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Abstract: As the capital of China, Beijing has experienced a continued and rapid urbanization
process in the past few decades. One of the key environmental impacts of rapid urbanization is
the effect of urban heat island (UHI). The objective of this study was to estimate the urbanization
indexes of Beijing from 1992 to 2013 based on the stable nighttime light (NTL) data derived from the
Defense Meteorological Satellite Program’s Operational Line Scanner System (DMSP/OLS), which
has became a widely used remote sensing database after decades of development. The annual
average value nighttime light Digital Number (NTL-DN), and the total lit number and urban area
proportion within Beijing’s boundary were calculated and compared with social-economic statistics
parameters to estimate the correlation between them. Four Landsat thematic mapper (TM) images
acquired in 1995 and 2009 were applied to estimate the normalized difference vegetation index
(NDVI) and normalized land surface temperature (LSTnor), and spatial correlation analysis was then
carried out to investigate the relationship between the urbanization level and NDVI and LSTnor.
Our results showed a strong negative linear relationship between the NTL-DN value and NDVI;
however, in contrast, a strong positive linear relationship between existed between the NTL-DN
value and LSTnor. By conducting a spatial comparison analysis of 1995 and 2009, the vegetation
coverage change and surface temperature difference were calculated and compared with the NTL-DN
difference. Our result revealed that the regions of fast urbanization resulted in a decrease of NDVI
and increase of LSTnor. In addition, choropleth maps showing the spatial pattern of urban heat island
zones were produced based on different temperatures, and the analysis result indicated that the
spatial distribution of surface temperature was closely related with the NTL-DN and NDVI. These
findings are helpful for understanding the urbanization process as well as urban ecology, which both
have significant implications for urban planning and minimize the potential environmental impacts
of urbanization in Beijing.
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1. Introduction

Currently, more than 50% of the world’s population lives in urban areas, with this proportion
likely to keep increasing in developing countries. Urbanization is taking place at a spectacular
rate worldwide, particularly in China during the past few decades. With continuous rural-urban
migration and urban expansion, more megacities are continuously emerging in China [1,2]. Along
with rapid urbanization and modernization, some environmental issues, such as water pollution [3],
air pollution [4], greenhouse gas emissions [5], and enhanced urban heat islands [6], are arising in
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many Chinese cities. Therefore, to have a comprehensive understanding of the process of urbanization
and to evaluate its environmental influence, it is necessary and indispensable to monitor and analyze
the dynamics of urbanization in China [7]. As the capital city of China, Beijing has experienced rapid
urbanization, industrialization and modernization, therefore, analyzing the urbanization process of
Beijing has significant meaning, which would be conductive to studies of other cities of China.

In recent years, satellite observations have been widely used in urban studies across the world,
one of which is the Defense Meteorological Satellite Program’s Operational Line Scanner System
(DMSP/OLS). The DMSP/OLS dataset, which was originally used to monitor the global distribution
of clouds and cloud top temperatures in the 1970s, was not widely noticed until 1992. During the last
two decades, DMSP/OLS nighttime light (NTL) images have been developed and extensively applied
to urban studies. These studies included mapping urban areas [8], and detecting spatial urban sprawl
trends [9]; in addition, NTL imagery is regarded as a primary data source to estimate the variation
and development of urban population and population density [10,11], detect socio-economic activity
and dynamics [12], measure impact on energy and electricity consumption [13], and evaluate gas
emissions [14]. The spatial-temporal dynamics of urbanization based on DMSP/OLS of Chinese cities
was characterized and estimated by integrating social-economic statistics [7,15], which provided timely
and spatially explicit metrics of the urbanization processes. Numerous studies put the DMSP/OLS
database into use as a spatial reflection of the urbanization level; nevertheless, there have been few
studies focused on the integration of spatial distribution dynamics with the thermal environment and
heat island effects.

Urbanization profoundly influences biodiversity and ecosystem function, as well as local and
regional climate and quality of life [16]. One of the more serious impacts of urbanization is the urban
heat island (UHI) effect, which indicates that an urban area is significantly warmer than its surrounding
rural areas due to artificial land cover and anthropogenic heat. UHI is an important issue for urban
planning and environment improvement as it has several negative impacts on an urban environment.
Traditionally, UHI is observed from air temperature measurements within the urban area and the
surrounding rural areas; however, more recent UHI studies are based on land surface temperature
(LST) from remote sensors because of high spatial and temporal resolution, free availability and
easy access. Therefore, remote sensing based UHI has been used as the surface urban heat island
(SUHI) [17,18]. Particularly, the Moderate Resolution Imaging Spectroradiometer (MODIS) on board
Terra and Aqua, which provides daily LST data with high temporal (four times per day) and relatively
high spatial resolution (1 km), has been widely applied for monitoring UHI [19,20]. On the other hand,
with a high spatial resolution of 30–120 m, Landsat TM/ETM+/OLI data has been used to estimate
the LST for SUHI study in recent years [21–23], and mature and applicable technology of estimating
LST was developed using the Landsat products. In addition, as vegetation transpiration mitigates the
effect of UHI, numerous studies have focused on understanding the relationship between LST and
the normalized difference vegetation index (NDVI) [24–26]. These studies found that the NDVI-LST
relationship was more suitable for the analysis of UHI in summer and early autumn [23]. However, a
few studies focused on the UHI analysis of the integrated application of multi-sensors, such as the
combination of thermal remote sensing and DMSP/OLS. Liao et al. [19] analyzed the impact of energy
consumption on the surface urban heat island in China’s 32 major cities by using MODIS LST data
and DMSP/OLS nighttime light images. In this study, to explore the feasibility of the combinative
applications of Landsat products and DMSP/OLS NTL images, the Landsat based NDVI and LST
maps were applied to establish the spatial correlation with DMSP/OLS NTL imagery to estimate the
urbanization impact on the SUHI.

This study was composed of two parts. First, a reliable method of estimating the urbanization
process based on DMSP/OLS NTL data was carried out to analyze the dynamics of urbanization levels
in Beijing from 1992–2013. In this part, the DMSP/OLS NTL was applied to calculate the average
NTL-DN, the lit number, and the extraction of urban area proportion for further correlation analysis
with the social-economic statistics. In the second part, the study explored the use of multi-sensor
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remote-sensing data, including the integrated application of DMSP/OLS NTL imagery and Landsat
TM products, and estimated the interrelationship between the spatial distribution of urbanization level
with the LSTnor and NDVI. Furthermore, the comparison analysis was carried out from the DMSP/OLS
NTL in 1995 and 2009 to probe into the variation tendency of LSTnor and NDVI in different years.
In addition, the target region was divided into four categories based on temperature distribution
character in each year, and statistical and comparative analysis among the different urban heat island
zones were used to explore the correlation between urban heat island effects, and the NTL and NDVI.

2. Data and Methods

As the capital of China, Beijing is well known worldwide as a famous ancient city and an
international metropolis, which is located at 39◦56’ N and 116◦20’ E. Figure 1 shows the geographic
location of the study area (Figure 1a) and administrative districts of the Beijing city (Figure 1b). As the
political, cultural and economic center of the People’s Republic of China, Beijing city covers an area
of 16,808 km2. In terms of topography, two-thirds of Beijing are mountainous areas where the city
is surrounded by mountains from all sides, except for the southeast of the city, where a plain slopes
slightly to the Bohai Rim. Beijing city is characterized by a warm temperature zone and has a typical
continental monsoon climate with four distinct seasons, including a hot and rainy summer and a cold
and dry winter.
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Figure 1. Location map of the study area and Beijing city districts (a) Geographic location of the study
area; (b) Administrative districts of the Beijing city.

After 1949 planners were concerned with defining the city as a political and cultural center, the
city has been experiencing unprecedented urbanization over the last several decades [27]. The rapid
economic growth of Beijing is not only associated with the large-scale migration of population [28],
but is also connected with many environmental consequences including UHI effects. Urbanization is a
quite complicated phenomenon, with many driving forces responsible for the urbanization of a city.
As the capital city of China, the situation in Beijing is more complicated, and it is important to evaluate
the transformation processes to support policy making for environmental management and urban
planning. Thus, investigating the spatial and temporal urbanization situation and understanding the
UHI development situation in Beijing is crucial for the sustainable development of the city in the context
of policy making. For the present study, the following methodology was adopted, which involved the
collection of social-economic statistics, satellite data collection, preprocessing of the remote sensing
imagery, preparation of NDVI maps, retrieval of LSTnor maps, construction of choropleth maps of
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urban heat island zones and correlation analysis studies. The data sets used in this research are shown
in Table 1 below.

Table 1. Data sets used in this research.

Data Set Time Period Spatial Resolution Data Source Processing

Social-economic
statistics 1992–2013 -

China statistical Yearbook;
Beijing statistical Yearbook;
National Bureau of Statistics of
the People’s Republic of China

GDP; Population; Total
energy consumption, etc.

DMSP/OLS NTL 1992–2013 30 arc-second

National Geophysical Data
Center at the National Oceanic
and Atmospheric
Administration; Nighttime
lights time series version 4

Average NTL-DN; Total lit
number; Urban
area proportion

Landsat TM 1995; 2009 30 m

United States Geological
Survey Earth Explorer website;
Date acquired: 16 September
1995 and 22 September 2009

Normalized difference
vegetation index;
Normalized land
surface temperature

2.1. Social-Economic Statistics Collection

Social-economic statistics of Beijing were obtained from the China Statistical Yearbook, the Beijing
Statistical Yearbook and the National Bureau of Statistics of the People’s Republic of China [29].
The indicators were primarily selected according to the following general selection criterion: (1)
choose the most cited indicators; (2) cover the components of urbanization processing and (3) choose
the simplest indicators to facilitate indicators. Permanent population and gross domestic product
(GDP) were selected as representative indicators of demographic and economic, in addition, these
two indicators were the most widely used socio-economic indexes to establish the relationship with
the urbanization processes based on DMSP/OLS NTL, which have been estimated by previous
researchers [9,10]. Moreover, studies have confirmed that energy consumption and electricity
consumption have close relationships with DMSP/OLS NTL based urbanization estimating [13,30].
Besides, popularization and promotion of natural gas in some ways could reflect the development
of energy industry structure in the city, there is also little research on establishing relationship with
DMSP/OLS NTL, as a result, total consumption of natural gas was selected. Freight traffic plays an
important role during the development of a city, length of highways and the total number of civil
motor vehicles were chose to reflect the freight traffic development in Beijing. Therefore, the data
collection includes seven annual indexes: GDP; permanent population; total energy consumption;
total consumption of natural gas; the total electricity consumption; length of highways; and the total
number of civil motor vehicles.

2.2. Preprocessing of DMSP/OLS NTL Imagery

Nighttime stable light data from 1992–2013 were obtained from the National Oceanic and
Atmospheric Administration (NOAA)/National Geophysical Data Center (NGDC) web site and
included data from six individual sensors: F10 (1992–1994), F12 (1994–1999), F14 (1997–2003), F15
(2000–2007), F16 (2004–2009), F18 (2010–2013) [31]. Annual composites were produced for each
satellite using the highest-quality of collected data. These images are grid-based compositions with
a 0–63 digital number (DN) and a 30 arc-second (approximately 1 km at the equator) spatial resolution
for pixels.

2.2.1. Inter-Calibration

Due to the lack of on-board calibration, the NTL-DN among annual DMSP/OLS NTL images
were not compatible. To improve the comparability of NLT data in Beijing from the period 1992–2013,
a second order regression model proposed by Elvidge et al. [32] was utilized to generate an
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inter-calibrated DMSP/OLS NTL time series and was matched with the composite of F12 in 1999 to
minimize the effects of variation among sensors. On this basis, the NTL series can be adjusted to the
same radiometric baseline [32]. As the model was empirically developed using the region with little
NTL change as the reference data, by analyzing the socio-economic characteristics based on GDP and
built-up area data for Chinese cities from 1992–2013, Yichun City in Heilongjiang Province, China
was selected as the reference region. A set of annual composites were compared with F121999 for the
city of Yichun using the regression model below. In Equation (1), DN is the original NTL-DN value,
DNcalibrated is the inter-calibrated, a, b, and c are coefficients.

DNcalibrated = a × DN2 + b × DN + c, (1)

2.2.2. Intra-Annual Composition and Inter-Annual Correction

To make full use of the data collected from two satellites for the same year and to remove the
intra-annual unstable lit pixels, a systematic correction method proposed by Liu et al. [33] was applied
as intra-annual composition. The composition produced one intra-annual composite for the year with
two NTL images from the same year.

In addition, to make sure the NTL based urban dynamics matched the actual process and to
remove the discrepancies in the multi-year dataset, an assumption was proposed that the area would
develop continuously, leading to an only grow trend of NTL-DN value over time [31]. The inter-annual
correction carried out was applied to each NTL image [33].

2.2.3. Calculation of DMSP/OLS NTL Indicators

Our method for analyzing the dynamics of urbanization processes in Beijing includes three main
steps: calculating the annual average NTL-DN; counting the total number of lit pixels; calculation the
urban area proportion.

1. Calculation of the annual average NTL-DN

In this study, we used the annual average NTL-DN as one of three indicators to estimate the
annual degree of urbanization in Beijing. The annual average NTL-DN was defined as the annual
average NTL-DN value of all pixels located in the administrative districts. By taking the pixels located
at the boundaries into consideration, the DN value of each pixel was multiplied by the area that it
located. In addition, the calculation was made after the preprocessing of the DMSP/OLS NTL imagery,
and can be illustrated by Equation (2). In the equation, DNpixel and Areapixel are the NTL-DN value
and the trapezoid area of each pixel, Areasum is the sum of the area within the administrative boundary.

Annual average NTL − DN =
∑ DNpixel × Areapixel

Areasum
, (2)

2. Counting the total number of lit pixels

The total number of lit pixels explained the overall level of how many pixels were lit within the
scope of the study region. The total number of pixels derived from the satellite within Beijing city
was 24,991, and after inter-annual correlation, the total number of pixels greater than 0 in each year
from each satellite was counted. For the year with two satellite datasets, the pixel was counted sonly if
it was lit in either dataset.

3. Urban area proportion

For the extraction of lit urban area, we adopted the threshold technique developed by
Henderson et al. [34]. Furthermore, the optimal thresholds for extraction were determined based on
the method provided by Gao et al. [35]. As Beijing is in the Northern Coastal China (NCC) region, the
thresholds of NCC were exploited for the extraction.
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2.3. Preprocessing of Landsat TM Images

Four Landsat 5 TM images were collected on 16 September 1995 (Landsat Scene ID:
LT51230321995259HAJ00 and LT51230331995259HAJ00) and 22 September 2009 (Landsat Scene ID:
LT51230322009265IKR00 and LT51230332009265IKR00) from the United States Geological Survey
(USGS) Earth Explorer website [36]. The Landsat TM images were all acquired under clear sky
conditions. The images were further rectified to the Universal Transverse Mercator projection system
(datum WGS84, UTM zone N50). The Landsat TM products were composed of seven bands, six of
them in the visible and near infrared, with only one band located in the thermal infrared region.

To cover the whole administrative region of Beijing, two images were merged together as a
preliminary step. The next step consisted of the calculation of at-sensor spectral radiance in converting
image data into a physically meaningful common radiometric scale. Equation (3) was applied to
convert the digital numbers for both reflective and thermal bands to at-sensor radiance [37,38]:

Lλ =
LMAXλ − LMINλ

Qcalmax − Qcalmin
× (Qcal − Qcalmin) + LMINλ, (3)

where Lλ is the spectral radiance at the sensor’s aperture in W/(m2 sr µm); Qcal is the quantized
calibrated pixel value in DN; Qcalmin is the minimum quantized calibrated pixel value corresponding to
LMINλ; Qcalmax is the maximum quantized calibrated pixel value corresponding to LMAXλ; LMINλ

is the spectral radiance that is scaled to Qcalmin in W/(m2·sr·µm); and LMAXλ is the spectral radiance
that is scaled to Qcalmax in W/(m2·sr·µm).

To reduce the between-scene variability of relatively clear Landsat scenes for all bands, we
adopted top-of-atmosphere (TOA) reflectance to correct the cosine effect of solar zenith angles and
solar irradiance [37]. The combined surface and atmospheric reflectance was computed as per
Equation (4) [38]:

ρλ =
π · Lλ · d2

ESUNλ · cosθs
(4)

where ρλ is the unitless planetary reflectance; Lλ is the spectral radiance at the sensor’s aperture
in W/(m2·sr·µm); d is the earth-sun distance (in astronomical units); ESUNλ is the mean solar
exo-atmospheric irradiance in W/(m2·µm); and θs is the solar zenith angle in degrees.

2.3.1. Normalized Difference Vegetation Index Calculation

The NDVI index is a measure of the amount and vigor of vegetation at the surface. As vegetation
reflects well in the near infrared part of the spectrum, NDVI has become a simple graphical indicator
to assess the vegetation coverage of the target. Numerous studies have focused on understanding the
relationship between LST and NDVI [26] and concluded that a close relationship between them existed.
For this study, to explore the relationship between vegetation coverage and LST and DMSP/OLS based
urbanization level, the Landsat image based NDVI was calculated as the reflection of the vegetation
coverage. Data supplied by Band 3 and Band 4 can be used to construct this vegetation index according
to the following equation:

NDVI =
Band 4 − Band 3
Band 4 + Band 3

, (5)

2.3.2. Estimating Land Surface Temperature

The procedure described by Weng et al. [39] was adopted for the retrieval of LST. The thermal
infrared band (Band 6) was utilized to map LST, and the processing was composed of four parts:

1. First, converting spectral radiance to at-sensor spectral, which is a more physically useful variable,
and was calculated by Equation (3);
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2. Second, to converting the result of Step 1 to at-sensor brightness temperature, this proceeded
under the assumption that the earth’s surface is a black body, and using the formula below [38];

TB =
K2

ln
(

K1
Lλ

+ 1
) , (6)

where TB is the effective at sensor brightness temperature in Kelvin; Lλ is the spectral radiance at
the sensor’s aperture in W/(m2·sr·µm); K1 and K2 are the calibration constant for Landsat TM;
K1 is 607.76 W/(m2·sr·µm); and K2 is 1260.56 K.

3. Third, the obtained brightness temperatures were referenced to a black body, which differ from
the properties of real objects. Correction for spectral emissivity (ε) is a must and the emissivity
corrected surface temperature was computed as follows [40]:

Ts =
TB

1 + (λ × TB/α) ln ε
, (7)

where Ts is the surface radiant temperature in Kelvin (k); TB is the effective at sensor brightness
temperature in Kelvin; λ is the wavelength of emitted radiance, herein, λ = 11.5 µm [41];
α = hc/b

(
1.438 × 10−2 m·K

)
; b is the Bolzmann constant

(
1.38 × 10−23 J/K

)
; h is Plank’s

constant
(
6.626 × 10−34 Js

)
; c is the velocity of light

(
2.998 × 108 m/s

)
; and ε is the surface

emissivity which can be calculated from NDVI [42,43], the estimation was shown in Table 2 below.

As the surface radiant temperature is in Kelvin, which differs from the commonly used centigrade,
the LST in Celsius was calculated by adding the absolute zero (approximately −273.15 ◦C) [44].

4. Finally, to ensure that the images from different years were comparable, normalized land surface
temperature was put forward, which quantified the LST range from 0–1. The calculation required
the equation below:

LSTnor =
LST − LSTmin

LSTman − LSTmin
× 100 , (8)

where LSTnor is the normalized land surface temperature; LSTmin and LSTmax are the minimum
and maximum value obtained within the study region, respectively.

Table 2. Estimation of surface emissivity using normalized difference vegetation index (NDVI).

NDVI Land Surface Emissivity

NDVI < −0.185 0.995
−0.185 ≤ NDVI < 0.157 0.970
0.157 ≤ NDVI ≤ 0.727 1.0094 + 0.047 Ln(NDVI)

NDVI > 0.727 0.990

3. Results

3.1. Urbanization Dynamics Process Assessment in Beijing

In this study, the annual average NTL-DN value under Beijing’s boundary was calculated using
Equation (2). The dynamics of urbanization, which was estimated by DMSP/OLS NTL, are shown in
Figure 2a. By preprocessing the images, the calibrated annual average NTL-DN value was calculated
and is displayed in red. The average NTL-DN increased 1.56 times, from 11.73 in 1992 to 18.28 in
2013, with an average annual growth rate of 2.16%. Via calibration, we obtained a smooth result of an
average NTL-DN trend, which seems more reasonable than the initial NTL data. The total lit number
and urban area proportion trends are shown in Figure 2b for the selected region. The lit number
increased 1.46 times from 14,081 in 1992 to 20,526 in 2013, and the urban area proportion was enhanced
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3.46 times from 4.86% in 1992 to 16.83% in 2013. Thus, the lit number increased more rapidly in the
first decade than the next; however, the urban area proportion showed an opposite trend where it
increased faster in the later decade than before.Remote Sens. 2017, 9, 453 8 of 16 
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Figure 2. Dynamics of the urbanization process in Beijing from 1992–2013. (a) Change of annual average
nighttime light Digital Number (NTL-DN) in Beijing before and after calibration; and (b) Change of
total lit number and urban area proportion in Beijing.

3.2. Correlation Analysis of the NTL Indicators with Social-Economic Variables

The relationship between the NTL indicators and social-economic variables was initially examined
through a log-linear regression analysis [45]. Representatively, the Average DN-Ln(GDP), Total Lit
Number-Ln(GDP) and Urban Area proportion-Ln(GDP) are shown in Figure 3. The regression analysis
determined that the DMSP/OLS based indicators were closely related to the GDP of Beijing during
the study period. The correlation coefficient of determination of Ln(GDP) with average NTL-DN
value, total lit number and urban area proportion were 0.924, 0.807 and 0.815, respectively, with both
showing a close positive correlation. With in-depth analysis through a comparison of the correlation of
GDP with NTL indicators, we found that the average NTL-DN had a better correlation than the other
two indexes from the approximate increase trends of GDP and Average NTL-DN.
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Figure 3. Scatter plots between the Ln(GDP) and Defense Meteorological Satellite Program’s
Operational Line Scanner System (DMSP/OLS) NTL indicators from 1992–2013. (a) Scatter plot
between Ln(GDP) and Ave NTL-DN value; (b) Scatter plot between Ln(GDP) and Total Lit Number;
and (c) Scatter plot between Ln(GDP) and Urban Area Proportion.

Log-linear regression was then applied between the NTL indicators and all collected
social-economic parameters from 1992–1993 to estimate their correlation. Table 3 shows the correlation
results, and both average NTL-DN and total lit number and urban area proportion were closely
correlated with the social-economic variable. The correlation coefficients of determination of annual
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average NTL-DN value were all above 0.752 with an average value of 0.873. In particular, the correlation
of average NTL-DN with the total consumption of natural gas is among the best, with a determination
coefficient of 0.966. Furthermore, the best correlation of total lit number with social-economics
parameters was with the total consumption of natural gas with a determination coefficient of 0.954,
while the average correlation determination coefficient was 0.766. For the correlation analysis with
urban area proportion, the coefficients of determination were all above 0.674, and held an average
value of 0.804, while the maximum of 0.916 was derived from the population. The result illustrates
that DMSP/OLS NTL based urbanization indicators are effective techniques to evaluate and monitor
development at city level.

Table 3. Correlation result between DMSP/OLS NTL indicators and social-economic statistics.

Parameter (P) Unit Increase Rate
Ave DN TLN UAP

Coefficient of Determination R2 with Ln(P)

GDP Billion 27.92 0.924 0.807 0.815
Population Million 1.92 0.805 0.665 0.916
Total energy consumption Million tce 2.40 0.841 0.724 0.810
Total consumption of natural gas Billion m3 85.30 0.966 0.954 0.674
Total electricity consumption Billion kWh 4.97 0.926 0.810 0.789
Length of highways Thousand km 2.01 0.752 0.633 0.785
Total number of civil motor vehicles Million 15.16 0.895 0.771 0.840
Average - 19.96 0.873 0.766 0.804

3.3. Spatial Relationship Analysis of DMSP/OLS NTL and Landsat Images

Figure 4 shows the derived Landsat TM based composite images, NDVI, and normalized LST. Six
reflective multispectral bands (Bands 1–5, 7) were used for compositing, and the results are shown in
Figure 4a,d. We obtained the spatial pattern of the vegetation coverage in 1995 (Figure 4b) and in 2009
(Figure 4e), an obvious horizontal gradient appeared between the urban area and its surroundings in
both 1995 and 2009. The value of the NDVI ranges from −0.63–0.79 in 1995, and changes to −0.93–0.75
in 2009, and it can be seen that the NDVI changed significantly due to urban expansion during this
period. Furthermore, the LST in 1995 and 2009 were normalized (shown in Figure 4c,f, respectively).
From the spatial distribution in both years, we concluded that the downtown area had a smaller NDVI
value and a larger value of LSTnor, and that through a visual inspection, a surface urban heat island
existed within the city.

An analysis based on the DN value was also conducted to explore the spatial correlation between
the DMSP/OLS NTL-DN and Landsat based parameters. The calibrated NTL images are shown in
Figure 5 to represent the spatial distribution characteristics of NTL-DN in 1995 (Figure 5a) and 2009
(Figure 5d). Next, the average values of NDVI and LSTnor in each year were calculated using different
NTL-DN values to adopt in the regression analysis with the NTL-DN value. To obtain the relationship
between the NDVI and mean NTL-DN in 1995 (Figure 5b) and 2009 (Figure 5e), the results showed that
as the value of NTL-DN increased, the trend of mean NDVI decreased, so the coefficient determination
of each year reached 0.754 in 1995 and 0.929 in 2009, respectively, which suggests a close negative
correlation between the NTL-DN and mean NDVI. The results revealed that in areas with a relatively
higher NTL-DN value, the vegetation coverage would be less than in lower NTL-DN value areas.
Meanwhile, the correlation between LSTnor and mean NTL-DN in 1995 (Figure 5c) and 2009 (Figure 5f)
were established, and in contrast to the mean NDVI, the LSTnor showed a close positive correlation
with determination coefficients reaching 0.651 in 1995 and 0.926 in 2009. In both years, the LSTnor

showed an increasing trend along with the rise of the NTL-DN value, which can be used to draw
conclusions on how the urbanization level impacts the temperature distribution. The results indicate
that for an area with a higher NTL-DN value (that is more urbanized), the mean LSTnor within it would
be higher than the surroundings, which provides strong evidence that the surface urban heat island
effects are influenced by urban development.
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Figure 4. Distribution map of Landsat thematic mapper (TM) composite image, NDVI, and
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(b) Distribution map of NDVI in 1995; (c) Distribution map of normalized LST in 1995; (d) Landsat TM
composite image in 2009 (RGB = 543); (e) Distribution map of NDVI in 2009; and (f) Distribution map
of normalized LST in 2009.
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Figure 5. Spatial correlation analysis of NTL-DN and Landsat images: (a) Distribution map of NTL-DN
in 1995; (b) Scatter plots between the NTL-DN and NDVI in 1995; (c) Scatter plots between the NTL-DN
and LSTnor in 1995; (d) Distribution map of NTL-DN in 2009; (e) Scatter plots between the NTL-DN
and NDVI in 2009; and (f) Scatter plots between the NTL-DN and LSTnor in 2009.
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3.4. Spatial-Temporal Comparison Analysis in 1995 and 2009

To investigate the influence of SUHI driven by urban development, the images of NTL-DN, NDVI
and LSTnor from two years was composited to obtain the difference between 1995 and 2009. Next, a
spatial-temporal comparison analysis was carried out to explore the variation in vegetation coverage
situation and the SUHI effects from the urbanization process revealed by NTL images. Figure 6a shows
the spatial pattern of the NTL-DN difference between the two years through visual assessment, with
the NTL-DN of the previous downtown area remaining unchanged, whereas the surrounding areas
had an obvious increase in NTL-DN value, which matched the urban sprawl and expansion in Beijing
during this period. With the extraction of the NTL-DN difference, correlation analysis was then carried
with using the NDVI difference during the study period (Figure 6b). The NDVI difference showed a
negative correlation with the NTL-DN difference, where the determination coefficient reached 0.681,
and the correlation was more obvious in the range where theNTL-DN difference had a positive value.
The result suggested that the urbanization process would reduce vegetation coverage, given that
urban sprawl changed the vegetation area into impervious surfaces. Another correlation analysis was
conducted with the NTL-DN difference and LSTnor difference (Figure 6c), where the result clearly
demonstrated a positive correlation between the two parameters, where the coefficient of determination
was 0.664. Areas with a higher value of NTL-DN difference, which represent faster urbanization zones,
and the LSTnor difference showed a tendency to increase. The faster the development in the area, the
higher the increase of LSTnor difference. Additionally, the result further illustrated how urbanization
affected the SUHI quantitatively over time in the city.

Remote Sens. 2017, 9, 453 11 of 16 

 

Figure 5. Spatial correlation analysis of NTL-DN and Landsat images: (a) Distribution map of 
NTL-DN in 1995; (b) Scatter plots between the NTL-DN and NDVI in 1995; (c) Scatter plots between 
the NTL-DN and LSTnor in 1995; (d) Distribution map of NTL-DN in 2009; (e) Scatter plots between 
the NTL-DN and NDVI in 2009; and (f) Scatter plots between the NTL-DN and LSTnor in 2009. 

3.4. Spatial-Temporal Comparison Analysis in 1995 and 2009 

To investigate the influence of SUHI driven by urban development, the images of NTL-DN, 
NDVI and LSTnor from two years was composited to obtain the difference between 1995 and 2009. 
Next, a spatial-temporal comparison analysis was carried out to explore the variation in vegetation 
coverage situation and the SUHI effects from the urbanization process revealed by NTL images. 
Figure 6a shows the spatial pattern of the NTL-DN difference between the two years through visual 
assessment, with the NTL-DN of the previous downtown area remaining unchanged, whereas the 
surrounding areas had an obvious increase in NTL-DN value, which matched the urban sprawl and 
expansion in Beijing during this period. With the extraction of the NTL-DN difference, correlation 
analysis was then carried with using the NDVI difference during the study period (Figure 6b). The 
NDVI difference showed a negative correlation with the NTL-DN difference, where the 
determination coefficient reached 0.681, and the correlation was more obvious in the range where 
theNTL-DN difference had a positive value. The result suggested that the urbanization process 
would reduce vegetation coverage, given that urban sprawl changed the vegetation area into 
impervious surfaces. Another correlation analysis was conducted with the NTL-DN difference and 
LSTnor difference (Figure 6c), where the result clearly demonstrated a positive correlation between 
the two parameters, where the coefficient of determination was 0.664. Areas with a higher value of 
NTL-DN difference, which represent faster urbanization zones, and the LSTnor difference showed a 
tendency to increase. The faster the development in the area, the higher the increase of LSTnor 
difference. Additionally, the result further illustrated how urbanization affected the SUHI 
quantitatively over time in the city. 

 
(a) (b) (c) 

Figure 6. Spatial comparison analysis of NTL-DN and Landsat images: (a) Distribution map of the 
NTL-DN difference between 1995 and 2009; (b) Scatter plots between the NTL-DN difference and 
NDVI change between 1995 and 2009; and (c) Scatter plots between the NTL-DN difference and 
LSTnor change between 1995 and 2009.  

3.5. Urban Heat Island Analysis  

Figure 7a,d show the spatial pattern of urban heat island zones in 1995 and 2009, respectively. 
The average normalized LST was calculated within each NTL pixel to indicate the surface 
temperature distribution. Next, choropleth maps were produced based on the classification scheme 
of standard deviation, in which the first-class data values were greater than one standard deviation 
above the mean, and second-class values were between the mean and one standard deviation above 
the mean, and so on [39,46]. Thus, the area was divided into four categories: heat island zone, 

y = -0.002x - 0.102
R² = 0.681

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

-40 -20 0 20 40

y = 0.001x + 0.164
R² = 0.664

0.00

0.05

0.10

0.15

0.20

0.25

-40 -20 0 20 40
NTL-DN Difference NTL-DN Difference 

N
D

V
I D

if
fe

re
nc

e

L
S

T
no

r
D

if
fe

re
nc

e
( ) ( )( )

NTL-DN Difference

Figure 6. Spatial comparison analysis of NTL-DN and Landsat images: (a) Distribution map of the
NTL-DN difference between 1995 and 2009; (b) Scatter plots between the NTL-DN difference and
NDVI change between 1995 and 2009; and (c) Scatter plots between the NTL-DN difference and LSTnor

change between 1995 and 2009.

3.5. Urban Heat Island Analysis

Figure 7a,d show the spatial pattern of urban heat island zones in 1995 and 2009, respectively.
The average normalized LST was calculated within each NTL pixel to indicate the surface temperature
distribution. Next, choropleth maps were produced based on the classification scheme of standard
deviation, in which the first-class data values were greater than one standard deviation above the
mean, and second-class values were between the mean and one standard deviation above the mean,
and so on [39,46]. Thus, the area was divided into four categories: heat island zone, sub-heat island
zone, medium temperature zone, and low temperature zone. In both 1995 and 2009, the urban
heat island zone was obviously assembling in the city center, and the heat island zone had a large
expansion from all directions. Figure 7b,e shows the area proportions and the average LSTnor for
the four categories, where the percentage of urban heat island zone increased from 9.3% in 1995 to
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21.7% in 2009; the sub-heat island zone had no significant change from 29.3% to 28.6%; and both the
medium temperature and low temperature zones had a decrease of area proportion, especially the low
temperature area which decreased from 44.0%–35.7%. These changes indicated an adverse effect on
the thermal environment through the urbanization process from 1995–2009, and that the urban heat
island zone occupied a higher proportion than before.

To better understand the relationship between the NTL-DN, NDVI and UHI zones, the statistics
of average NTL-DN and NDVI in different UHI zones were obtained by super-imposing the heat
island maps with images of NTL and NDVI. From Figure 7c,f, we obtained the characteristics of
average NTL-DN and NDVI of each zone in 1995 and 2009. In both 1995 and 2009, the value of average
NTL-DN presented a rising gradient from the low temperature zone to the heat island zone, whereas
the NDVI showed a downward trend. The urban heat island zone held the highest average NTL-DN
value of 58.26 in 1995, and the average values in the other three zones were 35.40, 25.73 and 10.03,
respectively. In 2009, the average NTL-DN values in the four zones were 12.65, 24.95, 41.26 and 54.34,
respectively, from the low temperature zone to the heat island zone. The results illustrated the spatial
correlation between the surface temperature and the NTL images. The urban heat island zones located
in more developed areas, the sub-heat island and medium temperature zones took second and third
place, and the low temperature zones were mainly located in the western and northern parts of the
city where most of the area was covered with mountains and forests that have lower NTL-DN values
than downtown. Furthermore, in both 1995 and 2009, the low temperature zones had the highest
value of NDVI, whereas the urban heat island zones had the lowest. These results showed a positive
correlation between the proportion of green space and their cooling effects.
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Figure 7. Heat island analysis results with NTL-DN and Landsat images: (a) Spatial pattern of heat
island zones in 1995; (b) Proportions of urban heat island (UHI) zones and average LSTnor in 1995;
(c) Average NTL-DN and average NDVI of UHI zones in 1995; (d) Spatial pattern of heat island zones
in 2009; (e) Proportions of UHI zone and average LSTnor in 2009; and (f) Average NTL-DN and average
NDVI of UHI zones in 2009.
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4. Discussion

4.1. Result Analysis

Urban systems do not naturally develop, and are always affected by human activities [2].
As a remote sensing database, which is closely related to anthropogenic activities, the time series
DMSP/OLS images provide a consistent and timely measure to estimate social-economic dynamics
and changes [7]. In this study, the calibrated annual NTL-DN value from 1992–2013 was used to reflect
the average urbanization level of the city in that year, as a global index to evaluate the development
level of Beijing. The results show that the human activities observed via satellite were consistent with
the official statistical data. The average value of the correlation coefficient of determination between
the three remote sensing based indexes with the seven statistical indicators reached 0.873, 0.766 and
0.804, respectively. Compared with the other two indicators, the coefficient of total lit number was
a little less, most likely due to the characteristics of urbanization pattern in Beijing. The lit number
increased quickly in the few years from 1992 as a fast period of urban sprawl, then slowed down
and the urbanization level in the expanded area developed rapidly instead of a continuous outward
expansion. In contrast, the social-economic statistics showing a sustained and rapid growth during the
period led to less correlation with the total lit number than the other two parameters. The urbanization
situation in the study period was confirmed by three fields: the average NTL-DN value (within the
administrative boundaries of Beijing) presented an average urbanization situation of the city in each
year; the total lit number was an indicator from which the number of pixels lit by human activities
could be obtained; and the urban area proportion revealed the cases of urban area sprawl during the
study period.

Land surface temperature observations acquired from remote sensing technologies such as
MODIS and Landsat were applied to assess the UHI, and to analyze the relationship between
surface temperature and land use and land cover (LULC) in urban areas [39]. Nighttime light
imagery derived from DMSP/OLS has been widely used for detecting human settlement, dynamic
mapping of urban areas and exploring the spatial urban sprawl [8,9]. For the use of these two
kinds of databases in combination, Liao et al. [19] found that the DMSP/OLS NTL based energy
consumption has a significantly positive correlation with the nighttime SUHI, the results indicated that
the anthropogenic heat released from energy consumption is an important contributor to the urban
thermal environment [19]. In addition, researchers also found that urban patterns extracted using
DMSP/OLS were consistent with those extracted using Landsat products [33]. However, the number
of studies estimating the correlation between the Landsat based LST with nighttime imagery from
the DMSP/OLS are rare and limited. This paper proposed a new way of integrating different remote
sensing data to explore the performance of NDVI and LST by Landsat TM images under different
values of NTL-DN from DMSP/OLS imagery. The results clearly showed that the spatial pattern of
LSTnor and NDVI correlated with the pattern of urbanization level in 1995 and 2009. Moreover, by
spatial comparison analysis between the two years, the spatial pattern of LSTnor increase and NDVI
decrease also proved to be closely related to the change of urbanization level index developed from
the nighttime imagery. Furthermore, the urban heat island zone maps presented the spatial pattern
of surface temperature distribution, where the results revealed that the urban heat island zone held
higher NTL-DN values and lower NDVI than other zones.

4.2. Limitations and Potential Improvement

Although the DMSP/OLS time series was successfully adopted to explore urbanization dynamics
and analyze the UHI situation in Beijing, there are some sources of uncertainty in this study. First,
for the inter-calibration, Yichun City of Heilongjiang Province was selected as the reference region
even though the area had little change of NTL during the study period; however, the inappreciable
development of the city reduced the accuracy of the calibration. Second, for the calculation of the
urban area proportion, we adopted the threshold technique provided by Gao et al. [35], where the
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thresholds for urban area extraction were determined for several periods rather than every year, which
is one of the influence factors for the accuracy of extraction. Third, the calculation of the normalized
LST contained limitations. The normalization relied heavily on the extreme values within the region;
however, as most of the pixel values ranged in the middle area between the maximum and minimum
values, normalization reduced the sensitivity of the analysis. Fourth, in this study, four temporal
Landsat time series image data were used to characterize and quantify the spatiotemporal patterns of
NDVI and LSTnor, and correlation analysis was carried out with the annual value of NTL-DN from
DMSP/OLS. As this would have created limitations for the correlation analysis between the annual
composites of DMSP/OLS and Landsat images, it was necessary to develop new methods that could
be applied effectively to detect the annual value of NDVI and LSTnor using time series image data.

5. Conclusions

This study developed the annual average NTL-DN value, total lit number and urban area
proportion to investigate the spatial-temporal urbanization progress in Beijing from 1992–2013.
Our results offer quantitative measures for evaluating the urbanization level from three aspects
over the period, and provide a new way to explore the urbanization process that is relatively accurate
and comprehensive.

From both the DMSP/OLS NTL indicators and the social-economic statistics data, the results
showed that Beijing experienced continued and rapid urbanization during the study period. Log-linear
regression analysis between the two kinds of data sets showed close correlation with each other, with
the average value of determination coefficient of annual average NTL-DN value, total lit number and
urban area proportion reached 0.873, 0.766 and 0.804, respectively.

From the distribution map of NDVI and LSTnor, we found that the downtown area had less
vegetation coverage and a higher LSTnor. Furthermore, according to the correlation analysis with
the NTL-DN value, our results indicated that both the mean NDVI and mean LSTnor were closely
correlated with the NTL data. The NDVI and LSTnor showed a tendency of decreasing and increasing,
respectively, along with the growth of the NTL-DN value. The study proposed a new way of integration
using different remote sensing data to explore the urban heat island effects by Landsat TM images
and DMSP/OLS imagery. The results provided quantitative measurements to estimate the vegetation
coverage situation and surface temperature distribution, which are significant for the eco-environment
assessment of the city.

The study also explored the spatial-temporal difference of NDVI and LSTnor along with the
urbanization process derived from NTL data in 1995 and 2009. Along with the rapid urbanization of
the city, the original land use turned into urban land, which is largely composed of an impervious
surface [23]. The correlation analysis result between the NTL-DN difference with a change in NDVI
and LSTnor showed a close relationship, which provided strong evidence of how the urbanization
process affects the thermal environment and vegetation coverage over time. In addition, by zonal
classification, we also found that the urban heat island zone occupied a higher proportion than before
by a growth rate of 12.4%, and that the average NTL-DN and NDVI showed an obvious gradient from
the low temperature zone to heat island zone. Our results illustrated the spatial correlation between
the surface temperature and the urban development situation, as well as the cooling effects of the
green space, which have important implications for urban planning to mitigate the SUHI effects.
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