for PMF mapping, the feature selection
approach—which reduces the correlation and redundancy of features—was applied in our experiment.
Random forest (RF), first developed by Breiman in 2001 [62], is an ensemble method for supervised
classification based on classification and regression trees (CART). RF is well-known because it
is efficient to compute, robust to outliers and noise, in addition to being useful for estimating
error, strength, correlation, and variable importance [63]. RF is also an effective feature selection
algorithm [63,64]. In this paper, RF was used to optimize the features for PMF mapping by using
the importance of features evaluated by RF [65]. A detailed process for measuring the importance of
features by RF was presented by Guan et al. [66].

In our experiment, RF was performed to measure the importance of all features in each single
temporal feature set and each multi-temporal feature set, respectively. Two parameters were set
beforehand: the number of trees and the number of variables. A total of 500 trees were grown each time,
and the square root of the number of total input features were used as the number of split variables in
this paper. Due to the randomness of RF, calculated feature importance varied slightly across different
runs. To avoid these differences, we repeated the feature importance measurements ten times and
calculated the average importance value. Following this, the features were sorted in descending order
of their average importance, and the cumulative average importances were calculated for each single
temporal feature. Next, we developed feature sets according to the cumulative percentage of feature
importance for mapping PMF. For these features, the cumulative percentages were 30%, 50%, 80%, 90%,
and 100%. After this, we chose the feature set with the highest accuracy to develop the multi-temporal
combined features.

After the development of a feature set for mapping PMF in each temporal and each multi-temporal
combination, two supervised machine learning classifiers, Random Forest (RF) and Support Vector
Machine (SVM), were performed for mapping PMF. Finally, we selected the optimal feature set for
mapping PMF according to the classification accuracy.

3.3.2. Random Forest and Support Vector Machine for Classification

To provide the baseline for the efficiency of RF, the support vector machine (SVM)—another
machine learning supervised classifier—was used for the same features and the same samples
for mapping PMF. SVM is designed to find an optimal hyperplane as a decision function in
high-dimensional space based on statistical learning theory. The SVM approach uses the principle
of structural risk minimization, not the principle of empirical risk minimization [67]. Therefore,
the performance of SVM has been examined by many studies [68–71].

In this paper, the RF-supervised classifier was performed to map PMF in each single temporal and
multi-temporal combination based on the selected features by RF and the collected training samples.

In this study, the classification was carried out using EnMAP-Box, an IDL based tool for remotely
sensed imagery classification [72].
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3.3.3. Accuracy Assessment

Accuracy Assessment Using Confusion Matrix

The classification accuracies were assessed quantitatively by using the confusion matrix, which
is a common used method in remote sensing. This study used overall accuracy (OA), which is
computed by dividing correctly classified pixels by the total number of pixels, and the kappa
coefficient (K), which considers the whole confusion matrix instead of using only diagonal elements.
In addition, producer’s accuracy (PA) and user’s accuracy (UA) were used to assess the accuracies of
individual classes.

Statistical Significance Testing for Classification Accuracies Using Z-Test

The classification accuracies were further confirmed by using the Z-test [73], which is a method
for testing the statistical significance of the K statistic and significance differences of different
classification schemes.

With this test, it is possible to statistically compare two analysts, the same analyst over different
times, two algorithms, two types of imagery, or even two dates of imagery for examining which
produces higher accuracy. To verify the effectiveness of different feature sets and different classifiers,
the Z-test was performed on the pairwise error matrix of different analysts. The test statistic for testing
if two independent error matrices are significantly different is expressed by the following formula:

Z =
|K1 − K2|√

Var(K1 + K2)
(6)

where K1 and K2 denote the estimates of the Kappa statistic for error matrix 1 and 2, respectively;
var (K1) and var (K2) are the corresponding estimates of the variance of K as computed from the
appropriate equations. At the 99% confidence level, the critical value would be 2.58. Therefore, if the
absolute value of the test Z statistic is greater than 2.58, the two analysts are significantly different.

4. Results and Discussion

4.1. Results

4.1.1. Random Forest Feature Selection for Single Temporal PMF Mapping in Jizhou

Figure 5 shows that there were obvious differences in the importance of different features,
which changed with the development of the growing season. In the whole growing season, the spectral
features took a dominant position, the indices features and textural features (except for the mean)
were inferior to spectral features, while the thermal features were inferior to the others. In 16 April,
the spectral and indices features were more important than the other features. In 18 May and 3 June,
the spectral and indices features and textural feature of mean were more important than the other
features. The importance of some textural features in 18 May were slightly higher than that in 16 April,
although this importance was reduced after this time period. In 19 June and 5 July, the spectral and
indices features were also the more important feature for PMF mapping.

Table 4 shows the 20 most important features selected by RF in different growing seasons. In the
early mulching stage (16 April), the first derivative of the red band, greenness index, NDVI, the red
band, and the second derivative of red band were sorted as the five most important features. In the
early–mid mulching stage (18 May), the mean of NIR, the first derivative of green band, NDVI, mean
of coastal aerosol band, and greenness index were sorted as the five most important features. In the
middle mulching stage (3 June), the mean of SWIR2, SWIR2, mean of NIR, the first derivative of
SWIR1, and the first derivative of the red band were selected as the five most important features. In the
mid–later mulching stage (19 June), the first derivative of SWIR2, the second derivative of SWIR1,
the first derivative of red band, the second derivative of SWIR2, and the greenness index were chosen
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as the five most important features. In the later mulching stage (5 July), the second derivative of NIR,
the first derivative of SWIR2, the first derivative of the red band, the second derivative of SWIR1,
and the mean of NIR were identified as the five most important features for PMF mapping.
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Table 4. Top 20 selected features from RF (random forest) for mapping PMF in different parts of the
growing season.

Order 16 April 18 May 3 June 19 June 5 July

1 R_1 NIR_M SWIR2_M SWIR2_1 NIR_2
2 GI G_1 SWIR2 SWIR1_2 SWIR2_1
3 NDVI NDVI NIR_M R_1 R_1
4 R CA_M SWIR1_1 SWIR2_2 SWIR1_2
5 R_2 GI R_1 GI NIR_M
6 G_1 CA NIR_2 NIR_2 SWIR1_1
7 G_2 SWIR2_2 GI NDVI SWIR2_2
8 NIR SWIR1_1 SWIR1_M NIR GI
9 R_M NIR_2 NIR G_2 NIR

10 NIR_M B SWIR1 NIR_M G_2

11 G SWIR1 B_1 NIR_1 R_2
12 BI R_1 NDVI SWIR1_1 NDVI
13 NIR_2 B_M NDBI NDBI NDBI
14 B_2 SWIR1_M BI R_2 NIR_1
15 SWIR2 R CA_M CA_2 R
16 SWIR1 SWIR2 WI SWIR1_M R_M
17 G_M G_2 R SWIR1 G
18 SWIR1_M B_1 G_2 SWIR2 WI
19 B_1 BI R_M BI BI
20 SWIR1_1 R_M SWIR1_2 WI SWIR2_M
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Generally, the spectral features (especially the derivative of spectral reflectance) were the most
important features for mapping PMF, while the textural feature (mean) and the indices features
(NDVI and GI) were also important. In the early mulching stage, the spectral features of visible–near
infrared were more important than the other features. From the early–mid to later mulching stage,
the spectral and mean textural features of the near and short-wave infrared became more important
for mapping PMF in Jizhou. The thermal features did not appear in the ten most important features in
our experiment.

4.1.2. Mapping PMF in Jizhou using Single Temporal Features

We classified the land cover types in Jizhou by RF and SVM based on the developing features.
These cumulative percentages were 30%, 50%, 80%, 90%, and 100%. To compare the effectiveness
of selected optimal features, we also classified the land cover types using spectral features alone
(seven bands) and the textural features alone (56 textural features). All the OA, Kappa, PA, and UA of
RF and SVM are presented in Table 5.

Table 5. The mapping accuracies generated from RF using different features in Jizhou. OA: overall
accuracy; PA: producer’s accuracy; UA: user’s accuracy.

Date
(YYYY.MM.DD)

Cumulative Percentage
of Importance

RF Classifier SVM Classifier

OA PA UA Kappa OA PA UA Kappa

2015.04.16

30% 91.21 89.84 87.01 0.89 88.39 78.25 89.53 0.85
50% 92.99 91.06 90.69 0.91 86.12 80.69 89.01 0.82
80% 93.08 90.85 90.67 0.91 91.43 86.59 93.01 0.89
90% 93.13 88.21 91.56 0.91 90.85 83.94 91.57 0.88
100% 94.02 91.67 93.18 0.92 91.38 84.76 90.26 0.89

Spectral Features 91.21 84.96 91.47 0.89 88.26 82.93 89.67 0.85
Textural Features 90.09 85.57 88.45 0.87 89.69 84.35 88.68 0.87

2015.05.18

30% 94.24 85.57 91.13 0.93 95.00 87.40 92.67 0.94
50% 94.06 86.59 89.87 0.92 95.04 87.80 91.91 0.94
80% 94.42 86.79 90.66 0.93 93.17 83.13 88.72 0.91
90% 94.60 86.79 91.24 0.93 93.08 84.55 89.27 0.91
100% 94.87 86.79 91.83 0.93 95.63 88.82 92.39 0.94

Spectral Features 90.31 78.25 82.09 0.87 91.83 77.03 88.34 0.89
Textural Features 91.47 84.55 81.41 0.89 91.83 82.32 82.99 0.89

2015.06.03

30% 82.37 71.75 75.59 0.77 77.68 65.85 72.00 0.71
50% 85.18 74.19 77.00 0.81 84.11 74.59 76.62 0.79
80% 85.36 74.19 77.00 0.81 84.73 74.80 77.15 0.80
90% 88.30 73.98 82.54 0.85 88.21 69.72 81.67 0.85
100% 88.30 73.98 80.35 0.85 87.14 72.15 76.84 0.83

Spectral Features 83.97 73.58 75.26 0.79 80.76 69.72 72.98 0.75
Textural Features 86.38 72.97 75.10 0.82 83.84 65.45 71.88 0.79

2015.06.19

30% 77.95 71.95 76.29 0.71 79.29 73.17 81.08 0.73
50% 79.73 72.15 82.18 0.74 81.56 74.59 82.47 0.76
80% 81.52 71.54 84.01 0.76 82.23 73.98 83.11 0.77
90% 82.05 71.75 84.25 0.77 81.83 73.17 81.08 0.76
100% 80.98 69.51 82.61 0.75 79.87 69.51 82.01 0.74

Spectral Features 77.95 71.95 76.96 0.71 81.07 77.85 80.97 0.75
Textural Features 74.87 71.95 70.80 0.67 75.18 70.33 73.46 0.68

2015.07.05

30% 72.05 66.26 71.65 0.64 71.25 65.65 68.14 0.63
50% 72.32 65.24 72.95 0.64 71.83 65.65 70.37 0.63
80% 74.11 64.63 73.27 0.66 74.78 62.60 72.13 0.67
90% 74.60 68.29 76.02 0.67 74.02 64.02 69.08 0.66
100% 73.84 67.07 76.57 0.66 73.57 65.45 72.85 0.66

Spectral Features 68.30 63.82 74.76 0.59 73.48 66.06 71.74 0.65
Textural Features 66.83 67.68 71.15 0.57 68.66 59.55 66.14 0.59

Table 5 reveals that the mapping accuracy of PMF varied across different features, different periods,
and different classifiers. When using the RF, all the accuracies from the optimal feature set were higher
than that from the spectral features alone or textural features alone, especially in the early mulching
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stage (April and May). It is not so obvious and regular when using SVM. In the later mulching stage
(June to July), these characteristics are not so obvious for either RF or SVM. The accuracies of April
and May were significantly higher than those of June to July. Therefore, the early mulching stages
(mid-April and mid-May) are the optimal periods for mapping PMF in Jizhou.

There were also differences between these two periods. When using the RF classifier, all the
features provided the highest accuracy in April and May. The OA, PA, UA, and Kappa were 94.02%,
91.67%, 93.18%, and 0.92, respectively in April, while these values were 94.87%, 86.79%, 91.83%,
and 0.93, respectively, in May. The second-highest accuracy provided by 50% of the features occurred
in April, the OA, PA, UA, and Kappa were 92.99%, 91.06%, 90.69%, and 0.91 respectively. In May,
the second-highest accuracy was provided by 80% of the features, the OA, PA, UA, and Kappa were
94.42%, 86.79%, 90.66%, and 0.93, respectively. The highest PA and UA of the mapping PMF were
provided by 50% of features in April by using RF.

When using SVM, 80% of the features provided the highest accuracy in April, the OA, PA, UA,
and Kappa were 91.43%, 86.59%, 93.01%, and 0.89, respectively. One hundred percent of the features
provided the highest accuracy in May, the OA, PA, UA, and Kappa were 95.63%, 88.82%, 92.39%,
and 0.94, respectively. Therefore, the remote-sensing data in April is better for PMF mapping than
May. However, after the middle mulching stage (June to July), all the PA and UA values of PMF were
lower than 80% using both RF and SVM. Furthermore, later periods resulted in lower accuracies being
obtained. Therefore, we can get the preliminary conclusion that the optimal phase of PMF mapping
is between April and mid-May. While there were some differences between classifiers, the accuracy
generated from RF was higher than that from SVM.

The Z-test was performed to confirm that this classification was meaningful and significantly
better than a random classification, and to assess the significance of differences in accuracies of
classification obtained from different feature sets and classifiers. The Z-test values between pairs of
features and classifiers are given in Table 6.

Table 6. Z-test values for the pairwise comparison of the error matrices of single temporal mapping.

Pairwise Comparison Z p

The highest accuracy of RF VS. The poorest accuracy of RF 4.69 <0.005
The highest accuracy of SVM VS. The poorest accuracy of SVM 4.64 <0.005

The highest accuracy of RF VS. The highest accuracy of SVM 4.36 <0.005
The poorest accuracy of RF VS. The poorest accuracy of SVM 2.83 <0.005

Table 6 shows that the Z-test value was 4.69 (higher than 2.58) when comparing the feature
set with the highest accuracy and with the poorest accuracy derived from RF. This means that the
performance of these two feature sets was significantly different at the 99% confidence level when using
RF. Similarly, when using SVM, the performance of different feature sets differed significantly because
the Z-test value was 4.64 (higher than 2.58). For the different classifiers, the Z-test value was 4.36
(higher than 2.58) when comparing the highest accuracy of RF and SVM. The Z-test value was 2.83
(higher than 2.58) when comparing the poorest accuracy of RF and SVM. Therefore, the performance
of RF and SVM was significantly different at the 99% confidence level.

4.1.3. Mapping the PMF in Jizhou Using Multi-Temporal Combined Features

In the multi-temporal experiment, we combined the optimized features that produced the highest
accuracy, respectively, in 16 April, 18 May, 3 June, and 19 June. The feature combination includes
a two-temporal combination, three-temporal combination, and four-temporal combination (Table 7).
RF and SVM classifiers were performed based on the selected multi-temporal features.

Table 7 shows that the highest OA, PA, UA, and Kappa of RF were 97.01%, 93.29%, 96.67%,
and 0.96. These were higher than the highest accuracy from single temporal features. The two-temporal
combined images of 16 April and 18 May provided the highest accuracy, followed by the two-temporal
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combined images of 16 April and 3 June, and then the three-temporal combined images of 16 April,
18 May, and 3 June. The highest OA, PA, UA, and Kappa of SVM were 95.80%, 89.63%, 94.23%, and 0.95,
produced by the two-temporal combined images of 16 April and 18 May. In the multi-temporal
combination experiment, the RF also outperforms the SVM.

In this section, we also performed the Z-test. The Z-test values between pairs of features and
classifiers are given in Table 8. Table 8 shows that the Z-test value from the comparison of the
highest accuracy from single and multi-temporal features using RF was 6.32, which is higher than 2.58.
This Z-test value was 10.82 when comparing the poorest accuracy from single and multi-temporal
features using RF. Similarly, when using SVM, the Z-test values were 5.95 and 10.52, respectively,
for single and multi-temporal features with highest accuracy and the poorest accuracy. This indicates
that the performance of single and multi-temporal features was significantly different at the 99%
confidence level when using RF and SVM. For comparing the RF and SVM, the Z-test value was
4.75 using the single temporal features, while the Z-test value was 4.36 using the multi-temporal
features. Therefore, the performance of RF is significantly better than SVM using both single and
multi-temporal features.

Table 7. The mapping accuracies of PMF in Jizhou using combined multi-temporal features.

Temporal Combination Number of
Features

RF SVM

OA PA UA Kappa OA PA UA Kappa

Two-Temporal
Combination

16 April, 18 May 2015 24 97.01 92.48 96.40 0.96 95.80 89.63 94.23 0.95
16 April, 03 June 2015 26 96.43 93.29 94.44 0.95 91.92 85.37 95.02 0.90
16 April, 19 June 2015 21 94.51 89.43 95.03 0.93 90.09 80.28 96.34 0.87
18 May, 03 June 2015 28 94.02 85.16 90.69 0.92 93.62 81.30 91.53 0.92
18 May, 19 June 2015 23 94.78 84.55 94.12 0.93 90.58 78.86 90.02 0.88
03 June, 19 June 2015 25 89.29 73.17 85.31 0.86 85.45 68.70 86.89 0.81

Three-Temporal
Combination

16 April, 18 May,
03 June 2015 39 96.88 92.68 95.80 0.96 95.45 89.02 92.99 0.94

16 April, 18 May,
19 June 2015 34 96.43 88.62 96.67 0.95 94.78 84.55 96.74 0.93

16 April, 03 June,
19 June 2015 38 96.16 90.04 95.27 0.95 94.69 86.59 94.04 0.93

36 94.60 82.72 94.43 0.93 91.12 76.02 87.79 0.89

Four-Temporal
Combination

16 April, 18 May,
03 June, 19 June 2015 49 96.34 89.02 95.42 0.95 95.04 87.60 94.93 0.94

Table 8. Z-test values for the pairwise comparison of the error matrices of multi-temporal mapping.

Pairwise Comparison Z p

The highest accuracy of single temporal RF VS. The highest accuracy of multi-temporal RF 6.32 <0.005
The poorest accuracy of single temporal RF VS. The highest accuracy of multi-temporal RF 10.82 <0.005

The highest accuracy of single temporal SVM VS. The highest accuracy of multi-temporal SVM 5.95 <0.005
The poorest accuracy of single temporal SVM VS. The highest accuracy of multi-temporal SVM 10.52 <0.005
The highest accuracy of single temporal RF VS. The highest accuracy of single temporal SVM 4.36 <0.005
The highest accuracy of multi-temporal RF VS. The highest accuracy of multi-temporal SVM 4.75 <0.005

4.1.4. Evaluating the Importance of Multi-Temporal Combined Features in Jizhou

We evaluated the importance of multi-temporal features using RF to analyze the contribution of
features in a multi-temporal combination, in which DOY (Day of Year) 106 is 16 April, DOY 138 is 18 May,
DOY 154 is 3 June, and DOY 170 is 19 June. Figure 6 reveals that the features in April and May were more
important than the others in all combinations. Among the two-temporal combinations, the five most
important features included the 106-GI in the 106–170 combination, 138-G-1 in the 106–138 combination,
154-SWIR2-M in the 154–170 combination, 106-R-1 in the 106–154 combination, and 138-G-1 in the
138–154 combination. Among the three-temporal combinations, the five most important features included
the 138-G-1 in the 106–138–154 combination, 106-GI in the 106–154–170 combination, 138-G-1 in the
138–154–170 combination, 138-G-1 in the 106–138–170 combination, and 138-GI in the 138–154–170
combination. Among the four-temporal combinations, the five most important features included the
138-G-1, 138-SWIR, 138-GI, 138-SWIR1-1, and 138-NIR-M.
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4.1.5. The Spatial Distribution of PMF in Jizhou

Figures 7 and 8 show the spatial distribution of PMF generated from different feature subsets
and classifiers in different periods. Figures 7 and 8 reveal that there were large differences between
different features and between different times. The PMF from April had a smaller distribution than
that from the other periods. The results from June to July had serious commission errors. The results
from April and May were more acceptable and reasonable in light of field investigation and higher
resolution images. The reasons for these results include the PMF being seriously confused with the
bare soil in April, while the remote-sensing signature of PMF was influenced by the well-developed
plastic-mulched crops in June to July. When using the spectral features alone, there was a greater
salt-and-pepper effect in the distribution of PMF—especially from May to July. When using the
textural features alone, the salt-and-pepper effect was relieved to some extent, but there were also more
commission and omission errors. The optimized features provided better spatial distribution for PMF.
The temporal combination provided the best result. The distribution maintained good consistency
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with the knowledge from field investigation. Generally, the PMFs were concentrated in the middle
region in addition to being scattered in the southern and northern regions. The RF and SVM followed
a similar general trend to the distribution of PMF.Remote Sens. 2017, 9, 557  17 of 27 
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represents the results from the optimized features, and the fifth line represents the results from 
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Figure 7. Spatial distribution of PMF in Jizhou using RF feature selection and RF classifier. The first
line represents the results from spectral reflectance features, the second line represents the result
from the textural features, the third line represents the results from the total features, the fourth line
represents the results from the optimized features, and the fifth line represents the results from optimal
temporal combined features. (a) 2015.04.16; (b) 2015.05.18; (c) 2015.06.03; (d) 2015.06.19; (e) 2015.07.05;
(x) two-temporal combination of 2015.04.16 and 2015.05.18; (y) three-temporal combination of
2015.04.16, 2015.05.18, and 2015.06.03; and (z) four-temporal combination of 2015.04.16, 2015.05.18,
2015.06.03, and 2015.06.19.
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4.2.1. Contribution of Feature Optimizing 

The contribution of feature optimizing was explained by comparing the factors in the confusion 
matrix of the classification of land cover types with the poorest (textural features alone) and the 
highest accuracy (two-temporal combined features from April and May) before and after the feature 
optimizing. Table 9 shows that the factors on the diagonal were smaller and the other factors were 
relatively greater in the confusion matrix with the poorest accuracy. These trends were found to be 
opposite in the confusion matrix of the highest accuracy. This means that the feature optimization 

Figure 8. Spatial distribution of PMF in Jizhou using the SVM feature selection and SVM classifier.
The first line represents the results from spectral reflectance features, the second line represents
the result from the textural features, the third line represents the results from the total features,
the fourth line represents the results from the optimized features, and the fifth line represents the
results from optimal temporal combined features. (a) 2015.04.16; (b) 2015.05.18; (c) 2015.06.03; (d)
2015.06.19; (e) 2015.07.05; (x) two-temporal combination of 2015.04.16 and 2015.05.18; (y) three-temporal
combination of 2015.04.16, 2015.05.18, and 2015.06.03; and (z) four-temporal combination of 2015.04.16,
2015.05.18, 2015.06.03, and 2015.06.19.

4.2. Discussion

4.2.1. Contribution of Feature Optimizing

The contribution of feature optimizing was explained by comparing the factors in the confusion
matrix of the classification of land cover types with the poorest (textural features alone) and the
highest accuracy (two-temporal combined features from April and May) before and after the feature
optimizing. Table 9 shows that the factors on the diagonal were smaller and the other factors were
relatively greater in the confusion matrix with the poorest accuracy. These trends were found to be
opposite in the confusion matrix of the highest accuracy. This means that the feature optimization
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can relieve serious confusion between land cover types, in particular the confusion between PMF
and BS or IS. From Table 9, we can see that the confusion between PMF and BS was reduced from
18.30% to 7.47% and then to 4.38%, while the confusion between BS and PMF was reduced from 26.02%
to 7.11% and then to 6.5%. These three values correspond, respectively, to the progression from the
single-temporal with the poorest accuracy to the single-temporal with the highest accuracy and then to
the multi-temporal with the highest accuracy by optimizing features. Therefore, the spectral feature of
visible-near infrared band (red, green, NIR), indices features (NDVI, GI), and the textural feature (mean)
and multi-temporal combination of these features can improve the mapping accuracy significantly.

Table 9. Confusion matrix of classification with the highest and the poorest accuracies. WB: water
body; VC: vegetation cover; PMF: plastic-mulched farmland; BS: bare soil; IS: impervious surface.

Features Land Cover Types Test-WB Test-VC Test-PMF Test-BS Test-IS

Single-temporal with
the Poorest Accuracy

WB 69.59 1.64 0.20 1.03 6.13
VC 13.51 68.09 5.89 15.46 11.09

PMF 2.03 3.95 63.82 18.30 1.32
BS 4.73 10.20 26.02 56.96 2.32
IS 10.14 16.12 4.07 8.25 79.14

Single-temporal with
the Highest Accuracy

Land Cover Types Test-WB Test-VC Test-PMF Test-BS Test-IS
WB 98.65 0.00 0.00 0.00 0.17
VC 0.00 96.71 0.00 1.8 0.00

PMF 0.00 0.00 91.67 7.47 0.66
BS 1.35 2.63 7.11 83.25 0.17
IS 0.00 0.66 1.83 7.47 99.01

Multi-temporal with
the Highest Accuracy

Land Cover Types Test-WB Test-VC Test-PMF Test-BS Test-IS
WB 100.00 0.00 0.00 0.00 0.00
VC 0.00 99.84 0.00 0.00 0.00

PMF 0.00 0.00 92.48 4.38 0.00
BS 0.00 0.16 6.5 93.56 0.66
IS 0.00 0.00 0.41 2.06 99.34

4.2.2. Optimal Temporal and Temporal Combination

The plastic mulching in Jizhou was completed between April to May. During this period,
the remote-sensing characteristics of PMF are influenced by the dust, rain, and by the phenology
of the plastic-mulched crop. In addition, the plastic mulch currently used in China is a very thin
(0.006–0.008 mm) transparent plastic mulch, and it is placed tightly over the soil surface, so its
remote-sensing characteristics are considerably influenced by the characteristics of the covered soil.
After the completion of the plastic film mulching, the remote-sensing characteristics of PMF change
into the mixed characteristics of plastic mulch and soil if there is wind or rain. Furthermore, with the
emergence of the mulched crop, the remote-sensing characteristics of PMF show the characteristics of
vegetation, plastic mulch, and soil. In this situation, it makes it difficult to identify PMF. Therefore,
the optimal temporal period of mapping PMF is well within the period from completing the
mulching to the emergence stage of mulched crop, which occurs before the stage of being covered by
well-developed crops.

Due to the specific characteristics of plastic mulch and the mulching mode, the PMF can also
be confused with bare land and fallow land in the mulching period (April). Furthermore, in the
emergence stage of the mulched crop, PMF contains little green vegetation, while the bare land and
fallow land still has no vegetation. Therefore, the combination of the sowing stage (April) and the
emergence stage (May) generated the highest accuracy.

4.2.3. Applicability in Another Region

Due to the regional division of natural conditions and the different agricultural production modes,
the applicability of methods and techniques in different regions is uncertain. Therefore, we chose
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Guyuan as an experimental area to test the applicability of the presented technique scheme. The PMFs
in Guyuan were mapped following the same scheme as Jizhou.

Table 10 reveals that the PMF mapping accuracy in Guyuan was similar with Jizhou in regularity.
The accuracies derived from the optimal features were higher than that from the original features or
a single feature. The accuracies of April and May were significantly higher than later in the season.
The OA, PA, UA, and Kappa were 85.02%, 74.07%, 81.40%, and 0.79, respectively, in April, while they
were 88.13%, 73.60%, 79.53%, and 0.83, respectively, in May. Therefore, the early stages of mulching
(April–May) are the optimal periods for mapping PMF in Guyuan. However, the highest accuracies
were lower than that in Jizhou.

Table 10. The mapping accuracies generated from RF using different features in Guyuan.

Date
(YYYY.MM.DD)

Cumulative Percentage of
Importance

RF

OA PA UA Kappa

2015.04.26

30% (9) 80.75 73.29 73.87 0.73
50% (20) 84.08 77.64 83.47 0.78
80% (44) 85.02 74.07 81.40 0.79
90% (58) 84.60 72.20 83.04 0.78

100% (84) 84.42 71.74 81.05 0.78
Spectral Features 78.45 64.91 59.71 0.70
Textural Features 80.14 66.46 65.44 0.72

2015.05.12

30% (8) 84.01 74.53 71.75 0.78
50% (18) 87.14 71.43 69.80 0.82
80% (41) 88.25 70.34 78.92 0.83
90% (56) 87.96 72.20 77.24 0.83

100% (84) 88.13 73.60 79.53 0.83
Spectral Features 81.88 67.86 76.80 0.74
Textural Features 85.39 69.41 74.50 0.80

2015.06.13

30% (9) 71.57 61.34 57.66 0.61
50% (18) 74.36 64.13 57.04 0.65
80% (41) 79.05 63.04 54.94 0.71
90% (58) 80.18 64.91 59.29 0.72

100% (84) 80.50 64.91 59.54 0.73
Spectral Features 70.97 56.99 59.29 0.59
Textural Features 74.39 56.68 45.29 0.64

2015.07.15

30% (8) 79.91 67.08 68.35 0.72
50% (19) 83.50 68.01 67.18 0.77
80% (42) 83.98 66.46 61.94 0.77
90% (55) 84.53 68.94 63.98 0.78

100% (84) 85.19 71.58 69.01 0.79
Spectral Features 80.38 63.98 57.06 0.72
Textural Features 77.82 68.17 66.11 0.68

The Z-test value for comparing the differences of the single temporal features with the highest
accuracy and the poorest accuracy was computed, with an obtained value of 8.45 (higher than 2.58).
Therefore, the feature addition significantly improved the single temporal mapping accuracy.

We used the optimal features selected by RF to develop the multi-temporal combined features for
mapping PMF. For each multi-temporal combined feature, we used the RF to classify the land cover
types. RF classifier was performed for mapping PMF based on the selected multi-temporal features
in Guyuan. Table 11 shows that the highest OA, PA, UA, and Kappa were 90.89%, 80.90%, 87.86%,
and 0.87. This was higher than that from single temporal features generally. The three-temporal
combination of May, June, and July provided the highest accuracy, followed by the two-temporal
combination of May and July.

The Z-test value for comparing the single and multi-temporal features with the highest accuracy
and poorest accuracy were calculated, with the multi-temporal mapping with the highest accuracy
in Jizhou and Guyuan also being computed. The Z-test results were presented in Table 12. Table 12
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shows that the multi-temporal combination significantly improved the mapping accuracy in Guyuan.
Furthermore, there were also significant differences in the two different study regions (Z-test value
is 18.50).

Table 11. The mapping accuracy generated from RF using the combined multi-temporal features
in Guyuan.

Temporal Combination OA PA UA Kappa

Two-temporal Combination

26 April, 12 May 2015 89.17 73.91 79.60 0.85
26 April, 13 June 2015 85.08 74.53 77.42 0.79
26 April, 15 July 2015 88.53 76.71 78.54 0.84
12 May, 13 June 2015 88.20 76.09 83.19 0.83
12 May, 15 July 2015 90.89 77.80 84.77 0.87
13 June, 15 July 2015 87.75 79.35 82.82 0.83

Three-temporal Combination

26 April, 12 May, 13 June 2015 89.44 74.53 84.51 0.85
26 April, 12 May, 15 July 2015 89.35 78.88 82.74 0.85
26 April, 13 June, 15 July 2015 89.01 76.86 81.55 0.85
12 May, 13 June, 15 July 2015 90.67 80.90 87.86 0.87

Four-temporal Combination 26 April, 12 May, 13 June, 15 July 2015 90.22 78.88 85.09 0.86

Table 12. Z-test values for the pairwise comparison of the error matrices.

Pairwise Comparison Z p

The highest accuracy of single temporal VS. The highest accuracy of
multi-temporal mapping in Guyuan 12.72 <0.005

The poorest accuracy of single temporal VS. The highest accuracy of
multi-temporal mapping in Guyuan 16.06 <0.005

The highest accuracy of multi-temporal mapping in Jizhou VS. The highest
accuracy of multi-temporal mapping in Guyuan 18.50 <0.005

Figure 9 (depicting the spatial distribution of PMF in Guyuan) reveals that large differences exist
among different feature subsets and among different seasons. The later mapping period results in
more serious commission errors. The PMF distribution generated from the multi-features were better
than that from single-features, the distribution from optimized features was better than that from
non-optimized features, while the distribution from multi-temporal optimized features was more
acceptable than that from single-temporal features.

By comparing the results from the two study areas, we found that the general trends were
consistent, although there were also differences, such as the accuracy, temporal combination type,
and so on. This inconsistency may be attributed to the land cover types and the agricultural production
mode. This should be discussed in further studies.

Generally, the multi-temporal optimized features provided more acceptable results than
single-temporal features. Among the single-temporal features, the earlier stages were better than the
later stages. The results from April and May were more acceptable and reasonable. This is because
the remote-sensing signature of PMF is influenced by the well-developed plastic-mulched crops at
later stages.

The difference between these two study areas can be attributed to the land cover types and their
distribution pattern. The land cover types in Jizhou are simpler and distributed more uniformly, while
the land cover types in Guyuan are more complex and distributed unevenly. In addition, the mulching
mode in Guyuan includes mulching in autumn, mulching in early spring, and mulching before sowing.
The data used in this paper covered the time period from April to July. Therefore, there may be some
discrepancies between the data acquisition time and the mulching time. As a result, the mapping
accuracy in Guyuan was lower than that in Jizhou.
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Figure 9. Spatial distribution of PMF in Guyuan using the RF feature selection and RF classifier. The first
line represents the results from spectral reflectance features, the second line represents the result from
the textural features, the third line represents the results from the total features, the fourth line
represents the results from the optimized features, and the fifth line represents the results from optimal
temporal combined features. (a) 2015.04.26; (b) 2015.05.12; (c) 2015.06.13; (d) 2015.07.15; (e) 2015.07.31;
(x) two-temporal combination of 2015.05.12 and 2015.06.13; (y) three-temporal combination of
2015.05.12, 2015.06.13, and 2015.07.15; and (z) four-temporal combination of 2015.04.26, 2015.05.12,
2015.06.13, and 2015.07.15.
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4.2.4. Differences Between Classifiers

In this paper, two machine learning classifiers—RF and SVM—were used for mapping PMF in
Jizhou. The result indicated that RF provided a higher accuracy for mapping PMF than the SVM. As the
SVM classifier is a single machine learning algorithm and the RF is an ensemble machine learning
algorithm, RF is better than the SVM in the aspects of noise resistance, robustness, and computational
efficiency. Furthermore, RF is more effective in the high-dimensional feature space and can provide
higher accuracy.

4.2.5. Comparison with Existing Results

From the review of related studies, we discovered that little research has examined PMF mapping
with remote sensing. Two of these studies used the threshold model based on the spectral or the indices
features from Landsat TM and MODIS-NDVI. However, due to the changing spectral response of
PMF during the crop growth cycle and over regions as well as the very fragmented and small-patched
farmland in China, there are seriously mixed pixels in the low spatial resolution imagery.

Table 13 shows that in the case of the same data source and the same study area, the scheme
presented in this paper had significantly improved accuracy. The OA improved from 94.14% to
97.01%. Furthermore, in different study areas or from different data sources, the OA of this paper was
higher or at a comparable level to the results from other research. In this paper, we considered the
multi-temporal and multi-types of features simultaneously to improve the accuracy and efficiency of
PMF mapping. Thus, this paper provided more accurate results than that from the existing research.
Multi-temporal and multi-types of features can perform better than single temporal features and
single-types of features.

Table 13. Accuracies of the existing results. OLI: Operational Land Imager; MODIS: Moderate-
resolution Imaging Spectrometer; TM: Thematic Mapper.

No. OA PA UA Kappa Data Study Region Reference

1 92.84 99.70 94.58 0.92 MODIS Xinjiang, China [32]
2 97.82 100 95.9 0.97 TM Xinjiang, China [4]
3 94.14 90.67 90.58 0.92 OLI Hebei, China [33]
4 97.01 92.48 96.40 0.96 OLI Hebei, China This study

5. Conclusions

In this paper, the potential of multi-temporal Landsat-8 images was evaluated to determine the
optimal phase and effective features sets for mapping PMF. The single-temporal multi-features and
multi-temporal multi-types of features were developed for RF and SVM classifiers. Our preliminary
conclusions were as follows:

(1) The Landsat-8 satellite can provide an effective data source for mapping PMF in the northern part
of China. The highest accuracy achieved was 97.01% in Jizhou and 90.67% in Guyuan, respectively.

(2) In terms of features sets, the spectral features, indices features of NDVI and GI, as well as
the textural features of mean are more important than the other features for PMF mapping.
The thermal features have a limited contribution for mapping PMF. The features optimized by
RF performed better than the spectral or textural features alone in two different study areas.

(3) In terms of the optimal phase for mapping PMF, the features from April provide the highest
accuracy, followed by the features from May. The multi-temporal combined features can
provide better results than single-temporal features. Among the multi-temporal combinations,
the two-temporal combination of April and May provide the best accuracy and a more acceptable
spatial pattern of PMF.
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(4) In terms of classifiers, the RF performs significantly better than SVM with regards to the
mapping accuracy and the efficiency both in sin If their contribution is not too much gle and
multi-temporal mapping.

Our study indicated that the presented technique scheme and satellite data can be used to map
the spatial distribution of PMF, which will provide basic data for the further study of social and
eco-environmental effects of PMF.
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