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Abstract: Urban areas alter local atmospheric conditions by modifying surface albedo and
consequently the surface radiation and energy balances, releasing waste heat from anthropogenic uses,
and increasing atmospheric aerosols, all of which combine to increase temperatures in cities, especially
overnight, compared with surrounding rural areas, resulting in a phenomenon called the “urban
heat island” effect. Recent rapid urbanization of the planet has generated calls for remote sensing
research related to the impacts of urban areas and urbanization on the natural environment. Spatially
extensive, high spatial resolution data products are needed to capture phenological patterns in regions
with heterogeneous land cover and external drivers such as cities, which are comprised of a mixture
of land cover/land uses and experience microclimatic influences. Here we use the 30 m normalized
difference vegetation index (NDVI) product from the Web-Enabled Landsat Data (WELD) project
to analyze the impacts of urban areas and their surface heat islands on the seasonal development
of the vegetated land surface along an urban–rural gradient for 19 cities located in the Upper
Midwest of the United States. We fit NDVI observations from 2003–2012 as a quadratic function of
thermal time as accumulated growing degree-days (AGDD) calculated from the Moderate-resolution
Imaging Spectroradiometer (MODIS) 1 km land surface temperature product to model decadal
land surface phenology metrics at 30 m spatial resolution. In general, duration of growing season
(measured in AGDD) in green core areas is equivalent to duration of growing season in urban extent
areas, but significantly longer than duration of growing season in areas outside of the urban extent.
We found an exponential relationship in the difference of duration of growing season between urban
and surrounding rural areas as a function of distance from urban core areas for perennial vegetation,
with an average magnitude of 669 AGDD (base 0 ◦C) and the influence of urban areas extending
greater than 11 km from urban core areas. At the regional scale, relative change in duration of
growing season does not appear to be significantly related to total area of urban extent, population,
or latitude. The distance and magnitude that urban areas exert influence on vegetation in and near
cities is relatively uniform.

Keywords: growing degree-days; land surface phenology; land surface temperature; MODIS; NDVI;
surface urban heat island; Web-Enabled Landsat Data

1. Introduction

Recent increases in population have largely been concentrated in urban areas, increasing from
only 13% of total global population in 1900 to 54% by 2014 [1,2]. Urban land expansion has irreversible
impacts on the natural environment, including the loss of agricultural lands, fragmentation of
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ecosystems, reduction of biodiversity, and alteration of local climate [3]. Urban land cover/land
use and change can potentially alter local to regional climate on daily, seasonal, and even annual
scales [4]. Possibly the clearest example of urban climate modification is the phenomenon where
urban temperatures are generally higher than the surrounding countryside, or the urban heat island
(UHI) effect [5]. UHI intensity is related to patterns of land use/land cover changes, including the
composition of water, vegetation, and built-up areas [6]. The effects of the UHI and land use/land
cover change are linked to modified surfaces that affect the transfer and storage of airflow, water,
and heat [7].

Future climate change and urbanization is projected to increase UHI temperatures by around
1 ◦C per decade [8]. The combination of urban population growth, urbanization, and climate change
warrants the need for enhanced remote sensing research on the environmental impacts of urban areas
and urbanization on the natural environment [9,10]. Specifically, there have been calls for urban remote
sensing research of small to medium sized cities and their associated impacts on vegetation [11].

Urban land surface phenology (LSP) observes the spatiotemporal development of the vegetated
land surface as revealed by satellite sensors [12] in and nearby cities. The majority of urban LSP studies
have used surface observation networks [13] or coarse spatial but high temporal resolution satellite
data from sensors including the Advanced Very High Resolution Radiometer (AVHRR) [14] and more
recently, the Moderate Resolution Imaging Spectroradiometer (MODIS) [15–17]. Jochner et al. [18]
provide an overview of observational studies from European, North American, and Asian cities that
all found earlier vegetation development in urban areas [18], beginning with a study in Hamburg,
Germany in 1955 [19]. Additional studies have used species composition [20] and plant specific
phenology [21] in order to characterize the influence of UHIs on vegetation development in cities.

Satellite data based studies that use land surface temperature (LST) data in place of air temperature
measurements observe the surface urban heat island (SUHI). One major difference between air
temperature studies of UHIs and satellite remote sensing based studies of SUHIs is that SUHI intensity
is related to land cover/land use and SUHI intensity is greater during the daytime compared to at
night [22]. Studies using coarse resolution satellite data have found that, on average, urban areas
expanded the growing season of vegetation by 7.6 days in the eastern United States using time series of
the NDVI derived from AVHRR data [14]. Coarse resolution studies have used a combination of LST
and Enhanced Vegetation Index (EVI) data time series derived from MODIS to analyze the effects of
the UHI on vegetation phenology [15,16]. Important findings from these studies include: (1) the length
of growing season for forests is strongly related to mean annual LST [15]; (2) earlier green-up and later
dormancy occurs in urban areas [15,16]; and (3) urban climate influences on vegetation phenology
extend up to 10 km beyond the urban land cover extent of cities in eastern North America [15]. The UHI
effects were found to be stronger in North America than in Asia or Europe [16].

While surface observation networks and high temporal/coarse spatial resolution remote sensing
studies are useful, there exists a need for more spatially extensive, higher spatial resolution data
products to capture phenological patterns in areas with heterogeneous land cover and external drivers
such as urban areas that are a mixture of land cover/land uses and experience microclimatic influences,
namely the UHI effect [23,24]. Using Landsat data for phenology studies allows for local to regional
scale analyses, offering a spatial resolution that is useful for exploring factors that influence phenology
including land use and urban heat islands [24]. One study used Landsat 5 Thematic Mapper (TM)
and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) time series to model phenology in eastern
United States deciduous forests and found a significant relationship between distance from urban core
and green-up onset, suggesting that UHI impacts are reflected in the phenological characteristics of
surrounding vegetation [23]. Another study modeled Web-Enabled Landsat Data (WELD) NDVI data
as a quadratic function of thermal time derived from MODIS LST data and derived LSP metrics to
observe the response of vegetation to UHIs for two cities (Minneapolis-St. Paul, MN and Omaha, NE)
in the Upper Midwest region of the United States and found that proximity to the center of both cities
was positively associated with increased duration of growing season for perennial vegetation [25].
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Even more recently, a study fused MODIS and Landsat reflectance data in addition to LST derived
from Landsat thermal data and found that in general, Ogden, UT experienced earlier start of season,
later end of season, and consequently longer length of season than the surrounding exurban areas [26].

There are multiple reasons why the Upper Midwest is an ideal location for studying the impacts of
urban areas on LSP within and surrounding cities. The region is a relatively flat, continental, temperate
plain that is distant from confounding meteorological influences such as major mountain ranges or
large water bodies. Cities in the region are relatively isolated and embedded in a vegetated landscape
(Figure 1a). The cities span size (area and population) and latitudinal gradients, but precipitation is
relatively uniform over the region. The combination of WELD-derived NDVI, MODIS LST-derived
accumulated growing degree-days (AGDD), and National Land Cover Database (NLCD) Land Cover
Type (LCT) and Impervious Surface Area (ISA) data, all freely available, spanning at least a decade,
at a spatial resolution that is appropriate for urban areas, provides an opportunity to investigate the
UHI-related impacts on LSP at the local to regional scale at 30 m spatial resolution.
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interest in cyan. (b) MODIS Land Surface Temperature-derived decadal (2003–2012) mean annual 
accumulated growing degree-days (AGDD) over the Upper Midwest showing the southwest (shades 
of red; higher AGDD) to northeast (shades of blue; lower AGDD) gradient of thermal time in the 
region. Additional information on the urban areas can be found in Table 1. 

Table 1. Characteristics of the 19 study cities: 2011 population [32], area of the urban extent [33], 
latitude, longitude, decadal mean annual accumulated growing degree-days (AGDD) calculated 
from the MODIS Land Surface Temperature-derived AGDD product, and percentage of pixels with land 
surface phenology model fit (R2) > 0.5 in each of the 19 cities. 

City 2011 Pop. 2010 UE (km2) Lat Lon 2003–2012 AGDD LSP Model (%) 
MSP, MN 3,388,716 2773.3 44.98 −93.28 4318 66.2 

Omaha, NE 876,836 702.4 41.23 −96.03 5129 72.2 
Des Moines, IA 580,779 519.5 41.62 −93.66 4889 88.4 

Lincoln, NE 306,443 229.1 40.81 −96.68 5161 62.9 
Sioux Falls, SD 232,553 166.2 43.53 −96.74 4428 56.5 

Fargo, ND 212,695 182.1 46.86 −96.82 3819 28.6 
Rochester, MN 208,446 131.0 44.02 −92.48 4157 75.9 
St. Cloud, MN 189,980 130.1 45.57 −94.19 3918 63.8 
Mankato, MN 97,280 68.3 44.17 −93.99 3867 73.6 

Ames, IA 90,834 59.8 42.03 −93.63 4435 80.4 
Faribault, MN 64,908 29.5 44.29 −93.28 3996 82.7 

Marshalltown, IA 40,967 29.7 42.04 −92.91 4576 77.6 
Aberdeen, SD 40,902 33.1 45.46 −98.47 3780 37.8 

Austin, MN 39,320 31.7 43.67 −92.98 3920 83.2 
Fremont, NE 36,943 28.2 41.44 −96.49 4804 73.1 

Owatonna, MN 36,551 33.0 44.09 −93.22 4035 81.2 
Brookings, SD 32,109 24.6 44.30 −96.78 4008 58.3 
Albert Lea, MN 31,111 25.5 43.65 −93.37 3898 67.1 
Cambridge, MN 15,155 25.7 45.54 −93.23 3833 76.3 

Figure 1. (a) 2011 National Land Cover Database Land Cover Type over the Upper Midwest region of
the United States showing the 19 selected study cities in purple and corresponding region of interest in
cyan. (b) MODIS Land Surface Temperature-derived decadal (2003–2012) mean annual accumulated
growing degree-days (AGDD) over the Upper Midwest showing the southwest (shades of red; higher
AGDD) to northeast (shades of blue; lower AGDD) gradient of thermal time in the region. Additional
information on the urban areas can be found in Table 1.

In this study, we analyzed the impacts of urban areas and UHIs on the seasonal development
of vegetation on an urban–rural gradient at the local to regional scale for 19 small to medium sized
cities located in the Upper Midwest region of the United States. We used satellite remote sensing
time series data to investigate the impacts of urban areas on the seasonal development of vegetation
using model-derived LSP metrics. We explored the spatial arrangement of urban areas in order to
understand the influence of subregions of highly concentrated impervious surfaces and large areas of
urban vegetation on microclimatic conditions within cities. We analyzed the distance and magnitude
of urban alteration of local atmospheric conditions in and around cities. We compared the results from
all 19 cities in order to analyze the influences of city size, land cover, spatial arrangement, and latitude
on the seasonal development of vegetation.
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2. Materials and Methods

2.1. Study Region

We analyzed remotely sensed vegetation dynamics for 19 cities in the Upper Midwest of the United
States. Our region of interest is between 47.5◦N, 99◦W and 40.5◦N, 92◦W (Figure 1a,b). An early study
of urban climate characterized the nature of UHIs under “ideal” conditions, described as a city situated
on flat terrain with population greater than 100,000 and a temperate climate [27]. We chose the Upper
Midwest and 19 cities for multiple reasons, including that: (1) there are a number of useful, relatively
high resolution (spatial and temporal) remote sensing datasets freely available for the Contiguous
United States (CONUS) [28–30]; (2) the region is characterized as a temperate plain with relatively
isolated urban areas situated within a largely vegetated landscape that experiences distinct annual
seasonality; and (3) the cities capture multiple gradients in population size, urban area, land cover type,
thermal regime, and latitude. Figure 1b demonstrates the southwest to northeast gradient in annual
accumulated growing degree-days, a measure of thermal time that influences the growing season of
perennial vegetation.

We selected 19 cities as defined by the United States Census Bureau “Urban Areas” [31] located
within the Upper Midwest. These 19 cities span three orders of magnitude in population size,
from ~15,000 in Cambridge, MN to 3.4 million in the Minneapolis-St. Paul metropolitan statistical
area [32]. The cities also cover three orders of magnitude in terms of urban extent, ranging from ~25 km2

in Brookings, SD to 2773 km2 in Minneapolis-St. Paul, MN in 2010 [33]. Total urban extent for the 19 cities
increased by almost 40,000 hectares (18.2%) from 2001 to 2011 [29]. Table 1 provides the information on
size, location, and thermal regime for each of the 19 cities included in the analysis. The study time
period spans 2001–2012, which covers the 2001, 2006, and 2011 NLCD LCT and ISA archives [29,30],
as well as the ten-year (2003–2012) time series available from the CONUS WELD project [28].

Table 1. Characteristics of the 19 study cities: 2011 population [32], area of the urban extent [33],
latitude, longitude, decadal mean annual accumulated growing degree-days (AGDD) calculated from
the MODIS Land Surface Temperature-derived AGDD product, and percentage of pixels with land
surface phenology model fit (R2) > 0.5 in each of the 19 cities.

City 2011 Pop. 2010 UE (km2) Lat Lon 2003–2012 AGDD LSP Model (%)

MSP, MN 3,388,716 2773.3 44.98 −93.28 4318 66.2
Omaha, NE 876,836 702.4 41.23 −96.03 5129 72.2

Des Moines, IA 580,779 519.5 41.62 −93.66 4889 88.4
Lincoln, NE 306,443 229.1 40.81 −96.68 5161 62.9

Sioux Falls, SD 232,553 166.2 43.53 −96.74 4428 56.5
Fargo, ND 212,695 182.1 46.86 −96.82 3819 28.6

Rochester, MN 208,446 131.0 44.02 −92.48 4157 75.9
St. Cloud, MN 189,980 130.1 45.57 −94.19 3918 63.8
Mankato, MN 97,280 68.3 44.17 −93.99 3867 73.6

Ames, IA 90,834 59.8 42.03 −93.63 4435 80.4
Faribault, MN 64,908 29.5 44.29 −93.28 3996 82.7

Marshalltown, IA 40,967 29.7 42.04 −92.91 4576 77.6
Aberdeen, SD 40,902 33.1 45.46 −98.47 3780 37.8

Austin, MN 39,320 31.7 43.67 −92.98 3920 83.2
Fremont, NE 36,943 28.2 41.44 −96.49 4804 73.1

Owatonna, MN 36,551 33.0 44.09 −93.22 4035 81.2
Brookings, SD 32,109 24.6 44.30 −96.78 4008 58.3
Albert Lea, MN 31,111 25.5 43.65 −93.37 3898 67.1
Cambridge, MN 15,155 25.7 45.54 −93.23 3833 76.3
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2.2. Data

2.2.1. MODIS Land Surface Temperature and Snow Cover Extent

MODIS is a sensor aboard the Aqua and Terra satellites [34]. Aqua and Terra are NASA Earth
Science satellites that operate as a part of the Earth Observing System [35]. We used the MODIS-Aqua
(MYD11A2) and MODIS-Terra (MOD11A2) products, which are the level-3 global Land Surface
Temperature and Emissivity 8-day composites with 1 km resolution, and are provided in Sinusoidal
grid format as the mean clear-sky LST values during an 8-day time frame [36]. The specific Scientific
Datasets (SDs) extracted from the product included “LST_Day_1km” and “LST_Night_1km” for
MODIS tiles h10v04 and h11v04 [36]. We also downloaded the MODIS Aqua (MYD10A2) and Terra
(MOD10A2) Snow Cover products, which contain level-3 global “Maximum Snow Extent” 8-day
composites at 500 m resolution [37]. Both MODIS products were downloaded for the time period of
2003 to 2012. MODIS 8-day composite products contain 46 annual observations. We used four MODIS
8-day composite products for two MODIS tiles for ten years, resulting in 3680 total MODIS files used
in the study.

2.2.2. Web-Enabled Landsat Data

Web-Enabled Landsat Data (WELD) is a NASA-funded project that generated 30 m composited
mosaics of the conterminous United States and Alaska using Landsat 7 ETM+ scan line corrector-off
data from 2003–2012 [28]. WELD was designed to make consistent Landsat data readily available to
develop land cover, biophysical, and geophysical products in order to study Earth system science
and regional land-cover dynamics [28]. One advantage of WELD is that the weekly composites
include a pre-calculated NDVI band as well as additional quality control flags (saturation, clouds) [28].
We selected all WELD tiles within 40 km of the urban extent (UE) for each of the 19 cities.
We filtered out saturated and cloudy observations using the “Saturation_Flag”, “DT_Cloud_State”,
and “ACCA_State” bands [28], as well as a filter based on a threshold value of NDVI > 0.2 to exclude
non-vegetated observations.

2.2.3. National Land Cover Database

The National Land Cover Database (NLCD) provides 30 m resolution land surface characteristics
over the United States that can be used for applications including assessment of ecosystem health
and ecosystem status [38]. We used the Percent Developed Imperviousness [29] and Land Cover
Type [30] products from 2001, 2006, and 2011. The Impervious Surface Area product was determined
using IKONOS and Landsat 7 ETM+ data and estimated the percentage of each 30 m pixel covered by
anthropogenic (concrete, asphalt, etc.) surfaces [39]. The Land Cover Type product was derived from
unsupervised classification of Landsat 5 TM and Landsat 7 ETM+ at a spatial resolution of 30 m [30].
The datasets are freely available for download from the Multi-Resolution Land Characteristics
Consortium website [29,30].

2.3. Methods

2.3.1. Spatial Arrangement of Urban Areas

We defined the region of interest for each city as the area within 40 km of the urban extent for each
of the 19 cities. We characterized the region of interest for each city based on the 2001, 2006, and 2011
LCT and ISA datasets by identifying the LCT and ISA for each corresponding 30 m WELD pixel
located in each region. We used a decision tree classification scheme to aggregate the 16-class LCT data
into nine classes. Table 2 shows the class groupings used. We also performed change detection from
2001 to and from 2006 to 2011 to identify pixels that experienced a change in LCT, ISA, or both and
classified pixels with ISA change into two classifications based on time period: (1) “2001–2006” change;
and (2) “2006–2011” change (Table 2). Pixels classified as “Water”, “Barren”, “2001–2006 Change” and
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“2006–2011 Change” were excluded from the analysis. Figure 2a illustrates the LCT classification over
Sioux Falls, SD.

Table 2. Summary of land cover type groupings used for classification of pixels in the study.

National Land Cover Database Class ID Study Class

Open Water, Perennial Ice/Snow 1 Water
Developed: Open Space, Low/Medium Intensity 2 Developed

Developed: High Intensity 3 Urban Core Area
Barren Land (Rock/Sand/Clay) 4 Barren Land

Deciduous, Evergreen, Mixed Forest, Woody Wetlands 5 Forest
Shrub/Scrub, Grassland/Herbaceous, Pasture/Hay, Emergent Herbaceous Wetlands 6 Herbaceous

Cultivated Crops 7 Cropland
Change in Impervious Surface Area: 2001–2006 8 2001–2006 Change
Change in Impervious Surface Area: 2006–2011 9 2006–2011 Change
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Figure 2. (a) Example of land cover type (LCT) classification (derived from the 2011 National Land
Cover Database LCT product) over Sioux Falls, SD. “Water”, “Barren”, and “Change” pixels (white)
were excluded from the analyses; (b) Example of the four urban spatial subregions used in the analysis
including: urban extent (UE), urban core areas (UCAs), green core areas (GCAs), and areas outside of
the UE over Sioux Falls, SD.

In order to characterize the spatial arrangement of heterogeneous urban landscapes, we defined
four specific urban spatial subregions of interest. We used the 2010 U. S. Census Bureau delineated
“urban areas” cartographic boundary shape files to define Urban Extent (UE) for each urban area [33].
We identified Urban Core Area (UCA), which we defined as a spatially contiguous area of pixels
(>10 hectares) located within the UE of each city and classified as “Developed, High Intensity” based
on the 2011 LCT dataset. Green Core Area (GCA) is defined as a spatially contiguous area of pixels
(>60 hectares) located within the UE of each city and classified as “Developed, Open Space”, “Forest”,
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“Shrub/Scrub”, “Grassland/Herbaceous”, “Pasture/Hay”, or “Wetlands” based on the 2011 LCT
dataset. The UCA and GCA size thresholds were determined so that each city contained at least one of
each urban spatial subregion. Pixels located outside of the UE but within the 40 km region of interest
are simply classified as “Outside of the Urban Extent”.

After identifying the boundaries for: (1) UE; (2) UCAs; (3) GCAs; and (4) areas outside of the
UE, we calculated Euclidean distance from each pixel to the nearest UCA. Distance is rounded to
the nearest kilometer. To control for the compounding factor of nearby cities influencing vegetation,
Each individual cities’ 40 km region of interest was reconfigured after Euclidean distance calculation
to group pixels by distance to nearest UCA by city, rather than simply the nearest urban extent.
This means that while a pixel may be closer to the boundary of one city, it may actually be closer to the
core area of a different city.

2.3.2. Thermal Time

We used the maximum snow extent product to exclude MODIS LST observations when snow cover
was present. The MODIS LST observations were additionally filtered to exclude observations that were
below freezing (273.15 K), or unreasonably high (330 K). We revised an algorithm developed in [40]
that converts the two daytime and two nighttime LST observations into growing degree-days (GDD),
and ultimately into an annual accumulated growing degree-day (AGDD) product. The algorithm was
used to calculate a climatology of thermal time, the average daytime and nighttime LST for each day
of year (DOY) (using the ten years available for each date), which was later used to fill gaps arising
from missing or excluded data. However, the mean LST by DOY is only calculated when eight or more
years have available data. The algorithm also calculated GDD. The traditional calculation of GDD
takes the mean of the daily maximum and minimum temperature and subtracts a base temperature
threshold. The GDD calculation used the mean of the mean daily and mean nightly LST values and
a base of 0 ◦C:

GDD = max
{[

(mean(LST1030 + LST1330) + mean(LST2230 + LST0130))

2

]
− Tbase, 0

}
(1)

When GDD < 0, the daily value was mapped to zero, meaning no increment of thermal time occurred
during that compositing period. Then the annual time series of GDD composites was multiplied by 8 to
account for the 8-day compositing period of the MODIS products and accumulated each observation (GDD
in ◦C) across the year. The final product is a ten-year time series of accumulated growing degree-days
(AGDD in ◦C) by year. Figure 3 shows the workflow for the MODIS LST to AGDD conversion process.
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2.3.3. Land Surface Phenology Modeling

LSP metrics are often calculated from time series data of vegetation indices [41]. There are four
main methods used to calculate LSP metrics, including: (1) thresholds; (2) derivatives; (3) smoothing
functions; and (4) fitting models [41]. We used a quadratic regression model to link the WELD
normalized difference vegetation index (NDVI) to MODIS LST-derived AGDD. This model has been
used successfully to analyze LSP dynamics in temperate regions [12,17]. The quadratic LSP (Q LSP)
model is defined as:

NDVI = γ AGDD2 + β AGDD + α (2)

where NDVI contains all NDVI values (unitless; −1 to 1) for a specific period and AGDD (◦C) contains
all AGDD values for the corresponding period [42]. The Q LSP model requires only three model
parameter coefficient estimates with relevant ecological interpretations [42,43]. The significance of
the model is dictated by its ability to explain the variance in NDVI, expressed as the coefficient of
determination (R2). We applied the Q LSP model to the decadal time series of NDVI and AGDD
observations for each pixel and derived the following LSP metrics:

Peak Height in NDVI (PHNDVI) = α − β2

4γ
(3)

Thermal Time to Peak NDVI (TTP) = − β

2γ
(4)

We derived NDVI at half-thermal time to peak (half-TTPNDVI) from PHNDVI and TTP. We used
a threshold of NDVI = 0.3 to determine Start of Season (SOS) and End of Season (EOS) for a given pixel.
This threshold was chosen because all NDVI values are filtered to select observations where NDVI > 0.2,
and thus once NDVI = 0.3, vegetation has increased in NDVI. NDVI is then input and solved for in
Equation (2) for both sides of the quadratic parabola (i.e., SOS and EOS). This provides AGDD at
SOS and EOS, from which the difference of (EOS-SOS) determines the Duration of Growing Season
(DGSAGDD). We used a coefficient of determination threshold of R2 < 0.5 to exclude ill-fitting models.
Figure 4 demonstrates the fitting of the Q LSP model to a decade of NDVI vs. AGDD observations and
the associated LSP metrics derived from the model.
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Figure 4. Quadratic land surface phenology model fit to the 2003–2012 time series of
Web-Enabled Landsat Data Normalized Difference Vegetation Index NDVI vs. MODIS Land Surface
Temperature-derived accumulated growing degree-days for an example of perennial forest (green) and
annual cropland (orange) pixels selected from Omaha, NE. In grey are the phenometrics derived from
the model.
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2.3.4. Equivalence Testing

In order to determine if significant differences exist in DGSAGDD between GCAs, UE areas,
and areas outside of the UE, we performed a statistical analysis known as equivalence testing. We used
the two one-sided tests (TOST) approach to test for equivalence between group means [44]. Tests of
equivalence evaluate the similarity between two groups rather than the more commonly used tests of
difference or inequality [45]. There are multiple reasons why equivalence tests are more appropriate for
our study than more traditional tests of significant differences between two groups. First, when sample
size n is extremely large (~10 M pixels in the Minneapolis-St. Paul region), difference tests may
prove statistically significant for any non-zero difference in group means [45,46]. Moreover, remote
sensing data suffer from high positive spatial autocorrelation and it is difficult to correct for positive
spatial autocorrelation in difference testing [47]. Another benefit of equivalence testing is that it allows
for interpretation of the magnitude of differences between two groups [45,48]. Contrary to tests of
difference, the null hypothesis in an equivalence test is that two groups are significantly different [45].
In order to test for equivalency, a zone of indifference is specified which identifies the upper and lower
bounds to test for a difference in means between two groups.

We performed equivalence tests on the difference between group means of LSP metrics for GCAs,
UE areas, and areas outside of the UE, adjusting for multiple comparisons using the Bonferroni
correction method [49]. The LSP metrics tested include TTP and DGSAGDD. To objectively determine
the zone of indifference, or δ, we used 10% of the mean for each LSP metric for each of the 19 study
cities. When testing for equivalence between group means of LSP metrics between GCAs, UE areas,
and areas outside of the UE, four conditions were possible: (1) all three groups to be statistically
equivalent; (2) all groups to be different; (3) one pair of group means to be equivalent, and two pairs
different; or (4) two pairs of group means equivalent, and one pair different. In the analysis, the letters
were ranked in descending order; same letters indicate the groups were equivalent.

2.3.5. Exponential Trend Model

A study on urban climates in 70 cities in eastern North America found the ecological footprint of
cities to be 2.4 times greater than the extent of urban land use, which was determined as the distance
where 95% of asymptotic values were reached in the exponential model of differences in green-up onset
and dormancy onset as a function of distance from the urban perimeter [15]. Here we used a similar
method to calculate the difference in duration of growing season between urban and surrounding rural
areas and to determine the magnitude and extent of urban influence on the seasonal development
of vegetation.

We calculated the mean DGSAGDD for all pixels with R2 > 0.6 within each cities’ UE. Next,
we calculated the mean DGSAGDD grouped by distance from nearest UCA at 1 km intervals, and took
the difference between mean UE DGSAGDD and the mean DGSAGDD for each 1 km distance grouping.
We plotted the mean difference in DGSAGDD (∆DGSAGDD) as a function of distance from UCA for each
city (Figure 5). From there, we fitted an exponential function (Equation (5)), where a is the horizontal
asymptote, u is the relative amount the curve increases from the origin to the horizontal asymptote,
and b is a scaling parameter for distance.

∆DGSAGDD = a
(

1 − ue−b × distance
)

(5)

We assumed that the distance from UCAs where impacts on DGSAGDD become insignificant is
the distance where each exponential model reaches 95% of its asymptotic values [15]. This approach
provided two values: (1) the extent (distance) of urban influence on LSP; and (2) the magnitude of
differences in DGSAGDD between urban and surrounding rural environments.

We limited this analysis to all pixels within 20 km of UCAs, the same distance used in [15].
The analysis was split into two parts. The first was limited to perennial vegetation LCTs, whose DGSAGDD

is driven largely by local atmospheric conditions and thus allows for conclusions to be made on the
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impacts of UHIs on DGSAGDD. Second, we performed the same analysis but included annual croplands.
It would be inappropriate to draw conclusions on the influence of urban areas (via the UHI effect)
on the DGSAGDD of croplands, because cropland LSP is driven largely by management practices,
including the timing of tillage and harvest [25]. However, including croplands allowed us to draw
conclusions on the difference in the duration of the “green-on” season. That is, the annual time period
when the land surface is covered in green vegetation. At the regional level, we compared results from
each urban region to draw conclusions on the influence of city size and latitude in regards to the
impacts on the surrounding environment.
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Figure 5. Example of exponential trend model fit to change in duration of growing season (∆DGSAGDD)
as a function of distance from nearest urban core area for Omaha-Council Bluffs, NE-IA. The grey
diamonds show where the exponential model reaches 95% of asymptotic values, used to calculate the
magnitude of ∆DGSAGDD and the distance at which urban effects become insignificant. In blue is the
model fit to strictly perennial vegetation land cover types and in green annual croplands are included.

3. Results

3.1. Equivalence Testing

Duration of Growing Season

We expected to find that DGSAGDD in GCAs was shorter than in UE areas, but longer than in
areas outside of the UE, based on the premise that vast expanses of urban vegetation could potentially
experience shorter growing seasons due to the cooling effects of vegetation. However, only one out of
the 19 cities exhibits this pattern based on the equivalence testing analysis (Lincoln, NE). We found
that DGSAGDD was equivalent between GCAs and UE areas and higher than areas outside of the UE
for 17 out of the 19 cities (Figure 6). We concluded that, in general, DGSAGDD was longer in both
GCAs and UE areas than in areas outside of the UE, but there was not a significant difference between
DGSAGDD in GCAs compared to UE areas. This dominant spatial pattern demonstrated the influence
of urban areas and UHIs on the seasonal development of perennial vegetation, where vegetation within
cities experienced growing seasons that were at least 10% longer than vegetation in the surrounding
rural areas.

Figure 7 shows DGSAGDD over the Minneapolis-St. Paul, MN region. Darker shades of red relate
to longer DGSAGDD, clustered near the densely impervious UCAs of each city. Figure 8 shows the
corresponding LCT over the greater Minneapolis-St. Paul region. Notice the higher DGSAGDD in the
perennial LCTs (developed, forest, herbaceous) located within the cities compared to annual croplands
outside of the urban areas. This spatial pattern demonstrates why croplands were omitted from the
DGSAGDD analysis: (1) there are little to no cropland areas inside of cities from which to compare;
and (2) the seasonal development of annual croplands is dictated by management factors (i.e., field
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accessibility, timing of tillage, and irrigation) rather than by local environmental and atmospheric
conditions (i.e., thermal time and the UHI effect).Remote Sens. 2017, 9, 499  11 of 21 

 

 
Figure 6. Results from equivalence tests between group means of duration of growing season 
(DGSAGDD). DGSAGDD is equivalent between green core areas (green) and urban extent (UE) areas 
(tan), but significantly lower in areas outside of the UE (brown) for 17 of 19 cities. 

 
Figure 7. Duration of growing season (DGSAGDD) for nine study cities within the greater 
Minneapolis-St. Paul, MN-WI region. Water is masked (blue) and pixels with quadratic land surface 
phenology model fit <0.5 are in black. 

 
Figure 8. Land cover type (LCT) classification scheme for nine study cities within the greater 
Minneapolis-St. Paul, MN-WI region demonstrating regional differences in dominant LCT between the 
intensely cultivated regions in the southwest (brown) and increasingly forest/herbaceous LCTs 
(green/yellow) to the north and east, with the large metropolitan area of Minneapolis-St. Paul (grey) 
lying between the two regions. 

Figure 6. Results from equivalence tests between group means of duration of growing season
(DGSAGDD). DGSAGDD is equivalent between green core areas (green) and urban extent (UE) areas
(tan), but significantly lower in areas outside of the UE (brown) for 17 of 19 cities.

Remote Sens. 2017, 9, 499  11 of 21 

 

 
Figure 6. Results from equivalence tests between group means of duration of growing season 
(DGSAGDD). DGSAGDD is equivalent between green core areas (green) and urban extent (UE) areas 
(tan), but significantly lower in areas outside of the UE (brown) for 17 of 19 cities. 

 
Figure 7. Duration of growing season (DGSAGDD) for nine study cities within the greater 
Minneapolis-St. Paul, MN-WI region. Water is masked (blue) and pixels with quadratic land surface 
phenology model fit <0.5 are in black. 

 
Figure 8. Land cover type (LCT) classification scheme for nine study cities within the greater 
Minneapolis-St. Paul, MN-WI region demonstrating regional differences in dominant LCT between the 
intensely cultivated regions in the southwest (brown) and increasingly forest/herbaceous LCTs 
(green/yellow) to the north and east, with the large metropolitan area of Minneapolis-St. Paul (grey) 
lying between the two regions. 

Figure 7. Duration of growing season (DGSAGDD) for nine study cities within the greater
Minneapolis-St. Paul, MN-WI region. Water is masked (blue) and pixels with quadratic land surface
phenology model fit <0.5 are in black.

Remote Sens. 2017, 9, 499  11 of 21 

 

 
Figure 6. Results from equivalence tests between group means of duration of growing season 
(DGSAGDD). DGSAGDD is equivalent between green core areas (green) and urban extent (UE) areas 
(tan), but significantly lower in areas outside of the UE (brown) for 17 of 19 cities. 

 
Figure 7. Duration of growing season (DGSAGDD) for nine study cities within the greater 
Minneapolis-St. Paul, MN-WI region. Water is masked (blue) and pixels with quadratic land surface 
phenology model fit <0.5 are in black. 

 
Figure 8. Land cover type (LCT) classification scheme for nine study cities within the greater 
Minneapolis-St. Paul, MN-WI region demonstrating regional differences in dominant LCT between the 
intensely cultivated regions in the southwest (brown) and increasingly forest/herbaceous LCTs 
(green/yellow) to the north and east, with the large metropolitan area of Minneapolis-St. Paul (grey) 
lying between the two regions. 

Figure 8. Land cover type (LCT) classification scheme for nine study cities within the greater
Minneapolis-St. Paul, MN-WI region demonstrating regional differences in dominant LCT between
the intensely cultivated regions in the southwest (brown) and increasingly forest/herbaceous LCTs
(green/yellow) to the north and east, with the large metropolitan area of Minneapolis-St. Paul (grey)
lying between the two regions.
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3.2. Exponential Trend Model

To test whether DGSAGDD decreased with distance from UCAs, we analyzed the difference in
DGSAGDD between UE areas and areas grouped by increasing distance from UCAs. ∆DGSAGDD

followed an increasing negative exponential trend function of distance from UCAs for all of the
19 study cities. However, the Fargo, ND, region exhibited unreasonable results, likely due to the
low R2 in the study region (28.6% Q LSP model fit). Thus, we excluded the Fargo, ND, region from
the exponential trend model analysis. We fitted the exponential model twice: once for ∆DGSAGDD

calculated only from perennial LCTs (developed, forest, and herbaceous) (Figure 9; blue) and once
incorporating croplands (Figure 9; green). In general, ∆DGSAGDD increases exponentially with distance
from nearest UCA (Figure 9). The magnitude of ∆DGSAGDD ranges from 393 AGDD in Mankato, MN,
to 855 in Lincoln, NE. The distance at which urban effects are detectable and significant extends from
5.6 km in St. Cloud, MN, to 15.4 km in Des Moines, IA. The results for each individual city are found
in Table 3. On average, the 18 urban areas experience growing seasons that are 669 AGDD longer than
the surrounding rural areas, and the effects of urban areas on the growing season extend 11.4 km into
the urban periphery. It is evident that urban areas impact the duration of growing season in perennial
LCTs, and that urban effects (namely UHIs) extend beyond the boundaries of cities themselves.

Table 3. Scaling parameters of exponential trend model for difference in duration of growing season
(∆DGSAGDD) fit with croplands included (“C”) and with croplands excluded (“NC”) as well as the
magnitude of ∆DGSAGDD (“a”, in accumulated growing degree-days) and distance where urban
influence on the surrounding environment becomes insignificant, measured from nearest urban
core area.

City NC b C b C u NC u C R2 NC R2 NC a C a ∆a NC Dist (km) C Dist (km)

Aberdeen, SD 0.233 0.204 0.887 0.848 0.904 0.857 528 836 309 12.9 14.7
Albert Lea, MN 0.243 0.251 1.151 1.174 0.934 0.879 652 1135 482 12.3 12.0

Ames, IA 0.217 0.264 1.097 1.154 0.963 0.899 662 1400 738 13.8 11.4
Austin, MN 0.258 0.374 0.974 0.991 0.953 0.878 689 1203 514 11.6 8.0

Brookings, SD 0.399 0.369 1.069 1.050 0.952 0.964 605 1084 480 7.5 8.1
Cambridge, MN 0.275 0.396 1.003 0.984 0.910 0.951 422 482 60 10.9 7.6
Des Moines, IA 0.195 0.310 1.065 1.109 0.961 0.975 721 1195 474 15.4 9.7
Faribault, MN 0.388 0.419 1.004 1.145 0.966 0.920 545 970 426 7.7 7.2
Fremont, NE 0.253 0.373 0.777 0.970 0.970 0.933 735 1467 732 11.8 8.0
Lincoln, NE 0.276 0.317 0.792 0.900 0.944 0.968 855 1303 448 10.9 9.5

Mankato, MN 0.238 0.312 1.032 1.068 0.946 0.963 393 931 538 12.6 9.6
Marshalltown, IA 0.221 0.178 0.896 1.007 0.987 0.970 804 1428 623 13.6 16.8

MSP, MN 0.289 0.270 1.058 1.094 0.975 0.975 743 929 186 10.4 11.1
Omaha, NE 0.254 0.296 1.042 1.089 0.972 0.963 800 1449 649 11.8 10.2

Owatonna, MN 0.357 0.451 1.101 1.089 0.937 0.937 754 1276 522 8.4 6.6
Rochester, MN 0.201 0.193 1.090 1.124 0.966 0.966 799 1172 374 15.0 15.6
Sioux Falls, SD 0.238 0.340 1.097 1.109 0.960 0.956 832 1375 543 12.6 8.8
St. Cloud, MN 0.532 0.527 1.065 1.085 0.924 0.940 497 611 115 5.6 5.7

Minimum 0.195 0.178 0.777 0.848 0.904 0.857 393 482 60 5.6 5.7
Maximum 0.532 0.527 1.151 1.174 0.987 0.975 855 1467 738 15.4 16.8

Mean 0.281 0.325 1.011 1.055 0.951 0.939 669 1125 456 11.4 10.0

Analysis of DGSAGDD restricted to perennial vegetation LCTs allowed for conclusions on
the impacts of UHIs on the seasonal development of vegetation. However, including croplands
offered a comparison of the difference between urban and rural duration of green-on season, or the
annual period where the land surface is covered in green vegetation. Figure 9 demonstrates the
dramatic difference in ∆DGSAGDD calculated with (green) and without (blue) annual croplands.
Notice that the difference in ∆DGSAGDD was greater in cities that are surrounded predominantly
by intensive agriculture (Figure 9; Omaha, NE, and Des Moines, IA) compared to areas where
there was a greater portion of forest and herbaceous land cover surrounding the city (Figure 9;
Rochester and Minneapolis-St. Paul, MN). Including croplands into the calculation of ∆DGSAGDD

led to a mean difference between urban and rural DGSAGDD of 1125 AGDD. To reiterate, this result is
not demonstrating the influence of urban areas on local atmospheric conditions, but rather highlights
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the large difference in the duration of green-on season between perennial vegetation LCTs and
annual croplands. This difference has major implications for the representation of urban versus
rural vegetation in land surface modeling.
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of latitude for the analysis including croplands is likely demonstrating the greater presence of 
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Figure 9. Exponential trend model fit to difference in duration of growing season (∆DGSAGDD) as
a function of distance from nearest UCA for four selected cities. Differences in ∆DGSAGDD calculated
with croplands (green) and without croplands (blue) are evident, particularly in the predominantly
agricultural areas surrounding Omaha-Council Bluffs, NE-IA, and Des Moines, IA, compared to rural
Rochester, MN, and Minneapolis-St. Paul, MN-WI, where forests and herbaceous land covers are
more widely distributed. The grey diamonds show where the exponential model reaches 95% of
asymptotic values, used to calculate the magnitude of ∆DGSAGDD and the distance at which urban
effects become insignificant.

3.3. Regional Comparison

The impacts of urban areas and UHIs on the seasonal development of vegetation were
independent of population size. However, the total area influenced by urban areas was larger in cities
with greater total area. Figure 10 shows the relationship between latitude and ∆DGSAGDD. In orange
are ∆DGSAGDD for each city calculated with croplands, and in blue are ∆DGSAGDD calculated without
croplands. It appears that ∆DGSAGDD decreased with increasing latitude in Figure 10a; however, if we
converted ∆DGSAGDD into ∆DGSdays (by dividing ∆DGSAGDD by the average daily GDD for each city)
the relationship appeared less significant (Figure 10b). If we normalized ∆DGSAGDD as a percentage of
the total mean DGSAGDD by city, the relationship appeared even less significant (Figure 10c), and the
slope was not significantly different from zero for ∆DGSAGDD with croplands excluded (Figure 10c,
blue). The trend in the relationship between ∆DGSAGDD as a function of latitude for the analysis
including croplands is likely demonstrating the greater presence of agriculture in the cities located
farther south than in the more heavily forested and herbaceous regions surrounding the northern cities
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(Figure 1a). This pattern suggests that urban influence on local atmospheric conditions is relatively
uniform and proportionally not influenced by latitude in our study region. Stated in another way,
the exponential trends in ∆DGSAGDD found in this study were not caused by differences in latitude,
but rather by urban areas and their associated UHIs.
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Figure 10. Difference in duration of growing season (∆DGSAGDD) in terms of: (a) accumulated growing
degree-days (AGDD); (b) calendar days; and (c) percentage of mean DGSAGDD for results from model
fit with (orange) and without (blue) croplands. Notice that ∆DGS is significantly related to latitude in
terms of: total AGDD (a); but not relative (%) ∆DGS (c).

Based on the results from the equivalence tests between DGSAGDD in urban areas and surrounding
rural regions, and the aforementioned differences in DGSAGDD found with increasing distance from
urban core areas, we concluded that duration of growing season for perennial vegetation LCTs
decreases with distance from urban core areas. We found growing season length to differ by as much
as one month between urban areas and their surrounding rural regions. We found the effects of urban
alteration of local atmospheric conditions to extend around 11 km from UCAs.

4. Discussion

We had expected to find that the duration of growing season in green core areas would be shorter
than in urban extent areas, but longer than areas outside of the urban extent. Duration of growing
season was significantly longer in urban extent areas compared to areas outside of the urban extent
for all of the 19 cities analyzed. However, duration of growing season was not significantly longer
in urban extent areas compared to green core areas, as anticipated. We posited that duration of
growing season would be lower in green core areas due to the cooling effects of green vegetation.
For example, one study reported that urban parks help control urban temperatures due to 300% higher
evaporation rates than the surrounding urbanized area [50]. Another study found that green areas
and parks reduce cooling load by 10% [51]. An experiment found that a 600 m2 park was able to
decrease temperatures by 1.5 ◦C [52]. However, one limitation of this study was the relatively coarse
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spatial resolution (1,000,000 m2) of the MODIS LST product that was used to calculate the accumulated
growing degree-days. Although this study did not find significant differences between duration of
growing season in green core areas versus urban extent areas, Figure 7 demonstrates that duration of
growing season is not spatially uniform throughout cities. It is evident that duration of growing season
was longer near urban core areas than in other subregions of the city. Future studies should explore
other strategies for subdividing cities into spatial subregions, perhaps using Local Climate Zones
(LCZs) [53] as outlined by the recently launched World Urban Database and Portal Tool project [54].

The finding that both green core areas and urban extent areas had significantly higher duration of
growing season than areas outside of the urban extent can be attributed to urban areas modulating
local atmospheric conditions, namely via increased temperatures and consequently longer growing
seasons as a result of the UHI effect. However, there are other factors that may also have contributed
to the difference in duration of growing season between urban and rural areas, including decreased
wind speed, increased water availability as a result of urban irrigation, and differences in urban–rural
species composition. However, the finding that maximum NDVI was significantly lower in urban
areas than surrounding rural areas suggests that water availability was likely not the main limiting
factor in the Upper Midwest, a region that experiences relatively stable precipitation patterns and
quantities, although it is also susceptible to dry extremes [55]. If urban irrigation were the main factor
contributing to increased duration of growing season, then we would expect maximum NDVI to be
lower in areas outside of the urban extent, which was not found in this study.

The analysis of ∆DGSAGDD demonstrated that urban areas and UHIs influenced the local thermal
conditions inside of cities and extended into the urban periphery. On average, this study found that
UHIs lengthened the growing season by >600 AGDD and the effects extended around 11 km from the
highly impervious, densely urbanized urban core areas. This finding has major implications for land
surface phenology in urban to peri-urban environments. To illustrate: if we say that an average growing
season day accumulates 20 growing degree-days, and then divide 600 AGDD by 20, this equates to
a difference in the duration of growing season by approximately one month between urban areas and
surrounding rural areas that are not significantly influenced by local urban atmospheric modification
(mainly UHI effects). A previous study found that LST is significantly higher than corresponding
air temperatures during the daytime, although similar temperatures were found between LST and
corresponding air temperatures at night [40]. Future studies should explore the use of nighttime
LST alone in order to exploit the benefits of spatially exhaustive temperature readings that closely
correspond with air temperatures in order to remove the bias of higher daytime LST temperatures
observed over cities.

Note that these results are from the analysis of only perennial vegetation land covers (developed,
forest, and herbaceous). Perennial vegetation land cover types in this study exhibited a linear trend
between peak height in NDVI and NDVI at half-thermal time to peak, suggesting that the seasonal
development of perennial vegetation was driven by local atmospheric conditions, namely thermal
time. This observation aligns with plant development theory, or the idea that higher temperatures
prompt earlier growth in heat-sensitive species [56]. Controlling the analysis to perennial vegetation
land cover types provided a higher level of confidence that the results were indeed due to the influence
of UHI effects rather than differences in land cover type, specifically between annual croplands and
perennial vegetation.

To illustrate the linear trend between peak height in NDVI and NDVI at half-thermal time to peak,
we performed linear regression analyses on the relationship between PHNDVI and half-TTPNDVI by
land cover type. Due to the high volume of observations, we limited this portion of the analysis to
pixels with R2 ≥ 0.8. In order to determine if the linear model (fit to all pixels with R2 ≥ 0.8 from the Q
LSP model) was significant, we also used an R2 threshold of 0.8 in addition to the more traditionally
used p-values, again due to extremely large n values. We then compared the observed differences
between various LCTs. In particular, we were interested in whether a significant linear relationship
existed for perennial vegetation LCTs but not for annual croplands. Figure 11 shows an example
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of the linear relationship between PHNDVI and half-TTPNDVI for perennial vegetation in four of the
selected cities.
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Incorporating croplands is, however, useful because it demonstrates the differences in green-on
season between urban and rural areas, or the time period of the year where the land surface is covered
in green vegetation. The addition of annual croplands into the calculation of change in duration of
growing season increased the mean difference between urban and rural duration of growing season
to around 1100 AGDD, that translates into about two months difference in the period when the land
surface has green vegetation. At first, this may sound like an erroneous result; however, the major
crops grown in the Upper Midwest, namely maize and soybean, do not begin to develop as soon as
the growing season has commenced for perennial vegetation. Rather, the seasonal development of
commodity crops, such as maize and soybean, is driven largely by external, non-atmospheric factors
including crop management, field accessibility, timing of planting and harvest, or the use of irrigation.
This phenomenon is confirmed by the high variation in the rate of vegetation green-up illustrated in
cropland pixels in Figure 11. It is not unusual for maize and soybean fields in the Upper Midwest to be
mostly bare soil in April–May and either dried-out crops or crop harvest residue in September–October.
Meanwhile, perennial vegetation generally begins developing shortly after snow melt and ends after
the first hard freeze; these times are undoubtedly much earlier and later, respectively, than the duration
of green-on season for maize, soybean, and other summer crops.

The major difference in duration of green-on season between perennial vegetation and annual
croplands has major implications for urban–rural differences in heat storage and release during
different periods of the year. During the summer months when the crop canopy is fully developed,
green vegetation redistributes energy absorbed during the day through evapotranspiration, leading to
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cooler temperatures in the rural regions surrounding cities [57]. At the regional scale, relative change
in duration of growing season does not appear to be significantly related to urban extent, population,
or latitude. This finding suggests that the distance and magnitude that urban areas influence vegetation
in and near cities is relatively uniform independent of city size. However, larger urban areas have
a greater impact on local atmospheric conditions in terms of area.

The positive linear relationship found in the rate of vegetation green-up versus the maximum
NDVI in land cover types with perennial vegetation and the high variation in the rate of green-up
for annual croplands suggests that studies of UHI impacts on urban land surface phenology need to
account for differences in urban/rural land cover types. Because annual cropland phenology is driven
largely by agricultural planting schedules, it is not appropriate to use annual cropland land surface
phenology metrics in order to draw conclusions on the magnitude and extent of urban heat island
effects on land surface phenology in and around cities. Vegetation cover/types that exhibit a perennial
vegetation response, i.e., a positive linear relationship between Half-TTPNDVI and maximum NDVI,
are more appropriate for research aimed at measuring and monitoring the urban heat island effects on
land surface phenology.

5. Conclusions

There are multiple remote sensing issues that must be considered in order to draw conclusions
related to the study of UHI impacts on LSP in and around cities. Past studies of UHI effects on urban
LSP have centered on surface observation networks and high temporal/coarse spatial resolution
remote sensing datasets. Studies of UHIs using air temperature readings from local meteorological
stations have higher spatial resolution, but are limited by sparse spatial coverage. Moreover, a recent
study on the thermal environment of grasses found that the plants respond more closely to the land
surface temperature than to air temperature at two meters [58]. Studies of UHIs using coarse spatial
resolution data for analyzing urban LSP suffer from the mixed pixel problem that make it extremely
difficult to account for differences in LSP as a function of LCT. There exists a need for more spatially
extensive, higher spatial resolution data products to capture phenological patterns in areas with
heterogeneous land cover and external drivers, because urban areas are a mixture of land cover/land
uses and exhibit microclimatic variation [23–25]. Using Landsat data for phenological studies allows
for local to regional scale analyses, offering a spatial resolution that is useful for exploring factors that
influence phenology including land use and urban heat islands [23–25,59].

As a caveat, it is difficult to draw conclusions on maximum NDVI in cities due to the
heterogeneous nature of the urban land surface; pixels that are a mixture of an urban lawn and
a rooftop, for example, will exhibit lower maximum NDVI values due to the proportion of impervious
surface being sensed. Another caveat is that we focused on the surface UHI and thus used AGDD
derived from land surface rather than air temperature data.

This regional study leverages multiple datasets from multiple sensors at relatively high spatial
resolutions in order to resolve the tradeoff between high spatial and temporal resolution, enabling
research to be conducted while controlling for LCT and enabling full spatial coverage in and around
cities. Fitting the Q LSP model to a decade of available observations provides a strategy for dealing with
the low number of observations that often restrict Landsat studies. This research provides a framework
for studying the impacts of urban areas and UHIs on the seasonal development of vegetation at a spatial
resolution that is useful and necessary in highly complex, heterogeneous urban areas. The results
found in this study highlight the need for future research of UHI-related impacts on urban LSP in
order to account for differences in LSP between annual croplands and perennial vegetation covers.
In addition, DGSAGDD was found to increase with proximity to densely impervious, urban core areas,
demonstrating the need to identify local “hotspots” within urban areas that may disproportionately
produce warmer atmospheric conditions. These results that demonstrate the drastic difference in the
DGSAGDD and the extent of urban influence on DGSAGDD highlights the need for urban land surface
models to accurately represent the seasonal development of vegetation in and nearby cities. Future
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urbanization will only increase the amount of Earth’s land surface that is significantly impacted by
urban areas and associated UHI effects. Future studies will model LSP metrics before and after land
cover changes as urbanization occurs along the urban periphery. This step should reduce the number
of pixels within cities that were excluded from the analysis due to poor Q LSP model fit, and increase
our understanding of the impacts of urbanization on LSP.

This study provides much needed and currently lacking information on: (1) the differences in
the seasonal development of vegetation between urban and rural areas of the Upper Midwest of the
United States; (2) the magnitude and extent of UHI effects on the seasonal development of vegetation
in small to medium sized cities; and (3) the differences in land surface phenology between annual
croplands and perennial urban vegetation. More importantly, this study provides a framework for
alleviating the resolution problems that have restricted studies of UHI effects on urban LSP in the past.
This information should prove useful to inform a variety of interests, including scientists interested
in urban thermal climate analyses, as well as urban climate modelers, urban ecologists, urban and
regional planners policy-makers, meteorologists, and climatologists.
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Abbreviations

AGDD Accumulated Growing Degree-Days
AVHRR Advanced Very High Resolution Radiometer
◦C Degrees Celsius
CONUS Conterminous United States
DGSAGDD Duration of Growing Season
DOY Day of Year
EOS End of Season
ETM+ Enhanced Thematic Mapper Plus
EVI Enhanced Vegetation Index
GCA Green Core Area
GDD Growing Degree-Day
ha Hectare
half-TTPNDVI NDVI at half-Thermal Time to Peak
IA Iowa
ISA Impervious Surface Area
km Kilometer
LCT Land Cover Type
LCZ Local Climate Zone
LSP Land Surface Phenology
LST Land Surface Temperature
m Meter
M Million
MN Minnesota
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
ND North Dakota
NDVI Normalized Difference Vegetation Index
NE Nebraska
NLCD National Land Cover Database
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PHNDVI Peak Height in NDVI
Q LSP Quadratic Model of Land Surface Phenology
R2 Coefficient of Determination
SD South Dakota
SDs Scientific Datasets
SOS Start of Season
Tbase Base Temperature
TM Thematic Mapper
Tmax Maximum Temperature
Tmin Minimum Temperature
TOST Two one-sided Tests
TTP Thermal Time to Peak NDVI
UCA Urban Core Area
UE Urban Extent
UHI Urban Heat Island
WELD Web-Enabled Landsat Data
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