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Abstract: Precision phenotyping, especially the use of image analysis, allows researchers to gain 
information on plant properties and plant health. Aerial image detection with unmanned aerial 
vehicles (UAVs) provides new opportunities in precision farming and precision phenotyping. 
Precision farming has created a critical need for spatial data on plant density. The plant number 
reflects not only the final field emergence but also allows a more precise assessment of the final yield 
parameters. The aim of this work is to advance UAV use and image analysis as a possible high-
throughput phenotyping technique. In this study, four different maize cultivars were planted in 
plots with different seeding systems (in rows and equidistantly spaced) and different nitrogen 
fertilization levels (applied at 50, 150 and 250 kg N/ha). The experimental field, encompassing 96 
plots, was overflown at a 50-m height with an octocopter equipped with a 10-megapixel camera 
taking a picture every 5 s. Images were recorded between BBCH 13–15 (it is a scale to identify the 
phenological development stage of a plant which is here the 3- to 5-leaves development stage) when 
the color of young leaves differs from older leaves. Close correlations up to R2 = 0.89 were found 
between in situ and image-based counted plants adapting a decorrelation stretch contrast 
enhancement procedure, which enhanced color differences in the images. On average, the error 
between visually and digitally counted plants was ≤5%. Ground cover, as determined by analyzing 
green pixels, ranged between 76% and 83% at these stages. However, the correlation between 
ground cover and digitally counted plants was very low. The presence of weeds and blurry effects 
on the images represent possible errors in counting plants. In conclusion, the final field emergence 
of maize can rapidly be assessed and allows more precise assessment of the final yield parameters. 
The use of UAVs and image processing has the potential to optimize farm management and to 
support field experimentation for agronomic and breeding purposes. 

Keywords: drone; farm management; high-throughput; maize cultivation; high-throughput 
phenomics; precision phenotyping; plant density; planting distance; unmanned aerial system (UAS) 

 

1. Introduction 

Unmanned aerial vehicles (UAVs) are very promising instruments in agricultural sciences [1,2]. 
Flights are fairly independent of weather conditions and time. Images can be captured on cloudy 
days, whereas image recording in similar conditions by satellite is not possible [3]. Hence, a higher 
degree of information can be obtained because the higher flexibility allows for an extended range of 
measurement days. Furthermore, UAVs offer time-saving and cheaper image recording, enable 
flexible and immediate image processing and give a survey of the health of farm systems [4]. In 
addition to the time-saving and cheaper image processing, the flexible handling options for aim-
oriented use, e.g., variable flight height and better image resolution [5,6], UAVs represent new 
opportunities in the agricultural sciences, especially in precision farming and precision phenotyping. 
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Precision farming has created a critical need for spatial data on plant density, crop yield and related 
soil characteristics [7]. Recent technological advances in UAV technology offer new opportunities for 
assessing agricultural plot experiments using UAV imagery [8]. The use of high-throughput 
phenotyping is expected to improve crop performance and hence accelerate the breeding progress 
[9]. Field-based phenotyping is the most promising approach for delivering the required throughput 
in terms of numbers of plants as well as populations for a precise description of plant traits in 
cropping systems [10]. 

The human eye is a sensitive system, which recognizes contrast better than absolute luminance 
as well as the structural properties of an object. However, image analysis could provide a wealth of 
metric information about positions, size and interrelationships between objects [11]. The human eye 
is always combined with subjective perception, and therefore the degree of ground cover in a 
cropping system can be only relatively assessed compared with imaging [12]; scaling-up is difficult 
and a comparison of ground cover and the number of plants is not feasible. Weeds between and 
within crop rows were successfully recorded using the k-means clustering method [6] and crop row 
detection was accomplished by mounting a camera on a tractor. Rows were counted by evaluating 
pixel values, and their positioning was demonstrated [13]. Burgos-Artizzu et al. [14] and Berge et al. 
[15] successfully detected weeds with RGB images (with three channels: red, green and blue to define 
color space) using a camera mounted on a tractor. Additionally, nitrogen level and the LAI can be 
detected with aerial visible and near-band images by calculating the Normalized Difference 
Vegetation Index (NDVI) and Grassland drought index (GDI) [16,17]. Even object detection is 
possible through image processing using the mathematical Bernoulli distribution [18]. Whereas 
detection of weeds, biomass and ground cover with aerial RGB and remote imaging has already been 
successfully shown in previous works [5,6,12]; the counting and segmentation of individual plants 
has not yet been demonstrated and represents the goal of this work. 

The aim of this work is to advance UAV use and image analysis as a possible high-throughput 
phenotyping technique. Therefore, image analysis applied to two different sowing systems, 
conventional row and equidistant planting, was performed. In theory, plants growing in triangular 
planting systems should have better light and water availability and therefore competition between 
plants is reduced [19–21]. Additionally, soil erosion due to heavy rainfall, which can exert a strong 
influence on plant cultivation, particularly maize, could also be diminished or even prevented. 
Moreover, with faster row cover development in triangular plantings, competition with weeds may 
be suppressed [22], growth potential may be enhanced and the intensive application of pesticides 
and soil tillage could be reduced [23].  

Determination of the plant number per hectare represents an important index to assess plant 
density as well as field emergence. Ultimately, the final yield can be best determined by including the 
exact plant number. Identifying optimal plant density and row spacing is a critical management 
decision for maize production to investigate grain yield response to plant density and to explore 
genotype x environment interactions [24,25]. The goal of this work is to use aerial images to detect 
ground cover and to determine the plant number of different maize cultivars grown in different row 
spacings. 

2. Materials and Methods  

The field experiment was conducted in 2016 in Dürnast (48°24′10.3′′N, 11°41′37.5′′E), close to 
Freising in southern Bavaria, at the experimental station of the Chair of Plant Nutrition belonging to 
the Technical University of Munich. The silty cambisol is characterized by a homogeneous soil texture 
across the whole experimental site, which is exposed from north to south. The average annual 
temperature was 8.1 °C and the average precipitation reached 791 mm. The phenological plant 
growth proceeded regularly during the season. Optimal climate conditions with sunny days and 
enough rain led to above average yield. The fully randomized block design consisted of 96 plots with 
four cultivars, three nitrogen levels (50, 150 and 250 kg N ha−1), four replicates and two planting 
systems—row planting (RP) and triangular planting (TP). Cultivars were from different maturity 
groups representing different agronomic purposes (Table 1). Conventional farming was applied 
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using the herbicides Roundup PowerFlex (20 April 2016) and Gardo Gold + Callisto (10 June 2016). 
Different fertilization levels were applied on 1 June 2016. 

Table 1. Intended use, maturity class and number of the different maize cultivars.  

Cultivar Usage Maturity Group FAO Number
Cannavaro biogas very late S 310

Lapriora corn early K 190
Saludo silage, corn early S10, K210 
Vitallo silage late S270

Aerial images were taken on 16 June 2016, when plants reached the BBCH stage 13–15 (it is a 
scale to identify the phenological development stage of a plant which is here the 3- to 5-leaves 
development stage). The flying height was 50 m above the field, covering an area of 9000 m2, to obtain 
a seamless orthophoto mosaic photo and to cover all plots.  

The flight direction of the UAV called MKSET_BASIS_OKTO2 (KS Model Company Ltd., Hong 
Kong, China) was perpendicular to the plots. One image was captured on average per three plots as 
illustrated in Figure 1. The recorded images overlapped on average by one third. After the flyover of 
one plot row, the UAV was navigated back to the first plot of the second row to maintain a 
perpendicular and centered flight direction (over the next row).  

 

Figure 1. Part of the trial design, where black arrow indicate the flight direction of the unmanned 
aerial vehicles (UAVs) and illustrate the field section that was captured in the image (in general three 
plots). The abbreviations RP and TP indicate row planting and triangular (equidistant) planting. 

DINA4 posters (210 × 297 mm2) labeled with the plot number were placed on each plot. Images 
were taken with a Canon G12 digital camera (Canon, Tokyo, Japan) with 1/1.7 inch CDD sensor, 10 
megapixels, 28-mm focal length, an image quality of 180 pixels/inch, triggering time of 281 
milliseconds, f-stop of 2.97 and disk size of 4.91 MB mounted on the octocopter. Images were 
captured in auto mode due to changing light conditions and to avoid wrong ISO (light sensitivity of 
the camera sensor) the, f-stop and shutter speed settings. Despite the stable mounting of the camera 
on the UAV, the camera with an outstanding position was partly affected by the wind and vibrations 
of the UAV comparatively to integrated cameras fixed within the UAV. Additionally, the focus of the 
camera could not be used properly due to limited remote tripping contrasting to integrated cameras 
where the focus is fixed at infinity. Therefore, occasionally blurry images resulted, however, not 
affecting the subsequent image analysis. The position of the octocopter could be detected by GNSS 
(Differential Global Positioning System) and a magnetic compass to maintain flight direction. The 
height could be detected by measuring barometric air pressure; air pressure was calibrated as zero at 
the beginning of the flight campaign. The UAV used is a vertical take-off and landing aircraft with 
eight brushless external rotor motors. The UAV is air-remotely controlled with a bidirectional 
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transmission frequency of 2.4 GHz that receives data of the battery voltage, temperature of the motor 
controller, Global Positioning System (GPS) reception and the height differences from the starting 
point. The angle of the camera can be changed remotely. With a lithium polymer battery, the 
octocopter has a flight time of 16 min when carrying the camera. 

2.1. Description of the Image Analysis Process 

To detect the number of plants and their spatial distribution in the field, weed-free conditions 
on the field are required. All images of the plots were cut into correct form using the program Adobe 
Photoshop CC (Adobe Systems Software Ireland Limited, Dublin, Ireland). Segmentation of the green 
pixels and detection of the plant numbers were completed using MATLAB (Mathworks, Natick, MA, 
USA). The script is attached in the Appendix A. 

2.2. Creation of Color Histograms and Employment of the Contrast Enhancement Procedure 

Color histograms help to judge, correct and optimize the brightness and contrast of images. For 
RGB images, four histograms are created per image: the red channel histogram, the green channel 
histogram, the blue channel histogram, and the gray histogram, which explain the luminance of the 
image. A histogram has values ranging from 0 to 255, where zero is black and 255 is white. Between 
these border values are gray values. The height of the bars (deducted from the histogram) 
demonstrates the frequency of the appearing color value in the image represented by pixels. The color 
histogram is created to evaluate the quality of the image and to collect more information for further 
processing [26]. The decorrstretch contrast enhancement procedure, which is suitable for visual 
interpretation, was adapted to enhance and stretch the color difference in the original picture (used 
in images with significant band–band correlations) and produces an image with high correlation 
among its bands [27]. Every pixel of the three channels of the original RGB image was transformed 
into the color eigenspace, where a new, wider and stretched range of color values was created (Figure 
2) and transformed back to the original band (Figure 2). During the process all three bands were 
stretched through decorrelation into a new 3 × 3-bands correlation matrix and equalized to maintain 
the band variances. Additionally, a linear contrast stretch is applied to further expand the color range 
in all three bands equally and to find limits to contrast the stretch in an image because pixel values 
must be located in the range [0, 255] [26]. 

2.3. Creation of a Threshold Value  

The HSV color model is a nonlinear transformation of the RGB mode since it separates out the 
luminance from the color information. There are three channels which describe the HSV color model: 
the hue (channel 1), the saturation (channel 2) and the intensity values of an image pixel (channel 3) 
[28]. The HSV color model is described as a hexacone where the color values are split up in a circle 
with red at angle 0, green at 2π/3, blue at 4π/3 and red again at 2π. The saturation channel defines the 
depth or purity of the color and passes from the center of the circle where S = 0% (white) to the edge 
of the circle where S = 100% (complete saturation). Along the perpendicular axis the hue channel can 
be measured, between H = 100% and H = 0%. Along the vector S-H the grey scale between black and 
white is defined. It should be considered that the HSV color model is referenced to the RGB color 
space and lightness and hue could be confounded—for example two saturated colors could 
designated as the same lightness but have wide differences in perceived lightness. To express 
brightness, saturation and hue numerically could show some problems. The HSV color model of the 
already processed (decorrstrechted) image was used to select the threshold. To define the threshold, 
the “Color Thresholder App of MATLAB” was used once and channel limits were implemented in 
the attached script. The thresholds were defined for the three HSV channels and set as follows:  

channel 1: channel1Min = 0.115; channel1Max = 0.436; 
channel 2: channel2Min = 0.526; channel2Max = 1.000; 
channel 3: channel3Min = 0.627; channel3Max = 1.000; 

Selected pixels were set at zero after thresholding, and thereafter the objects could be counted. 
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Figure 2. Flowchart of the theoretical image processing steps in MATLAB, where the color scatter plot of 
the original RGB image is first transformed in a new, wider scatter plot with the decorrstrech contrast 
enhancement procedure and a pixel segmentation of the light green pixel with a threshold selection in the 
HSV color model (with the three channels: hue, saturation and value) followed by count the plants at the 
end. Additionally the L*a*b* color model (where L stays for luminosity, and a and b are vectors to create a 
color space) was used to select green pixels from the original image to detect ground cover. 

2.4. Creation of the “Open Area” 

With the command bwareaopen (BW, p), combined clusters/objects under the defined pixel 
value p were removed from the binary image and were not counted [26]. 

2.5. Creation of a Threshold Value to Complete Total Green Pixel Segmentation/Classification 

The L*a*b* model is similar to the HSV model and is defined as a rectangular coordinate system 
with the two vectors color value and saturation. The L*a*b* color model was used to select green 
pixels because the distribution of the color area was only in this model sufficient. Euclidean distance 
of two complementary colors in the L*a*b* model space is directly proportional to the visual 
similarity of the colors. This can provide simple metrics for a clustering. The clustering can be 
performed only in the “a”, ”b” space, which represents the color value component. The “L” 
component in the CIE-Lab space represents the luminosity [29]. The command used was “I2 = 
im2double(I)”, which increases the intensity of the original image twofold, rescaling the data if 
necessary. The second image appears like the original. The command “im2double” converts the 
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images to double precision. Green pixels were set to zero and pixels could then be counted to capture 
the degree of coverage. Additionally, the percentage of green pixels was calculated [26].  

2.6. Creation of a Table 

At the end of the loop, all information collected from each image was saved in a table, including 
the number of plants, the amount of green pixels and the percentage of green pixels. 

3. Results and Discussion 

Most of the images were sharp, but in some images slight blurriness resulted from the motion 
of the platform created by wind; however, all images were still useable and did not require different 
processing for image analysis, and a batch-mode was feasible. Figure 3 indicates the original image, 
illustrates the segmentation of the green pixels and the ground cover of the plot.  

 

Figure 3. Nadir view of an RGB image acquired with a drone from an equidistantly planted plot. 

The correlation of the green pixel percentage and the plants recorded visually in the plots 
indicated little relationship (R2 = 0.023), which suggests that no relationship between ground cover 
and plant number existed. Digital detection of plants was thus not possible. Ground cover obtained 
from the segmentation of the green pixels could be detected quite well (Figure 4) and indicates the 
health of the crop. At the BBCH stages 13–15, the ground cover ranged between 76 and 83% green 
pixels for all cultivars (Figure 5).  

 

Figure 4. Example of ground cover segmentation of the green area. The black-filled area represents 
the amount of green pixels in the same plot as shown in Figure 2. 
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Figure 5. Ground cover of four different cultivars at the BBCH 13–15 development stages. 
Segmentation of the percentage of green pixel amounts (%) for different nitrogen application levels 
(50, 150 and 250 kg N ha−1) and different planting systems, row planting. 

The equidistantly cropped plots tended to exhibit a higher amount of green pixels, indicating 
enhanced growth and biomass production. Goetz [23] and Bullock et al. [30] also detected a higher 
ground cover two months after sowing in equidistant plantings compared with row plantings, and a 
slightly higher grain yield as observed by Hoff et al. [31] in equidistant plantings compared with row 
plantings. Detection of green pixels to assess ground cover and biomass production is considered an 
adequate and reliable digital technique to replace destructive methods in line with observations by 
Kipp, Mistele, Baresel and Schmidhalter [12]. However, ground cover did not reflect the plant 
number in the plots, as shown by low correlation coefficients. An increased number of plants does 
not automatically result in increased biomass as shown in Figure 6. This was also shown by Turgut 
et al. [32] who reported no significant increase in dry weight at more than 85,000 plants/ha. To record 
the digital number of plants in each image, the original image was processed with the decorrstretch 
contrast enhancement procedure in Figure 7.  

 

Figure 6. Correlation of the percentage of green pixel amounts (%) indicating the ground cover and 
the number of plants as counted in the experimental plots. 
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Figure 7. Image after adapting the contrast with a decorrelation of MATLAB. The function highlights 
elements by enhancing the color differences indicated for plot number 12. Moreover, MATLAB offers 
various parameters to be set for the decorrelation stretch. We used the following command: 
P_Contrast = decorrstretch(P, ‘Tol’, 0.01); where “P” is the image, “Tol” is the linear contrast stretch, 
which further expands the color range and additionally finds limits to contrast the stretch because 
pixel values must be located in the range [0, 255] and “0.01” (which defines the level of the contrast 
stretch).  

Using the decorrstretch contrast enhancement procedure command and producing higher color 
contrasts in the images (Figure 7) enabled the counting of plants digitally with a close correlation. 
This offers reliable information about plant emergence, which also serves as basis to correctly 
determine the aerial yield per plant (Figure 8). A threshold that selects only the yellow and light green 
pixels in the range from 0.115 to 0.436 (V = channel one, HSV model) from the young leaves, which 
are located in the center of the plants, was used. It is defined with the HSV channels as indicated in 
the M & M section. Only the light green and yellow pixels were selected to ensure that overlapping 
plants were not counted as one single plant (Figure 9). 

 

Figure 8. Correlation of visually counted plants serving as reference and the digitally recorded plant 
number. The ground cover indicated by the green pixel percentage ranged for all cultivars between 
76% and 87%. Significant differences in the nitrogen levels were not observed at the investigated 
growth stages. 
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Figure 9. Image after using the Color Thresholder App of MATLAB. Selecting the yellow and lime 
green pixels of the image with the decorrstretch contrast enhancement procedure as shown for plot 
number 12. 

The pixel size, which minimizes the difference between manually and digitally counted plant 
numbers, can be defined with the command area opening: bwareaopen (BW, p) as described in the 
M & M section. The operation removes all clusters in the binary image that are smaller than p (the 
defined area). This is illustrated in Figure 10a for p = 5, resulting in the smallest range of percentage 
differences between the digitally counted plant number and the visually field-counted plant number 
serving as a reference. In contrast, p = 10 and p = 3 result in a higher spread, shown in box plots in 
Figure 10a, which is explained by larger differences in actually and digitally counted plants. For p = 
3, more clusters were built and counted and the plant number was overestimated in contrast to p = 
10, where the plant number was underestimated due to higher cluster extinction. The percentage 
difference between in situ and image-based counted plants was quite small (Figure 10b). The range 
of the percentage difference, including outliers, ranged between ±15% for all cultivars. The digital 
plant-counting model worked best for the cultivar Cannavaro, where the percentage difference was 
less than ±5% and with only one outlier over −5%. The cultivar Saludo and Vitallo showed the highest 
percentage differences between digitally and visually counted plants, exceeding slightly the ±5% 
range. The cultivar Vitallo included two outliers that extended to the −15% limit. Outliers from the 
cultivars Vitallo and Cannavaro are due to their fast and enhanced development in the seedling stage. 
Plants became too big and younger light-green leaves could not be separated sufficiently from older 
dark green leaves. The outlier of Lapriora is due to a higher illumination caused by the sun position 
since plants in the original image were very bright. 

The image processing script can be used at the early leaf development stages within both 
planting systems, enabling successful segmentation of young plants. A good and clear segmentation 
depends on the type of object and/or the region. 

A clear differentiation of two neighboring pixels or a pixel group depends on sharp color edges, 
which define a cluster [33]. Therefore, the triangular planting systems could be slightly better 
assessed than the row planting system because the intra-row distances between the plants were larger 
(Figure 11). Plants did not overlap too much; thus plant counting for both plant systems was possible 
[34]. The resolution and image sharpness may enhance digital plant counting but is not relevant for 
the detection of plant numbers on an image. Blurry pictures did not represent significant error in 
differentiating visually and digitally counted plants.  
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Figure 10. (a) Box plots illustrating the percentage differences between in situ and image-based 
counted plant numbers for all plots, depending on the command area opening bwareaopen (BW, p), 
which allows plants to be counted in a standardized way. A has an open area of p = 3; B shows the 
range for p = 5 and C for p = 10. The open area is defined through the pixel area entering a limit for 
counted or not counted combined components being below the limit. The percentage difference is 
calculated as difference (%) = (digitally measured plant number—actually counted plant 
number)/actually counted plant number x 100. The bold line inside the box shows the median, with 
the upper and lower lines of the box plot representing the 75th and 25th percentiles. The circles 
outside the boxes are outliers; (b) Box plots representing the distribution of the percentage differences 
between the actually and digitally counted plants number from all plots. The bold line inside the box 
shows the median, with the upper and lower lines of the box plot representing the 75th and 25th 
percentiles. The circles outside the boxes represent outliers. 

 

Figure 11. Bar chart illustrating the mean of the percentage differences between visually and digitally 
determined numbers of four cultivars in triangular planting (TP) and row planting (RP) systems. The 
percentage difference is calculated as: (digitally measured plant number—visually counted plant 
number)/visually counted plant number × 100. 

Another source of error could result from the presence of weeds; they can have the same spectral 
reflectance in the visible spectrum. This would result in an increased number of digitally counted 
plants and a higher difference compared with the visually counted plants. Yang et al. [35] used fuzzy 
logic to differentiate the greenness of wheat plants and weeds, defined by three clusters chosen by 
their position in the field. Another solution to decrease errors is to increase p in the command 
bwareaopen (BW, p), which will erase smaller clusters (Figure 10a). The spread of differences between 
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digitally and visually counted plants was less than 10% for all cultivars. There were only three outliers 
that exceeded the 10% range (Figure 10b). The differences between visually and digitally counted 
plants can be due to various factors. Too-late imaging of plant growth may not allow for the 
separation of younger from older leaves. Plants standing too close together, with enhanced 
overlapping effects, could result in counting fewer plants. This effect appears more often in row 
planting systems, where there is less regular spacing between plants. A good example of this is the 
cultivar Vitallo, which exhibited the largest deviation as a result of enhanced plant growth and thus 
increased overlapping of plants (Figure 11). Additionally, young, pale and green plant leaves could 
not be adequately distinguished from older leaves using the decorrstrech contrast enhancement 
procedure when plants were ahead of the plant stage. However, the median values were close to zero 
for all cultivars, which indicates a close relationship between digitally and visually counted plant 
numbers. After obtaining images and image processing, a field map can be created illustrating the 
post-emergence of plants. This allows researchers to judge the success and accuracy of seeding 
management and to judge the uniformity of the plant distribution, depicting irregularities and gaps 
between or within the rows caused by soil erosion, soil compaction or soil fertility [36]. Equally 
important is the potential yield prediction calculated by the digitally counted plants. For post-
emergence breeding purposes, the seed quality could be detected cheaply and quickly. The use of 
UAVs and image processing in agriculture is a promising tool to answer farm management questions, 
allowing researchers to optimize management and to support field experimentation in agronomy 
and breeding activities. 

4. Conclusions 

The use of UAVs provides time- and cost-saving data for further processing and allows for 
flexible and weather-independent data collection. The results of this study demonstrate the capability 
of image processing in agricultural fields to detect plant post-emergence. Ground cover detection did 
not correlate with the plant number on a plot level. It became possible to count plants only by 
introducing the decorrstretch command from MATLAB. Blurry effects and weed detection in images 
could lead to miscounting, which can be avoided by manually selecting thresholds and clustering of 
pixels. Plant number assessment is only possible during a specific window of early leaf development 
stages, when young, light-green leaves differ from older, dark-green leaves. If overlapping of the 
plants occurs, green pixel segmentation of young leaves is difficult or no longer feasible. Using an 
optimized time window enables image analysis in a batch procedure (as seen in the script from 
Appendix A). The use of UAVs and image processing has the potential to optimize farm management 
and to support field experimentation for agronomic and breeding purposes. 
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Appendix A 

Algorithm A1. MATLAB Script. 

1: clear all 
2: start = 01; 
3: end = 96; 
4: T = zeros(end-start + 1,3); 

5:(start loop) 
6: for j = start:end 

7: start = 01; 
8: end = 96; 
9: String = num2str(j); 
10: P = imread([‘P’ String ‘.JPG’]); 
11: %P = imread(‘P93.jpg’); 
12: %P = imrotate(P,−90); 
13: %imshow(P) 
14: %cut image to the right size 
15: %P = P(20:631,:,:); 
16: %imshow(P); 
17: %create color histogram 
18: imhist(P(:,:,2)) 
19: %increase contrast 
20: P_contrast = decorrstretch(P, ‘Tol’, 0.01); 
21: imshow(P_contrast); 

22: % 1)create threshold 

23: % Convert RGB image to chosen color space 
24: I = rgb2hsv(P); 

25: % Define thresholds for channel 1 based on   histogram settings 
26: channel1Min = 0.115; 
27: channel1Max = 0.436; 

28: % Define thresholds for channel 2 based on histogram settings 
29: channel2Min = 0.526; 
30: channel2Max = 1.000; 

31: % Define thresholds for channel 3 based on histogram settings 
32: channel3Min = 0.627; 
33: channel3Max = 1.000; 

34: % Create mask based on chosen histogram thresholds 
35: BW = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) & ... 
36: (I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ... 
37: (I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max); 

38: % Initialize output masked image based on input image. 
39: maskedRGBImage = P; 

40: % Set background pixels where BW is false to zero. 
41: maskedRGBImage(repmat(~BW,[1 1 3])) = 0; 
42: imshow(BW) 

43: % 2) count plants 
44: imshow(BW) 
45: Test = bwareaopen(BW,5); 
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46: Test = imfill(Test, ’holes’); 

47: B = bwboundaries(Test); 
48: imshow(Test) 
49: hold on 
50: visboundaries(B) 

51: cc = bwconncomp(Test); 
52: graindata = regionprops(cc,’basic’); 
53: number of plants = cc.NumObjects; 
54: % convert image to matrix  
55: figure(2); 
56: Histi = reshape(P(:,:,2),[],1); 
57: Histi1 = im2double(Histi) *255; 
58: hist(Histi1,100); 
59: title(‘green-value’); 

60: % 3) create binary image and calculate ground cover  

61: % Convert RGB image to chosen color space 
62: RGB = im2double(P); 
63: imshow(RGB) 
64:cform=makecform(‘srgb2lab’,‘AdaptedWhitePoint’,whitepoint(‘D65’)); 
65: I = applycform(RGB,cform); 

66: % Define thresholds for channel 1 based on histogram settings 
67: channel1Min = 12.502; 
68: channel1Max = 100.000; 

69: % Define thresholds for channel 2 based on histogram settings 
70: channel2Min = −10.414; 
71: channel2Max = 8.329; 

72: % Define thresholds for channel 3 based on histogram settings 
73: channel3Min = −8.447; 
74: channel3Max = 67.004; 

75: % Create mask based on chosen histogram thresholds 
76: BW_1 = (I(:,:,1) >= channel1Min) & (I(:,:,1) <= channel1Max) & ... 
77: (I(:,:,2) >= channel2Min) & (I(:,:,2) <= channel2Max) & ... 
78:  (I(:,:,3) >= channel3Min) & (I(:,:,3) <= channel3Max); 

79: % Initialize output masked image based on input image. 
80: maskedRGBImage = RGB; 

81: % Set background pixels where BW is false to zero. 
82: maskedRGBImage(repmat(~BW_1,[1 1 3])) = 0; 
83: imshow(BW_1) 

84: %3.1) count green pixels 
85: numtotal = nnz(P) 
86: numgreenpixel = nnz(BW_1) 
87: Green_percent = (numgreenpixel/numtotal) *100 
88: T(j-start + 1,1) = number of plants; 
89: T(j-start + 1,2) = numgreenpixel; 
90: T(j-start + 1,3) = Green_percent; 
91: clear(‘-regexp’,’[^T] *’);  
92: end (end of loop) 
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