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Abstract: Detection of forest disturbance and recovery has received much attention during the
last two decades due to its important influence on forest carbon budget estimation. This research
used Landsat time-series data from 1984 to 2015 to examine forest disturbance and recovery in a
subtropical region of eastern Zhejiang Province, China, through the LandTrendr algorithm. Field
inventory data and high spatial resolution images were used to evaluate the disturbance and recovery
results. This research indicates that high producer and user accuracies for both disturbance and
recovery classes were obtained and three levels of disturbance and recovery each can be detected.
Through incorporation of climate data and disturbance results, drought events also can be successfully
detected. More research is needed to incorporate multisource data for detection of forest disturbance
types in subtropical regions.

Keywords: Landsat time series; LandTrendr algorithm; forest disturbance and recovery; drought

1. Introduction

Forest ecosystems are often disturbed by physically induced (e.g., drought, fire) and
human-induced (e.g., selective logging, clear-cutting) factors, resulting in high uncertainty in forest
carbon budget estimation [1-4]. Due to high forest coverage and relatively young forest ages, the
subtropical region of China has become an important carbon sink [5] and has played an important
role in the global carbon budget [6]. However, high population density, economic conditions, and
frequent natural disasters (e.g., drought, flooding) in this region generate frequent disturbances, which
can result in uncertain carbon estimation if the disturbances are not taken into account. Timely and
accurate detection of forest dynamic change [6,7] is required to better understand its contribution to
reducing the uncertainty of carbon budget estimation.

Forest disturbance is a discrete event caused by a significant change in the physical environment
in a forest ecosystem, a community, or a species structure [8]. The disturbance can originate from
natural events such as forest fire, drought, flooding, insect pests, and freezing, or human-induced
factors such as deforestation, selective logging, and mining. Forest disturbance can be destructive,
resulting in significant damage to the forest structures and degradation of ecological functions [9].
Conversely, forest recovery can be natural, a process of natural vegetation succession, or artificial,
gradual recovery through forest management such as the alteration of inefficient forests [2].

In general, forest disturbance and recovery information can be obtained through field inventory
or remote sensing technologies. Field surveys are the most accurate approach to examine forest
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disturbance or recovery, but the time-consuming and labor-intensive work and difficulty in accessing
some sites in mountainous regions make it only feasible for accessible sites with small areas. On the
other hand, remote sensing, especially optical sensor data, due to its long-term data availability
and repeated acquisition capability at the same location, has become one of the most important
data sources for detecting forest disturbance in a large area [10,11]. Many studies have been
conducted for forest disturbance assessment at the global scale using coarse spatial resolution images
(e.g., Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging
Spectroradiometer (MODIS)) [12-15] and at the regional scale using medium spatial resolution
data (e.g., Landsat) [9,16-20]. Detection of forest disturbance can be based on a comparison
between two or more dates of remote sensing images and many change detection approaches can
be used for this purpose, as summarized in previous literature review publications (e.g., [21,22]).
Banskota et al. [11] provided an overview of forest monitoring approaches using Landsat time-series
data, including the description of image preprocessing, selection of remote sensing variables, and
related algorithms. The critical steps are to identify suitable variables and a relevant algorithm for
conducting the change detection [10].

In theory, forest disturbance and recovery can cause differences in canopy structures; thus, optical
sensor data may have different surface reflectances or radar data may have different backscatter
coefficients for the sites with disturbance or recovery. Therefore, remote sensing technologies can
be used to detect forest disturbance and recovery if proper approaches are used, including suitable
variables and corresponding algorithms. Different variables, such as spectral bands, vegetation indices,
image transform, and subpixel features may be used [10,11]. For example, the Landsat shortwave
infrared (SWIR) image is sensitive to moist condition, and it has been used for detecting forest
disturbance [19] because the change of forest structures due to disturbance can result in the change in
moist structures (e.g., moisture, canopy-cast shadows). However, individual spectral bands are often
influenced by external factors such as topographic factors and atmospheric conditions; vegetation
indices can reduce these impacts [10]. Therefore, a vegetation index such as normalized difference
vegetation index (NDVI), normalized difference water index (NDWI), or normalized burned ratio
(NBR) and Tasselled cap wetness are often used for forest disturbance detection [23-26]. In addition to
the pixel-based variables, spatial-based features such as textures and segmentation have been used
for land-cover change detection [21,27-29] but have not been extensively used for forest disturbance
detection. The major reason may be that the spatial features reduced the small differences caused by
forest disturbance or recovery, and the patch sizes and complexity of tree species affect the selection of
suitable spatial features [30]. Other potential variables are the subpixel features that are decomposed
from multispectral bands using spectral mixture analysis [31]. A new index based on the unmixed
subpixel features (e.g., green vegetation, shade, and non-photosynthetic vegetation) can further
improve the detection of forest disturbance, like the hickory forest disturbance caused by extreme
drought events in Zhejiang Province in 2013 [31].

Another critical step in forest disturbance analysis is to select a suitable algorithm. Previous
publications e.g., [10,21,22,32] summarized many detection techniques for land-cover change, and
these techniques can also be used for forest disturbance detection. In recent years, new approaches
such as Vegetation Change Tracker (VCT), Landsat-based Detection of Trends in Disturbance and
Recovery (LandTrendr), and Breaks For Additive Season and Trend Monitor (BFAST) were developed
for forest disturbance detection based on Landsat time-series data [11,23-26,32,33]. For example,
curve fitting was used to detect forest disturbance and recovery in western Oregon, USA, with
Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) time-series images [34-36].
Thresholding-based approaches with the Tasselled cap—derived disturbance index or subpixel variables
also have been used to detect forest disturbance [1,31,37,38]. VCT [17,18,39,40] is also a threshold-based
approach for detection of forest disturbance using the integrated forest Z-score index (IFZ) from
Landsat time-series data. Selection of proper thresholds is critical for successfully detecting forest
disturbance and recovery; thus, it often depends on ground-truth data and the skills of the analyst.
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In recent years, the two algorithms Land Trendr [24,41-45] and BFAST [16,33,46,47] often have been
used to detect forest disturbance and recovery in North America. There are also other algorithms such
as Continuous Change Detection and Classification (CCDC) [48] and Continuous Monitoring of Forest
Disturbance Algorithm (CMFDA) [9]. Different algorithms have their own merits and shortcomings in
forest disturbance detection, but it is unclear which one has the best performance for a specific study
area. It also is a challenge to validate forest disturbance assessments due to difficulty in collecting
ground-truth data. High spatial resolution images such as QuickBird with a multitemporal scale were
often used for this validation, presenting an overall accuracy of 60%—-80% [17-19,41].

Forest change can be grouped into three broad categories: abrupt, moderate, and slight. Abrupt
change is similar to land-cover conversion, the complete change from one land cover to another; for
example, from forest to cropland or pasture or buildings, from bare soils to plantations. The detection
of deforestation and afforestation using remote sensing techniques is relatively easy because of the
significant difference in spectral signatures in optical sensor data. The challenge is to detect the
moderate and slight changes (or modifications)—changes in quantitative values without change in
types—for example, the forest change due to selective logging, insect disease, and drought. Moderate
change shows an obvious difference in forest canopy structures caused by external factors (e.g., extreme
weather, human activities), resulting in obvious change from before to after the event. Remote sensing
technologies can detect moderate change; for example, Meddens et al. [49] detected bark beetle—caused
tree mortality using single-date and multidate Landsat imagery in north-central Colorado and
southern Wyoming, Schwantes et al. [50] quantified drought-induced tree mortality in the open
canopy woodlands of central Texas using a Landsat time series; Jarron et al. [25] differentiated different
levels of harvesting practices using annual Landsat time-series data in central British Columbia,
Canada. The biggest challenge in using remote sensing technology is to detect the slight forest change,
which may be caused by such factors as selective logging or a drought event, resulting in gradual
degradation or recovery in a relatively short time. This kind of detection requires careful selection
of remote sensing time-series data, suitable variables, and algorithms. For example, Meigs et al. [23]
examined the detection of four subtle change types: short-duration decline then recovery; short-
then long-duration decline; long-duration decline; and long-duration decline then recovery using
the LandTrendr algorithm in Oregon, USA. Lambert et al. [51] monitored forest decline through
remote sensing time-series analysis in southwestern Massif Central Mountains, France. Chen et al. [52]
detected the gradual tree line movement in Tianshan Mountain, China, using spectral mixture analysis
based on multitemporal Landsat multispectral images.

Many previous studies on forest disturbance assessments have focused on coniferous forests and
mixed evergreen and deciduous forests in North America [9,17-19,24,48,53,54]. In the subtropical
forest regions of China, detection of forest disturbance and recovery has not received much attention.
The major reasons may be (1) the complex landscape and species composition; (2) complex impacts
of different physically and human-induced factors such as selective logging, extreme weather, and
insect disease on forest disturbance, resulting in difficulty in detecting forest disturbance in this region.
Therefore, the objective of this research is to explore the detection of forest disturbance and recovery
levels in the subtropical region in Zhejiang Province using the LandTrendr algorithm based on Landsat
time-series data.

2. Materials and Methods

2.1. Study Area

The study area is located in the eastern coastal area of Zhejiang province, China (Figure 1).
This region belongs to the subtropical monsoon climate zone presenting four distinct seasons.
The Terrain is undulating, flat, and low elevation areas in the coastal region in the east and mountains
with elevations as high as 1470 m in the southwest region. This study area had high forest coverage
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of 62.2% in 2000 and included broadleaf, coniferous, and mixed forests, as well as bamboo. Major
afforestation began in the late 1970s and continued until the late 1990s in the mountainous regions.
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Figure 1. Study area showing relatively flat regions in eastern coastal areas of Zhejiang Province, China,

and high elevations in the western mountainous regions.

The population density and economic conditions decline from the coastal region to the
mountainous regions. In the past three decades, rapid urbanization, especially in coastal regions, has
resulted in a large conversion from agriculture land to impervious surfaces [55]. The rapid population
migrations from rural to urban and relevant urban expansion have accelerated the conflict between
land needs for urban construction and farmlands for food production. In order to keep the agricultural
area stable for food production, the government issued policies stating that loss of agriculture areas
in one place had to be complemented from other places, resulting in deforestation in mountainous
regions [56]. Therefore, the rapid urbanization in coastal regions has resulted in high conversion
of forest land to agricultural land in mountainous regions, but the land quality for agriculture is
often poor.

This study area is vulnerable to natural disasters. The main weather disasters are intense rain and
low temperatures in the spring season, typhoon, hail, and high temperatures in summer, droughts
in fall, and flooding in the rainy season. According to the Taizhou Statistical Yearbook records, high
temperatures and droughts in summer is an important factor resulting in forest disturbance; other
natural disasters such as typhoons, flooding, and hail have limited effects on forest disturbance.
In contrast, human-induced factors such as deforestation and selective logging seriously affect forest
disturbance, while afforestation and forest management promote forest recovery.

2.2. Data Preparation

Different datasets were collected and used in this research (Table 1). Landsat TM/ETM+/
Operational Land Imager (OLI) imagery from 1984 to 2015 was selected based on the consideration of
data availability, quality, and similar vegetation phenology. In this subtropical region, frequent cloud
cover is a major problem restricting image collection. For example, no images were available between
1993 and 1998 in this study area. This problem affects the effective detection of forest disturbance
because forests can be quickly restored if growth conditions such as temperature and moisture are
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suitable. After all Landsat images were collected, one important step was to convert the digital
number to surface reflectance. The Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) algorithm provided the approach to conduct the radiometric and atmospheric calibrations
for all Landsat TM and ETM+ images [57]. Because LEDAPS did not provide the atmospheric
calibration algorithm for Landsat 8 OLI data, a similar approach was used for that data [20]; that is,
the radiometric calibration was conducted using ENVI 5.1 software (Research Systems Inc., Boulder,
CO, USA). Then, a second simulation of the satellite signal in the solar spectrum (6S) model was used
to conduct atmospheric calibration for which the relevant parameters were from the Landsat ETM+
data [58]. The calibrated results between OLI and ETM+ were compared to make sure the unchanged
forest sites at the same locations had similar surface reflectance values.

Table 1. Datasets Used in Research.

Data Description Data Sources
Most of these Landsat images were
Landsat 5 Thematic Mapper (TM) images: downloaded from United States
1984-05-09, 1987-05-18, 1988-07-07, Geological Survey (USGS)
1990-06-11, 1992-08-03, 1993-06-03, (http:/ /landsat.usgs.gov /), and some
Landsat (path/row: 1998-08-20, 2002-10-02, 2003-08-02, were from Chinese Academy of Sciences
118,/040) 2004-08-04, 2007-07-28 geographic information space data cloud
Landsat 7 Enhanced Thematic Mapper (http:/ /www.gscloud.cn/). The OLI
Plus (ETM+): 2000-06-14, 2010-05-25 image on 2013-08-29 was obtained from
Landsat 8 Operational Land Imager (OLI):  the combination of images between
2013-08-29, 2015-08-13 August 1 and September 30 because
of the cloud problem.
ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer)
DEM GDEM (Global Digital Elevation Model) ~ http://gdem.ersdac.jspacsystems.or.jp/
data with 30 m spatial resolution were
used for modification of croplands.
Temperature and precipitation data were
Climate data collected from meteorological stations for ~ China Meteorological Administration

the study area for 1984-2013.

Forest inventory data within the study
area were collected for 1994, 1999, and
2004. For each sample plot, vegetation
type, dominant tree species, age, and
others were measured.

Field survey China Forestry Administration

High resolution images were used for
validation of forest disturbance
results for 2004-2015

High resolution images Google Earth

The Tasselled cap transformation algorithm [59,60] was used to transform Landsat multispectral
bands into three components: brightness, greenness, and wetness. The Fmask algorithm was used
to mask cloud and shadow of time-series images to eliminate their influence on the LandTrendr
temporal segmentation algorithm [61,62]. NDVI was used to distinguish impervious surfaces, bare
soils, and water bodies from vegetation (forest and non-forest vegetation such as croplands). Phenology
information of croplands based on different seasons of Landsat images was used to further separate
croplands and forests. Direct separation of croplands and forests based on spectral signatures of
a single-season Landsat image is often difficult. In this study area, croplands have three types:
(1) planting in spring and harvesting in fall; (2) planting in winter and harvesting in summer; and
(3) greenness in both spring and fall seasons. Based on Landsat OLI images in winter 2014 and summer
2015, sample plots for the three cropland types were selected, and the matched filtering approach [63]
was used to extract the croplands. Meanwhile, elevation and slope from digital elevation model (DEM)
data was further used to modify the results because cropland is usually distributed in the regions with
slopes of less than 10° and elevation of less than 600 m. Climate and forest inventory data were used
to examine forest disturbance by combining the LandTrendr-detected disturbance results.
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2.3.Detection of Forest Disturbance and Recovery

The LandTrendr time segmentation algorithm has been regarded as a good approach to effectively
detect forest disturbance and recovery [41,64]; thus, it was used in this study. Through the extraction of
the surface reflectance change trend from the time-series data, the LandTrendr algorithm can capture
short-term disturbance and long-term recovery trend. A detailed description of this algorithm can
be found in previous publications (e.g., [41]). Previous research also indicated that the NBR is more
sensitive to disturbance events than the NDVI and TCW (wetness component of the Tasselled cap
transformation). Therefore, this research selected NBR to detect forest disturbance and recovery.
The NBR is calculated as

NBR = (NIR — SWIR)/(NIR + SWIR) 1)

where NIR and SWIR are near infrared (850-880 nm) and shortwave infrared (1570-1650 nm)
reflectance. The normalized reflectance time-series images, the Tasselled cap transformed components,
and the cloud and shadow mask images were used as input to the LandTrendr model. The model
control parameters were obtained using the approach described in [41]. The major output includes
the NBR value, years of change vertices, the duration and the change amount of every segment.
Based on the LandTrendr results, three classes—disturbance, recovery, and stable (no-change)—were
classified [41].

Two approaches—forest inventory data and visual interpretation—were then used to evaluate
the LandTrendr results. A total of 261 permanent plots with plot size of 800 m? were measured in 1994,
1999 and 2004, and were used as reference data for accuracy assessment. Based on surveyed items
such as forest type, dominant tree species, forest ages, average canopy height, and average diameter
at breast height (DBH), we evaluated each plot between two inventory dates to decide whether the
plot was in one of the three classes: disturbance, recovery, or stable. The surveyed sample plots
were linked to the corresponding locations from the LandTrendr results to produce an error matrix.
An alternative is to use the Timesync visual interpretation method [42]. Samples were randomly
selected and allocated on the LandTrendr results, and each plot was visually examined to determine
the disturbance year and level (disturbance, recovery, or stable) using time-series analysis with high
spatial resolution images between 2004 and 2015 from Google Earth. Because some points cannot be
determined due to different factors such as clouds and image quality, these points were removed; thus,
306 samples were finally selected for validation.

2.3. Determination of Disturbance and Recovery Levels

In order to further examine forest disturbance severity, three disturbance levels of serious,
moderate, and light were classified. In this research, 32 sample plots were used to determine the
thresholds through the analysis of mean and standard deviation of the dypr (mean— 2*std, mean+ 2*std);
here, dypRr represents the NBR difference of two images between neighboring dates and std represents
standard deviation. The thresholds for recovery levels are the opposite of disturbance levels. Table 2
summarizes three disturbance and recovery categories, each based on these thresholds.

As Table 1 indicated, not every year has Landsat images due to the cloud-cover problem in this
study area. Based on the Landsat data availability, this study was first analyzed in five time periods:
1987-1993, 1993-1998, 1998-2004, 20042010 and 2010-2015, for the sake of result presentation in
temporal distribution. The statistical analysis of disturbance and recovery areas was then analyzed at
the real-time periods of one, two, three or five years, depending on the data availability. For comparison
of the changed areas of disturbance and recovery levels, annual change areas were calculated.
Meanwhile, the climate data (e.g., temperature and precipitation in July) were linked to the disturbance
and recovery results for exploring the drought-induced forest disturbances.
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Table 2. Definitions of Different Levels of Forest Disturbances and Recoveries.

Levels Definition Thresholds

Forests are completely removed through clear-cutting
Serious or burning; for example, the conversion from forest to  dypr € [350,800]
agriculture lands and buildings.

Disturbance Moderate Forests are seriously disturbed due to different reasons

such as selective logging, drought, or disease. dnbr € [150,350)

Forest disturbance can be observed in the field or

Light image due to change of forest stand structures. dnr € [20,150)
The conversion from non-forest types to plantations, B B
Strong mainly through afforestation. dnpr € [~800, ~350]
Change of forest structure such as from sparse forest to
Recovery Moderate dense forest is obviously detected. dnpR € (=350, ~150]
Light Change of forest structure such as density can be dngg € (—150, —5]

observed in the field or image due to growth.

Note: dypr represents the NBR (normalized burned ratio) difference of two images between neighboring dates.

3. Results

3.1. Analysis of LandTrendr Results

The accuracy assessment results based on forest inventory samples and visual interpretation
separately (Table 3) indicated that the LandTrendr approach can effectively detect forest disturbance
and recovery classes. Both accuracy assessment results show high producer and user accuracies for
disturbance and recovery classes but have very low user accuracy for the stable class. There is a high
amount of confusion between the stable and recovery classes; that is, many samples of recovery class
were misclassified to stable class. For some forest inventory samples, we assume that the forest is
in recovery state due to natural growth, but Landsat cannot effectively detect its change in spectral
signatures due to the data saturation problem caused by remote sensing data limitation. In contrast,
for some forest samples, we cannot clearly decide if it is in recovery state or stable state through visual
interpretation because of their similar color and spatial structure. However, the high producer and
user accuracies for both disturbance and recovery categories imply that the approach used in this
research is robust.

Table 3. Accuracy Assessment Results Based on Two Datasets.

Disturbance Recovery  Stable Producer Accuracy User Accuracy  Overall Accuracy

Forest Disturbance 34 15 6 61.82 80.95
Inventory Recovery 8 136 33 76.84 89.47 75.86
Data Stable 0 1 28 96.55 41.79
Disturbance 55 1 0 98.21 93.22
Timesync Recovery 3 164 45 77.36 95.35 81.37
Stable 1 7 30 78.95 40.00

3.2. Spatial and Temporal Patterns of Forest Disturbance and Recovery

The spatial distribution of forest disturbance in Figure 2 indicates that forest disturbance occurred
dispersedly. The forests closer to the urban regions or roads resulted in higher frequency of disturbance.
Overall, light disturbance is widely distributed with small patch sizes; serious and moderate
disturbances show large patches. In contrast, the study area is occupied by the recovery classes,
especially the light- and medium-recovery classes (see Figure 3), implying that forests in this study
area were expanded or in continuous growth during the change detection periods. The statistical results
for different levels of disturbance and recovery during various detection periods (Table 4) indicate
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that the disturbance area is much smaller than recovery area, the areas of different disturbance levels
are slightly increased overall, but the areas of recover levels remained relatively stable. The annual
disturbance rate during 2010-2015 was especially higher than in any other period. One interesting
thing is that the disturbance areas in 1993-1998 were much smaller than in any other period, but the
recovery areas were larger. This is caused by the data problem that longer intervals between Landsat
images (see Table 1 about the image acquisition dates) result in an inability to detect disturbance
but an ease with detecting recovery class, implying the requirement of dense images for detection
of disturbance.
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Figure 2. Comparison of spatial patterns of forest disturbance among detection periods. (a) 1987-1993;
(b) 1993-1998; (c) 1998-2004; (d) 2004-2010; (e) 2010-2015; NF, no forest; NDF, no disturbance forest;
SDF, serious disturbance forest; MDF, moderate disturbance forest; LDF, light disturbance forest.
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Figure 3. Comparison of forest recovery spatial patterns among detection periods. (a) 1987-1993;
(b) 1993-1998; (c) 1998-2004; (d) 2004-2010; (e) 2010-2015; NF, no forest; NRF, no recovery forest; SRF,
strong recovery forest; MRE, moderate recovery forest; LRF, light recovery forest.
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Table 4. Statistical Results of Forest Disturbance and Recovery Areas (km?) and Corresponding annual
Change Rate (km?2/ year) for Each Detection Period.

Changed Areas within Detection Periods (km?)

1984-1993  1993-1998  1998-2004 2004-2010 2010-2015

Disturh Serious 19.76 6.57 60.55 72.87 95.19
lsltur lance Medium 51.14 17.70 151.54 121.06 205.79
eves Light 63.37 22.67 141.80 86.09 193.37
Strong 518.38 507.46 540.14 44950 431.34

RTCOVIEW Medium  4662.89 4461.47 4722.12 4075.60 3941.90
evels Light 5080.17 5064.10 5164.31 5142.76 5058.48

Annual Average Change Rate (km?/year) during Each Period

) Serious 2.20 1.31 10.09 12.15 19.04
Disturbance Medium 5.68 354 25.26 20.18 41.16
levels Light 7.04 453 23.63 1435 38.67
Strong 57.60 101.49 90.02 74.92 86.27
Recovery  rodium 518.10 892.29 787.02 679.27 788.38
levels Light 564.46 1012.82 860.72 857.13 1011.70

3.3. Analysis of Statistical Data of Forest Disturbance and Recovery

The statistical results of the disturbance and recovery areas (Table 5) indicate that the disturbance
areas for certain years have much higher values than in other years; for example, the periods of
2002-2003 and 2003-2004, 2010-2013 and 2013-2015 have much higher disturbance areas than other
periods. Recovery areas have a similar situation. If the disturbance and recovery areas in Table 5
are linked to drought events (high temperature and low precipitation in Figure 4), the years of high
disturbance areas coincide with the years of drought, implying that drought events can be successfully
detected using the Land Trendr approach. In addition, this implies that drought events are an important
factor resulting in forest disturbance in this region. For example, Figure 4 indicates that 1991, 2003 and
2013 had the most drought; thus, the areas with the highest disturbance for these years and following
years were detected, with forest recovery areas often appearing one year later. Table 5 also indicates
that the optimal detection period is one or two years. The five-year period is too long to effectively
detect disturbance and recovery. As shown in Table 5, the annual change area due to disturbance and
recovery in 1993-1998 is much smaller than in other neighboring years. This is reasonable in that forest
growth is dynamic; thus, forest disturbance due to selective logging or drought can be restored in
months or years.

Table 5. A Summary of Statistical Data for Disturbance and Recovery Areas During Detection Periods.

Change Area within the Detection Periods (km?) Average Annual Change Rate (km?/year)

Detection : .
Periods Disturbance Levels Recovery Levels Disturbance Levels Recovery Levels
SDF MDF LDF  SRF MRF LRF SDF MDF LDF SRF MRF LRF

1984-1987  0.79 856  31.78 44877 422731 4819.51 0.26 285 1059 14959 1409.10 1606.50
1987-1988 199  14.62 35.62 47252 4341.22 494126 199  14.62 35.62 47252 434122 4941.26
1988-1990 503 19.18 29.28 483.24 442347 497757 252 9.59  14.64 24162 2211.74 2488.79
1990-1992 1627 3590 37.12 493.81 446131 4990.48 8.14 1795 1856 24691 2230.66 2495.24
1992-1993  16.16 3538 3532 51476 456577 5017.53 16.16 3538 3532 514.76 4565.77 5017.53
1993-1998 6.57 1770 22,67 506.99 4450.71 5075.32 1.31 3.54 453 10140 890.14 1015.06
1998-2000 13.67 48.66 53.88 500.51 4416.54 5056.94 6.84  24.33 2694 250.26 2208.27 2528.47
2000-2002  24.34 84.03 91.76 429.04 3979.19 492059 1217 42.02 45.88 214.52 1989.60 2460.30
2002-2003  29.39 8530 90.62 42511 3914.45 4809.91 29.39 8530 90.62 42511 3914.45 4809.91
2003-2004 3879 78.16 67.26 430.74 3953.67 4919.10 38.79 7816 67.26 430.74 3953.67 4919.10
2004-2007 48.05 8272 67.01 43793 3977.30 4982.83 16.02 2757 2234 14598 1325.77 1660.94
2007-2010  53.80 9451 7191 44246 3987.21 5138.02 17.93 3150 2397 14749 1329.07 1712.67
2010-2013  95.02 196.23 181.32 431.16 3930.57 5069.98 31.67 6541 6044 143.72 1310.19 1689.99
2013-2015 7895 186.03 189.06 416.97 3591.27 4446.15 3948 93.02 9453 20849 1795.64 2223.08

Note: SDF, serious disturbance forest; MDF, moderate disturbance forest; LDEF, light disturbance forest; SRF, strong
recover forest; MRF, moderate recovery forest; LRF, light recovery forest.
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Figure 4. Precipitation and monthly average maximum temperatures in July in Taizhou (a) and Yuhuan
(b) showing the most drought events in 1991, 2003 and 2013.

4. Discussion

This research shows that LandTrendr can effectively detect disturbance and recovery categories
with high producer and user accuracies based on Landsat time-series data in a subtropical region.
This research also indicates that the detection of forest disturbance and recovery is a comprehensive
procedure that requires consideration of different factors such as collection of ground-truth data,
definitions of disturbance and recovery classes, selection of suitable remote sensing variables and
optimization of parameters used in the algorithm, and evaluation of detected disturbance and recovery
results. In particular, selection of suitable variables and corresponding algorithm is critical for
successful detection of forest disturbance and recovery classes.

Different remote sensing variables, such as Landsat SWIR [19], NBR [23,24], Wetness from
Tasselled cap transform [24,25], and subpixel features [31] have been used for detection of forest
disturbance. In particular, vegetation indices have been regarded as a better variable than individual
spectral bands because they can reduce the impacts of external factors such as topography and
atmosphere on the surface reflectance and can enhance some specific features such as forest structure
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characteristics [10,65]. For example, previous research on forest disturbance studies in North America
has proven that NBR is more sensitive than traditional indices such as NDVI [23,24]. However,
vegetation indices have a data saturation problem; that is, when forest canopy density reaches
a certain value, NDVI values become the same even if forest biomass continued to increase [66].
The fraction image from the decomposing multispectral imagery can improve the performance for
forest disturbance, as shown in a detection of drought-induced disturbance of hickory plantations [31].
In reality, the disturbance caused by different factors such as selective logging and insect disease have
different influences on the forest canopy features; thus, it may require identifying a specific vegetation
index for the forest disturbance detection. It is unclear that NBR is the best for subtropical regions
because of the different compositions of tree species and different disturbance factors in a large area.
More research is needed to identify an optimal vegetation index suitable for subtropical regions.

The quality of remote sensing data is an important factor influencing forest disturbance.
In subtropical regions, the frequent cloud cover is a big problem resulting in a lack of Landsat
images due to its relatively infrequent revisit dates. For example, there are no Landsat images for the
years between 1993 and 1998. Most of the disturbances caused by such factors as drought and selective
logging can be restored within one or two years; thus, such a disturbance cannot be detected if the
detection period is more than two years because vegetation is growing and restoring. This situation is
shown in Table 5: the detected disturbance and recovery areas are much smaller in 1993-1998 than in
any other period in this study. For certain years of images, we could not find cloud-free images; thus,
we had to combine several images to produce a new image, which influenced the surface reflectance.
In the future, more research should be done to develop an algorithm that can effectively integrate the
use of different optical sensor data such as CBERS, ASTER, or SPOT if the same sensor data without
clouds are not available.

In addition to selection of suitable variables with dense dates, different algorithms such
as VCT, LandTrendt, and BFAST have been developed for detection of forest disturbance and
recovery [11,23-26,32,33], but their performances vary, depending on many factors such as the
composition of forest species and complexity of the landscape under investigation, the variables
used, and parameters in the algorithm. For example, several control parameters are used in the
LandTrendr algorithm and they need to be optimized. It is critical to identify optimal parameters for
producing the best detection results. Thus, ground-truth data are very important, but they are often
difficult to collect in the field. In the past decade, high spatial resolution images such as QuickBird,
Pleiades, and Worldview have been available to partially replace ground-truth data.

Validation of the disturbance results is often a challenge, especially for historical data. In this
research, we collected sample plots that had been measured in 1994, 1999 and 2004. We were able to
determine whether the plot was disturbed or restored based on the calculation of volume or biomass to
see whether the amount increased or decreased, but the change may be small due to some disturbance
such as drought. For example, Figure 4 indicates that there was a drought event in 1994, but we do not
have Landsat images for 1994-1997; thus, much disturbance that occurred after 1993 and before 1998
cannot be detected. Even if we can use high spatial resolution images for the latest decade, it is still
difficult to visually interpret the places where small disturbances or growth occurred, and this is one
reason why the stable and recover classes can be confused. That is, many samples with recovery were
wrongly interpreted as stable.

5. Conclusions

The subtropical forest region in China is an important part in influencing the global carbon budget.
The high population density and intense physically induced and human-induced factors lead to high
forest disturbance, requiring detection of forest disturbance and recovery at long temporal scales.
This research used the LandTrendr algorithm to examine forest disturbance and recovery distribution
with high accuracy. The major conclusions can be summarized as follows:
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(1) LandTrendr algorithm can effectively detect forest disturbance and recovery classes, but
dense Landsat time-series data are required for accurately extracting the disturbance and
recovery features;

(2) ground-truth data are critical to determine disturbance and recovery levels through identification
of suitable thresholds, but are often unavailable; thus, high spatial resolution images with multiple
temporal scales are very helpful;

(3) forest disturbance and recovery detection is a comprehensive procedure that requires good
design of different steps: collection of ground-truth data, selection of time-series remote sensing
variables, algorithm, and evaluation of the results;

(4) more research is needed to integrate multisource data for forest disturbance and recovery
detection, especially in subtropical and tropical regions due to the frequent cloud-cover problem.
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