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Abstract: The component substitution (CS) pansharpening methods have been developed for
almost three decades and have become better understood recently by generalizing them into one
framework. However, few studies focus on the statistical assumptions implicit in the CS methods.
This paper reveals their implicit statistical assumptions from a Bayesian data fusion framework and
suggests best practices for histogram matching of the panchromatic image to the intensity image, a
weighted summation of the multispectral images, to better satisfy these assumptions. The purpose of
histogram matching was found to make the difference between the high-resolution panchromatic and
intensity images as small as possible, as one implicit assumption claims their negligible difference.
The statistical relationship between the high-resolution panchromatic and intensity images and
the relationship between their corresponding low-resolution images are the same, as long as the
low resolution panchromatic image is derived by considering the modulation transfer functions
of the multispectral sensors. Hence, the histogram-matching equation should be derived from
the low-resolution panchromatic and intensity images, but not derived from the high-resolution
panchromatic and expanded low-resolution intensity images. Experiments using three example
CS methods, each using the two different histogram-matching equations, was conducted on the
four-band QuickBird and eight-band WorldView-2 top-of-atmosphere reflectance data. The results
verified the best practices and showed that the histogram-matching equation derived from the
high-resolution panchromatic and expanded low-resolution intensity images provides more-blurred
histogram-matched panchromatic image and, hence less-sharpened pansharpened images than that
derived from the low-resolution image pair. The usefulness of the assumptions revealed in this study
for method developers is discussed. For example, the CS methods can be improved by satisfying the
assumptions better, e.g., classifying the images into homogenous areas before pansharpening, and by
changing the assumptions to be more general to address their deficiencies.

Keywords: pansharpening; statistical assumptions; histogram matching; Bayesian data fusion

1. Introduction

Remotely-sensed images have exhibited explosive growth trends in multi-sensor, multi-temporal,
and multi-resolution characteristics. However, there are contradictions between the resolution
limitations of current remote sensing systems and the increasing need for high-spatial, high-temporal,
and high-spectrum resolutions of satellite images [1–3]. One limitation is the spectral and spatial
resolution tradeoff, e.g., more than 70% of current optical earth observation satellites simultaneously
collect low spatial resolution (LR) multispectral and high spatial resolution (HR) panchromatic images.
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Pansharpening has been proposed to fuse a panchromatic and a multispectral image to generate a
pansharpened multispectral image, which offers the detailed spatial information of panchromatic
image and still preserves spectral characteristics [4]. When the spatial detail is obtained from
multispectral and hyperspectral sequence, the pansharpening algorithm is called hypersharpening [5,6].
Detailed critical surveys of pansharpening algorithms can be found in [7–9], as well as a first
comprehensive textbook [10]. Current pansharpening methods can generally be classified into
component substitution (CS), multi-resolution analysis (MRA), and model-based methods. Recently,
pansharpening is also formulated as a compressive sensing reconstruction problem, but this scheme
has a significant computation complexity [11–13]. The MRA approaches extract high-pass spatial
detail from the panchromatic image using spatial frequency filtering methods [14,15] and inject it
into the multispectral bands interpolated at the resolution of the panchromatic image [10,16]. During
the degradation process of the panchromatic, the sensor modulation transfer functions (MTF) are
taken into account [8,17]. A simple modification of these schemes, also applicable to CS methods,
replaces the interpolated multispectral image with its deblurred version, where the deblurring kernel
is matched to the MTF of the multispectral sensor [18]. CS methods are attractive because they are
fast and easy to implement [19]. The CS methods use the intensity-hue-saturation (IHS) [20], principal
component analysis (PCA) [10], or Gram–Schmidt (GS) [10] transformation to project the multispectral
reflectance/digit number (DN) images into another vector space, and replace a component in the new
space with the histogram-matched panchromatic image. The pansharpened multispectral bands are
derived by performing the inverse transformation to the original space, i.e., DN/reflectance.

Pioneered by [20], the CS methods are generalized into a new formulation [19,21] without
explicit calculation of the forward and backward transformations. The new formulation includes (i)
interpolating/expanding the multispectral image to the scale of the panchromatic image, (ii) calculating
the intensity component, i.e., the component to be replaced in the new space, by summing up
multispectral images with a set of weight coefficients, (iii) matching the histograms of the panchromatic
image to the intensity component, and (iv) injecting the extracted details, i.e., the difference between
the panchromatic and intensity images, after being modulated by a set of band-specific gain coefficients.
The general scheme can describe any CS methods, including Brovey [10], depending on the values
of the weight and gain coefficients (Table 1 in [19]). It is well known that CS methods suffer from
spectral distortion originating from the spectral mismatch between the panchromatic and intensity
images [19,22] and histogram matching in the above step (iii) is usually performed to reduce such
mismatches [19,23].

The implicit statistical assumptions of the CS methods are not well understood, although the CS
methods have been extensively studied [19–21,24], as described above. The purpose of this study is
to reveal all of the implicit statistical assumptions in the CS methods, which can help to determine
the suitability of the methods and help to improve methods by satisfying the assumptions better or
by addressing the assumption deficiencies. This study treats the CS methods in the Bayesian data
fusion framework [25–32] noticing that the original CS methods are performed in the vector space.
Based on the reveled assumptions, best practices for the histogram matching in CS pansharpening are
recommended and the usefulness of the assumptions in the methodology development is discussed.

This paper is organized as follows: In Section 2, all of the basic statistical assumptions of the
CS methods are revealed by deriving the CS methods in a Bayesian data fusion framework and best
practices of the histogram matching in CS pansharpening are suggested based on the assumptions;
Section 3 reports the experimental results to confirm the analysis; Section 4 discusses these statistical
assumptions; and Section 5 concludes the paper.
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2. Concepts and Methodology

From a Bayesian perspective, images are represented in vector form (symbolized by a letter in
bold and italics) and operations on images in matrix form (symbolized by a letter in bold). Consider the
LR and HR images have n and N pixels, where N = r2n and r is the spatial resolution ratio. The desired
HR multispectral image with k spectral bands in band-interleaved-by-pixel lexicographical notation
is denoted as a vector, M = [M1, M2, . . . , MN]T, where Mj = [M1

j , M2
j , . . . , Mk

j ] is the spectrum at the

spatial location j (j = 1, 2, . . . , N) and Mk
j is the kth multispectral band pixel value at the spatial location

j. The HR panchromatic image is denoted as a vector with N elements, P = [P1, P2, . . . , PN]T, where Pj
is the panchromatic pixel value at the spatial location j. In the CS methods:

I = BM + α (1)

where I is the HR intensity image vector with N elements, B is a weight coefficient matrix with N × Nk
elements, M is the HR multispectral image vector with Nk elements, and α is a bias coefficient vector
with N elements. The corresponding LR versions of M, P, and I are denoted as m, p, and i, respectively.
The expanded images of m, p, and i having the same spatial scale as P are denoted as m̃, p̃, and ĩ,
respectively. Similar to Mj, m̃j = [m̃1

j , m̃2
j , . . . , m̃k

j ] is the spectrum at location j. M̂ and M̂j denote the
pansharpened image and pansharpened jth pixel spectrum, respectively.

2.1. Bayesian Fusion Framework

Bayesian data fusion treats the LR multispectral image m, HR panchromatic image P and HR
multispectral image M as random vectors, and the solution can be derived by maximizing the
conditional probability density function prob(M|P,m) [26–30]. Applying the Bayes rule:

prob(M|P, m) = prob(M)prob(P|M) prob(m|M)/prob(P, m) (2)

where prob(x|y) is the conditional probability density function of x given y, prob(M) is a prior
probability density function of the vector M, prob(P,m) is the probability density function of the
co-occurrence of vector P and m. Since prob(P,m) is not a function of M, we have:

prob(M|P, m) ∝ prob(M)prob(P|M) prob(m|M) (3)

Thus, the key to solve Equation (3) is to find the explicit expressions of the three probability
density functions, prob(M), prob(P|M), and prob(m|M).

Assumption 1. To derive prob(M), the difference vector between the HR and expanded LR multispectral image
vectors, m̃−M, is assumed to be a Gaussian vector with zero mean, then:

prob(M) = (2π)−
Nk
2 (CM)−

1
2 exp{−1

2
(m̃−M)TC−1

M (m̃−M)} (4)

where N and k are the numbers of HR multispectral pixels and bands, respectively, CM is the covariance matrix of
the vector (m̃−M) with Nk× Nk elements, and m̃ is the expanded multispectral image from LR multispectral
image m.

Assumption 2. To derive prob(P|M), the spectral mismatch image P− I is assumed to be a Gaussian vector
with zero mean, then:

prob(P|M) = (2π)−
N
2 (Ce)

− 1
2 exp{−1

2
(P− I)TC−1

e (P− I)} (5)

where N is the number of HR multispectral pixels, Ce is the covariance matrix of vector P − I with N × N
elements, and P and I are the HR panchromatic and intensity image vectors.
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Assumption 3. The contribution of the term prob(m|M), which can be used to guarantee that the pansharpened
images M̂ are spectrally consistent to the observed LR multispectral images m, is negligible. It should be noted
that this assumption is necessary to derive the CS methods formulation. It implies that CS methods are not
strictly spectrally consistent, which is verified in the Section 3.3 and discussed in the Section 4.1

Combining Equations (3)–(5) and neglecting the term prob(m|M), the closed-form solution M̂
is [25,28]:

M̂ = m̃ + CMBT
(

Ce + BCMBT
)−1

(P− ĩ) (6)

where m̃ is the expanded LR multispectral image, CM is the covariance matrix of the vector (m̃−M)
first introduced in Equation (4), B is the weight coefficient matrix first introduced in Equation (1), Ce is
the covariance matrix of vector P− I first introduced in Equation (5), and ĩ is the expanded intensity
image:

ĩ = Bm̃ + α (7)

where α is the bias coefficient vector first introduced in Equation (1).

Assumption 4. To make this solution doable, all pixels are assumed to share the common weight and bias
coefficients. Hence:

α = [α, α, . . . , α]N (8)

where α is the bias coefficient vector with N elements first introduced in Equation (1) and α is the common bias
coefficient value.

B = diag[β, β, . . . , β]N =


β 0 . . . 0
0 β . . . 0
...

...
. . .

...
0 0 . . . β


N

(9)

where B is the weight coefficient matrix first introduced in Equation (1) and is a special type of block matrix
derived as the direct sum (diag operator) of N duplicate vector β = [β1, β2, . . . , βk], 0 is a k-element zero vector,
β1, β2, . . . , βk are the common spectral band weight coefficients, and N is the number of HR pixels.

Assumption 5. A further assumption is that all the pixel values in the two difference vectors (m̃ −M) and
(P− I) are independent and identically distributed (i.i.d.). In such a way that:

Ce = diag
[
σ2

e , σ2
e , . . . , σ2

e
]

N (10)

CM = diag[Cs, Cs, . . . , Cs]N (11)

where diag is the matrix direct sum operation as defined in Equation (9), σ2
e is the variance of all the pixels in

image (P− I) and Cs is a spectral band covariance matrix with k× k elements:

Cs =


cov

(
M1, M1) cov

(
M1, M2) . . . cov

(
M1, Mk

)
cov

(
M2, M1) cov

(
M2, M2) . . . cov

(
M2, Mk

)
...

...
. . .

...

cov
(

Mk, M1
)

cov
(

Mk, M2
)

. . . cov
(

Mk, Mk
)

 (12)

where cov(x,y) is the covariance of two vectors x and y, Mk = [Mk
1 , Mk

2 , . . . , Mk
N ] represents the kth HR

multispectral band image vector with N elements with Mk
j being the kth multispectral band pixel value at the

HR spatial location j.
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Assumption 6. The LR panchromatic image p is assumed being derived from the HR panchromatic P in the
same way that m derived from M. This means that the MTF of the multispectral sensors reflecting the relationship
between the LR and HR multispectral image (m and M) must be considered to derive p from P. Consequently,
due to the assumption of the independent and identical distribution of HR pixels (Assumption 5) in P and M,
the LR pixels in p and m are also independent and identically distributed and have the same distributions with
their corresponding HR pixels. Hence, σ2

e can be estimated from (p− i) and cov(Mk, Mk) from m, i.e.:

σ2
e =

n

∑
1

(
pj− ij

)2/n (13)

where n is the number of the LR multispectral pixels, and pj and ij are the jth LR panchromatic and intensity
image pixel values, respectively.

and:
cov(Mx, My) = cov(mx, my) x = 1, 2, . . . , k; y = 1, 2, . . . , k (14)

where mk = [mk
1 , mk

2 , . . . , mk
n] represents the kth LR multispectral band image vector with n elements with mk

j
being the kth multispectral band pixel value at the LR spatial location j, and k is the number of multispectral
spectral bands.

The large equation system in Equation (6) can then be spatially decomposed into pixel
level equations:

M̂j = m̃j + gT(Pj− ĩj
)

(15)

gT = CSβT /
(

σ2
e + βCSβT

)
(16)

where M̂j and m̃j are the pansharpened and expanded multispectral spectra at location j, respectively,
g is a gain coefficient vector with k elements, the super script T means the transpose of a vector, Pj and
ĩj are the HR panchromatic and expanded intensity values at location j, respectively, and definitions of
Cs, β, and σ2

e refer to the previous Equations (10), (12), and (13).

2.2. CS Methods from a Bayesian Perspective

Alternative Assumption 2. Equation (15) can be shrunk into the GS-based methods by assuming
there is no spectral mismatch, i.e., σ2

e = 0 in Assumption 2 and the HR panchromatic image P is
perfectly matched with the intensity image I. This is based on the linear transformation and sum
properties of the covariance:

gT
GS =

[
cov

(
m1, i

)
/σ2

i , cov
(
m2, i

)
/σ2

i , . . . , cov
(

mk, i
)

/σ2
i

]
= CsβT /βCsβT (17)

where gGS is the GS gain coefficient vector defined in Table 1 in [19], σ2
i is the variance of the intensity

image i and cov(mx, i) is the covariance between the xth band LR multispectral image mx and the LR
intensity image i.

For the GS method, the weight and the gain coefficients satisfy:

βgT
GS = βCsβT

[
βCsβT

]−1
= 1 (18)

This property has been mentioned in [33]. From Table 1 in [19], it is easy to prove that this
equation is satisfied by the IHS, generalized IHS (GIHS) and Brovey methods. The PCA method also
satisfies this equation as the PCA gain and weights coefficients are the same and from a column of a
unitary matrix created by PCA.
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2.3. Best Practices in Histogram Matching

The spectral difference between the HR intensity I and panchromatic P images, i.e., σ2
e value,

should be minimized to satisfy the no spectral mismatch assumption (Alternative Assumption 2) as
much as possible. Several methods have been introduced to minimize σ2

e including histogram matching
of the panchromatic image P to the intensity image I and deriving the best intensity image with weight
coefficients derived from the multivariate regression between the multispectral and panchromatic
images [19]. The conception of histogram matching is to make a virtual observed panchromatic image,
Phist, that is statistically (mean and standard deviation) similar to the intensity image I. However,
the target image that the observed panchromatic image P should be histogram matched to, i.e., the
HR intensity image I, is unavailable. Recall the independent and identical distribution assumption
(Assumption 5) and the HR image pair histogram matching equation can be derived from their LR
image pair (Equations (13) and (14)). Consequently, the pixel value in P is histogram-matched using
the equation derived from the LR panchromatic p and intensity image i:

Phist(P→ I) = Phist(p→ i) = (P−mean(p))

√
cov(i, i)
cov(p, p)

+ mean(i) (19)

where Phist(P→I) and Phist(p→i) are the histogram-matched HR panchromatic images using the
equations from the LR image pair and the HR image pair, respectively, and mean and cov represent the
mean and covariance operations, respectively. Histogram matching directly from P to ĩ , Phist(P→ĩ), is
not proper as the statistical relationship between the HR panchromatic image P and intensity image I
is not the same as that between the HR panchromatic image P and the expanded intensity image ĩ :

Phist(P→ I) 6= Phist(P→ ĩ) = (P−mean(P))

√
cov(ĩ, ĩ)

cov(P, P)
+ mean(ĩ) (20)

where Phist(P→I) has been defined in Equation (19), Phist(P→ĩ) is the histogram-matched HR
panchromatic image using the equation from HR panchromatic image P and expanded intensity
image ĩ , mean and cov represent the mean and covariance operations, respectively. Although the
mean values of p and P are the same, their variance values could be largely different due to the scale
difference [34,35]. The difference between P and ĩ includes not only the residual σ2

i , but also the
spatial details to be injected, P− ĩ = (P− p̃) + (p̃− ĩ), where P− p̃ is the spatial details to be injected
and (p̃− ĩ) can be interpreted as the spectral mismatch (residual σ2

i ) between the panchromatic and
intensity images.

Due to the Assumption 6, the LR panchromatic image p should be derived from the HR
panchromatic image P in the same way that the LR multispectral image m derived from the HR
multispectral image M (i.e., taking care of the multispectral sensor modulation transfer functions).

3. Experiments and Results

3.1. Data and Experimental Settings

The datasets used for this experiment include a rural area QuickBird image near Boulder City,
CO, USA (Figure 1) acquired on 4 July 2005 and two urban area WorldView-2 (Figures 2 and 3)
images across San Clemente, CA, USA acquired on 21 March 2012. The rural area QuickBird image
(Figure 1) is mainly covered by bare soil and vegetation with some urban buildings in the northeast
corner area and has 2400× 2400 0.6-m panchromatic and 600× 600 2.4-m multispectral pixels. The
QuickBird multispectral image consists of four bands, including blue, 450–520 nm, green, 520–600
nm, red, 630–690 nm and near infrared (NIR), 760–900 nm. The first urban area WorldView-2 image
(Figure 2, hereafter referred to as WorldView-2 urban 1 dataset) is mainly covered by unban buildings,
roads, and urban vegetation, and has 2048× 2048 2.0-m multispectral pixels and 8192× 8192 0.5-m
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panchromatic pixels. The second urban area WorldView-2 image (Figure 3, hereafter referred to as
WorldView-2 urban 2 dataset) is a mixture of urban buildings and vegetation, which is a typical
temperate urban landscape. It has 512 × 512 2.0-m multispectral pixels and 2048 × 2048 0.5-m
panchromatic pixels. This additional urban dataset is used specifically to examine the method on the
vegetation and building mixture typically exhibiting in high-resolution images. The WorldView-2
multispectral images have eight spectral bands: coastal blue, 400–450 nm; blue, 450–510 nm; green,
510–580 nm; yellow, 585–625 nm; red, 630–690 nm; red edge, 705–745 nm; NIR1, 770–895 nm; and
NIR2, 860–1040 nm.

Remote Sens. 2017, 9, 443  7 of 14 

 

multispectral bands for the WorldView-2 sensor, and 0.34, 0.32, 0.30, and 0.22 for the four QuickBird 
multispectral bands. Their corresponding Gaussian filters implemented in Matlab codes are 
provided by Vivone [8] available at http://openremotesensing.net/index.php/codes/ 
11-pansharpening/2-pansharpening. 

The two histogram matching equations (Equations (19) and (20)) were compared for the 
generalized IHS (GIHS), GS, and adaptive GS (GSA) [19] pansharpening all of the four multispectral 
bands of the QuickBird rural images and all of the eight multispectral bands of the two WorldView-2 
urban images. These three CS methods are selected as they are commonly used in the literature 
[19,20] and have been proved with better performance than the other CS methods [19,37]. The GSA 
method is the same as the GS method except that the intensity image is synthesized by using the 
weight coefficients derived using regression between the multispectral and the degraded LR 
panchromatic images rather than using equal weight coefficients for each multispectral band image 
[19]. During the histogram matching and GSA regression coefficients derivation, the LR 
panchromatic image is derived by degrading panchromatic image by mimicking the multispectral 
sensor MTF so that the LR panchromatic and multispectral images are comparable (Assumption 6).  

 

Figure 1. QuickBird rural 600 × 600 2.4-m images for the reduced scale experiment displayed with the 
same contrast stretch. (a) Panchromatic image (P); (b) histogram-matched panchromatic image using 
equation provided by the LR (9.6 m) panchromatic and intensity image pair (Phist(p→ i); (c) 
histogram-matched panchromatic image using equation provided by the HR panchromatic (2.4 m) 
and the expanded intensity image (9.6 m) pair (Phist(P→ĩ)); (d) multispectral reference; (e) adaptive 
GS (GSA) pansharpened images using Phist(p→i); and (f) adaptive GS (GSA) pansharpened images 
using Phist(P→ĩ). 

Figure 1. QuickBird rural 600 × 600 2.4-m images for the reduced scale experiment displayed
with the same contrast stretch. (a) Panchromatic image (P); (b) histogram-matched panchromatic
image using equation provided by the LR (9.6 m) panchromatic and intensity image pair (Phist(p→i);
(c) histogram-matched panchromatic image using equation provided by the HR panchromatic (2.4 m)
and the expanded intensity image (9.6 m) pair (Phist(P→ĩ)); (d) multispectral reference; (e) adaptive
GS (GSA) pansharpened images using Phist(p→i); and (f) adaptive GS (GSA) pansharpened images
using Phist(P→ĩ).
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Figure 3. WorldView-2 urban 2 512 × 512 2.0-m images for the reduced scale experiment displayed 
with the same contrast stretch. (a) Panchromatic image (P); (b) histogram-matched panchromatic 
image using equation provided by the LR panchromatic (8.0 m) and intensity image pair (Phist(p→i)); 
(c) histogram-matched panchromatic image using equation provided by the HR panchromatic (2.0 
m) and the expanded intensity image (8.0 m) pair (Phist(P→ĩ)); (d) multispectral reference; (e) 
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Figure 2. WorldView-2 urban 1 2048× 2048 2.0-m images for the reduced scale experiment displayed
with the same contrast stretch. (a) Panchromatic image (P); (b) histogram-matched panchromatic
image using equation provided by the LR panchromatic (8.0 m) and intensity image pair (Phist(p→i));
(c) histogram-matched panchromatic image using equation provided by the HR panchromatic (2.0 m)
and the expanded intensity image (8.0 m) pair (Phist(P→ĩ)); (d) multispectral reference; (e) adaptive
GS (GSA) pansharpened images using Phist(p→i); and (f) adaptive GS (GSA) pansharpened images
using Phist(P→ĩ).
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Figure 3. WorldView-2 urban 2 512× 512 2.0-m images for the reduced scale experiment displayed
with the same contrast stretch. (a) Panchromatic image (P); (b) histogram-matched panchromatic
image using equation provided by the LR panchromatic (8.0 m) and intensity image pair (Phist(p→i));
(c) histogram-matched panchromatic image using equation provided by the HR panchromatic (2.0 m)
and the expanded intensity image (8.0 m) pair (Phist(P→ĩ)); (d) multispectral reference; (e) adaptive
GS (GSA) pansharpened images using Phist(p→i); and (f) adaptive GS (GSA) pansharpened images
using Phist(P→ĩ).
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The QuickBird and WorldView-2 panchromatic and multispectral bands’ top-of-atmosphere (TOA)
reflectance, derived from DN values using the coefficients provided in the metadata and method
provided by [36], were used in the pansharpening experiments to reduce incoming solar irradiance
and calibration gain variations among different bands in the DN values.

We conducted pansharpening at both reduced and full scales. At the reduced scale, the
panchromatic and multispectral images are first degraded by four before pansharpening so that
the original multispectral data could be used as references for the pansharpening result evaluation.
Sensor modulation transfer functions (MTF) are taken into account during the degradation. The sensor
MTF can be matched using Gaussian filters with parameters tuned using the values of the amplitude
response at the Nyquist frequency depicting the MTF, commonly provided by the manufacturer as
a sensor specification [8,17]. They are 0.35 and 0.27 for the first seven and the eighth multispectral
bands for the WorldView-2 sensor, and 0.34, 0.32, 0.30, and 0.22 for the four QuickBird multispectral
bands. Their corresponding Gaussian filters implemented in Matlab codes are provided by Vivone [8]
available at http://openremotesensing.net/index.php/codes/11-pansharpening/2-pansharpening.

The two histogram matching equations (Equations (19) and (20)) were compared for the
generalized IHS (GIHS), GS, and adaptive GS (GSA) [19] pansharpening all of the four multispectral
bands of the QuickBird rural images and all of the eight multispectral bands of the two WorldView-2
urban images. These three CS methods are selected as they are commonly used in the literature [19,20]
and have been proved with better performance than the other CS methods [19,37]. The GSA method
is the same as the GS method except that the intensity image is synthesized by using the weight
coefficients derived using regression between the multispectral and the degraded LR panchromatic
images rather than using equal weight coefficients for each multispectral band image [19]. During
the histogram matching and GSA regression coefficients derivation, the LR panchromatic image is
derived by degrading panchromatic image by mimicking the multispectral sensor MTF so that the LR
panchromatic and multispectral images are comparable (Assumption 6).

3.2. Quantitative Evaluation of the Experimental Results

The consistency and synthesis properties of the Wald’s protocol [38] were used as validation
strategies. The consistency property has been proved effective in [38] and was used to validate the full
scale experiments. To check the consistency property, the pansharpening images were first degraded
using the sensor specific MTF as described in Section 3.1. The synthesis property can only be applied
to the reduced scale experiment. Only the consistency property has been evaluated in the full scale
experiments and other full scale evaluation methods [39], such as quality without reference (QNR) [35],
were not used as the main purpose of this study is to check the spectral consistency of the pansharpened
images induced by different strategies in the histogram matching. Three quantitative scores were
used: (i) the first is the ERGAS index, from its French name “relative dimensionless global error in
synthesis”, is a global radiometric value error index [10]. The best ERGAS value is zero; (ii) the second
is the spectral angle mapper (SAM), which calculates the angle between two spectral vectors at each
pixel and is averaged over the test image—the best value is zero; and (iii) the third ones are related to
universal quality index (Q) index. For the four-band QuickBird image the Q4 index proposed by [40]
was used, which is an extension of the universal quality index suitable for four-band multispectral
images. For the eight-band WorldView-2 image, Q2n [41] was used, which is an extension of the Q4
index for any number of spectral bands. These two indices are sensitive to both correlation loss and
spectral distortion between two multispectral images, and allow both spatial and spectral distortions
to be combined in a unique parameter. The best value is one, with a range from zero to one. In this
study, Q4 and Q2n were both calculated on 32 × 32 pixel blocks as suggested by the authors who
proposed them.

In order to give a clear picture on the difference between the panchromatic and intensity images
(i.e., the spectral mismatch), the

√
σ2

e values from Equation (13) are also calculated.

http://openremotesensing.net/index.php/codes/11-pansharpening/2-pansharpening


Remote Sens. 2017, 9, 443 10 of 15

3.3. Results

Tables 1–3 show quantitative scores for the synthesis property at the reduced scale (columns on
the left side of the tables) and for the consistency property at the full scale (columns on the right side of
the tables) for the QuickBird rural (Table 1) and WorldView-2 urban 1 (Table 2) and 2 (Table 3) datasets.√

σ2
e is also tabulated in all of the tables. ‘EXP’ in these tables represents the plain expanded resampling

of the multispectral dataset at the scale of the panchromatic, i.e., m̃. All of the CS pansharpening
methods have relatively low σ2

e values (less than 0.02 in top-of-atmosphere reflectance units) indicating
that the histogram matching effectively reduce the radiometric difference between the intensity and
panchromatic images. This number is smaller than the top of atmosphere reflectance noise effect
induced by the atmospheric scattering and by the sun-sensor-target geometry [42]. The GIHS and
GS methods have the same σ2

e values as they have the same intensity image derived using an equal
weight coefficient for each multispectral band image. The GSA method produced smaller σ2

e values
than the GS method as the design of the GSA has minimized the spectral mismatch between the
LR intensity image i and LR panchromatic image p [19]. The σ2

e values are greater for the full scale
pansharpening than that for the reduced scale pansharpening for all of the same methods and the same
datasets. This could be because, at the full scale experiments, there is still some mismatch between the
real multispectral sensor MTF and the MTF used for degrading the panchromatic image (i.e., MTF
provided by the manufacturer) due to the on-orbit sensor degradation. To obtain a more reliable sensor
MTF, on-orbit estimation of the sensor point spread function is needed [43].

Table 1. Average quality scores of the pansharpened four-band QuickBird rural dataset (Figure 1).
The scores shown in bold indicate the better metric between the two results produced by the same
pansharpening method (GIHS, GS, or GSA), but using two different histogram equations (Phist(p→i)
and Phist(P→ĩ)).

Synthesis Property at Reduced Scale Consistency Property at Full Scale

Method Q4 SAM ERGAS
√

œ2
e Q4 SAM ERGAS

√
œ2

e

EXP (m̃) 0.630 4.440 4.627 NA 0.973 1.188 1.165 NA
GIHS Phist(p→i) 0.827 5.406 4.192 0.0051 0.973 1.899 2.115 0.0079
GIHS Phist(P→ĩ) 0.780 5.111 4.237 0.0071 0.966 1.696 2.228 0.0089

GS Phist(p→i) 0.850 4.801 3.929 0.0051 0.976 1.514 1.872 0.0079
GS Phist(P→ĩ) 0.805 4.680 4.076 0.0071 0.969 1.426 2.011 0.0089

GSA Phist(p→i) 0.853 4.491 3.608 0.0024 0.976 1.256 1.241 0.0068
GSA Phist(P→ĩ) 0.807 4.474 3.845 0.0074 0.967 1.276 1.494 0.0092

Table 2. Average quality scores of the pansharpened eight-band WorldView-2 urban 1 dataset (Figure 2).
The scores shown in bold indicate the better metric between the two results produced by the same
pansharpening method (GIHS, GS, or GSA), but using two different histogram equations (Phist(p→i)
and Phist(P→ĩ)).

Synthesis Property at Reduced Scale Consistency Property at Full Scale

Method Q4 SAM ERGAS
√

œ2
e Q4 SAM ERGAS

√
œ2

e

EXP (m̃) 0.571 5.310 5.184 NA 0.733 1.745 1.526 NA
GIHS Phist(p→i) 0.607 5.563 3.540 0.0099 0.679 2.318 2.636 0.0145
GIHS Phist(P→ĩ) 0.583 5.730 3.821 0.0113 0.657 2.413 2.665 0.0146

GS Phist(p→i) 0.624 5.553 3.478 0.0099 0.667 2.646 2.485 0.0145
GS Phist(P→ĩ) 0.599 5.871 3.789 0.0113 0.649 2.822 2.523 0.0146

GSA Phist(p→i) 0.626 5.000 3.149 0.0023 0.764 1.807 1.828 0.0088
GSA Phist(P→ĩ) 0.592 5.335 3.542 0.0072 0.723 1.999 1.959 0.0097
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Table 3. Average quality scores of the pansharpened eight-band WorldView-2 urban 2 dataset (Figure 3).
The scores shown in bold indicate the better metric between the two results produced by the same
pansharpening method (GIHS, GS, or GSA), but using two different histogram equations (Phist(p→i)
and Phist(P→ĩ)).

Synthesis Property at Reduced Scale Consistency Property at Full Scale

Method Q4 SAM ERGAS
√

œ2
e Q4 SAM ERGAS

√
œ2

e

EXP (m̃) 0.317 6.545 5.458 NA 0.557 2.051 1.542 NA
GIHS Phist(p→i) 0.341 6.679 3.797 1.266 0.465 2.495 2.924 1.7855
GIHS Phist(P→ĩ) 0.303 6.688 4.291 1.414 0.398 2.508 2.929 1.7876

GS Phist(p→i) 0.362 6.501 3.725 1.266 0.434 2.766 2.657 1.7855
GS Phist(P→ĩ) 0.308 6.648 4.287 1.414 0.385 2.838 2.684 1.7876

GSA Phist(p→i) 0.356 6.350 3.209 0.243 0.636 2.123 1.882 0.9771
GSA Phist(P→ĩ) 0.320 6.436 3.930 0.980 0.550 2.209 2.088 1.1309

Comparing the pansharpened results using the histogram-matched panchromatic image with
Equation (19) (Phist(p→i)) and with Equation (20) (Phist(P→ĩ)), the Phist(p→i) in Equation (19) always
performs better for all of the quantitative scores for the WorldView-2 urban dataset and has smaller
σ2

e values. There are a few exceptions where Phist(P→ĩ) in Equation (20) performs slightly better
(e.g., the SAM metric of the synthesis property the GSA method) in the QuickBird rural dataset.
This experimentally confirmed our analysis that the histogram-matched equation should be derived
from the LR intensity and panchromatic image pairs. The SAM exceptions in the QuickBird dataset
could be because the SAM metric is more robust to noise when the vector dimension it measures
is larger. The QuickBird images only have four multispectral bands, which make the SAM metric
sensitive to the radiometric distortion in the multispectral bands. For example, a small improper
injection on the blue band of the QuickBird image, due to the less overlapping between the blue and
panchromatic bands, could cause large errors in the SAM values.

Figures 1–3 show the panchromatic (Figures 1a, 2a and 3a) and two histogram matched
panchromatic images (Figure 1b,c, Figure 2b,c, Figure 3b,c) with the same contrast stretch, and
true color reference (Figures 1d, 2d and 3d) and pansharpened multispectral top of atmosphere
reflectance images from the GSA method (Figure 1e,f, Figure 2e,f, Figure 3e,f) using two different
histogram-matching equations with the same contrast stretch. Only the results from the GSA method
are shown to save space since the GSA method performed the best. Clearly, histogram matching the
panchromatic image using the equation provided by the HR panchromatic and the expanded intensity
image pair (Phist(P→ĩ), Figure 1c, Figure 2c, and Figure 3c) has less spatial detail than that using
the equation from the LR intensity and panchromatic image pair (Phist(p→i), Figure 1b, Figure 2b,
and Figure 3b). This is reasonable as the purpose of histogram matching is to adjust the mean and
variance of the original image (i.e., LR or HR panchromatic images, p or P, in this case) to the same
as the target image (i.e., LR panchromatic intensity image i or its expanded version ĩ in this case).
The Phist(P→ĩ) has less spatial detail because it has a lower variance since the LR panchromatic
image p has a lower variance compared to the HR panchromatic image P [34,35]. Comparing the two
different pansharpened images and original multispectral images show clearly less sharpening detail
in the QuickBird rural dataset and slight spectral distortion in the two WorldView-2 urban datasets
for the pansharpened images using the directly-histogram-matched panchromatic band Phist(P→ĩ)
in Equation (20).

4. Discussion

4.1. The Usefulness of the Revealed Statistical Assumptions

It should be noted that the statistical assumptions are not proposed by the authors. However, they
are revealed by us to better understand the implicit assumptions that are made by the CS methods.
This is useful for the CS method development, e.g., as illustrated in this study for the best histogram
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matching method suggestion. Some other possible uses for the method development are discussed
below, which requires further research.

One assumption is that the spectral consistency term prob(m|M) is neglected in Equation (2),
which results in the pansharpened images not being strictly spectrally consistent. This has been
shown in Tables 1–3 where no pansharpened images are perfectly spectrally consistent with the
original multispectral images. Facilitated by the flexibility of the extension of the Bayesian data fusion
framework, studies have tried to add this term at the price of a more complicated solution [25]. This is
because the point spread function (i.e., MTF) used in the spectral consistency term will make spatially
decomposing the large equation system of Equation (6) into pixel level equation, such as Equation (15),
impossible [25]. A detailed analysis of the contribution of this term is illustrated in [25].

Another assumption is that the difference between the LR and HR multispectral image vectors
(m̃−M) is a Gaussian vector with zero mean. Perhaps other models of distribution, such as
multimodal distribution, are more suitable to represent this difference. Within the Bayesian framework
and the deduction process in this paper, one can just replace the Gaussian distribution with a novel
multimodal distribution and derive its solution to design new CS methods.

Another assumption is that all the pixels in the difference vector between the LR and HR
multispectral images (m̃ − M) and in the difference vector between the HR panchromatic and
intensity images (P− I) are independent and identically distributed. Apparently, due to the spatial
heterogeneity nature of the earth surface, the validity of this assumption is really subject to the
extent and location of the study area. However, restricting this assumption in a spatial homogenous
area is always a better option. To this aim, some authors have improved CS methods by restricting
this assumption in a local sliding window [44–46], in a group of homogenous pixels after image
classification [47,48], or paying attention to the mixed pixels [49].

4.2. Time Complexity of the Suggested Histogram Matching Method

The computational efficiency of the different pansharpening methods using the two different
histogram-matching equations was measured by counting the run time of each method for each study
image at the reduced scale experiments. The run time measurements excluded the image reading
and writing operations. All of the code was written in the Matlab language and run using an Intel®

Xeon® Processor X3450 (4 cores, 8 M Cache, 2.66 GHz) CPU with 8.00 GB of memory and the 64-bit
Windows 7 operating system.

Table 4 shows the run time of each method for all three datasets. The benchmark plain
expanded/resampling algorithm is computationally the most efficient, with run times of less than
0.6 s for all three datasets. The additional step of derivation of the LR panchromatic images for the
suggested histogram matching is not very time consuming for the GIHS and CS methods. The GIHS
and CS methods using the suggested histogram matching are only 17–27% more than those using
the histogram-matching equation provided by the HR panchromatic and resampled LR intensity
images. This can be mitigated by the development of hardware computation capabilities or by
using advanced paralleling algorithms [50]. Furthermore, the run time of the GSA method using
the suggested histogram matching is slightly less than those using the histogram matching with the
equation provided by the HR panchromatic and resampled LR intensity images. This is because (i) the
GSA method needs the LR panchromatic image for the optimal weights determination in intensity
image derivation no matter what histogram matching is used; and (ii) using LR images in Equation
(19) with n pixels saves some time, as opposed to using the HR images in Equation (20) with N pixels
(16 times greater than n in our study) for histogram matching.
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Table 4. Run time (in seconds) of each method for the three datasets.

Method
4-Band QuickBird
Dataset (Figure 1)

8-Band WorldView-2 Urban 1
Dataset (Figure 2)

8-Band WorldView-2 Urban 2
Dataset (Figure 3)

EXP (m̃) 0.11 0.56 0.22
GIHS Phist(p→i) 0.31 5.98 0.47
GIHS Phist(P→ĩ) 0.26 5.10 0.37

GS Phist(p→i) 0.37 6.49 0.50
GS Phist(P→ĩ) 0.29 5.17 0.41

GSA Phist(p→i) 0.40 6.52 0.55
GSA Phist(P→ĩ) 0.41 6.50 0.56

5. Conclusions

In this paper, the implicit statistical assumptions of the CS pansharpening methods are revealed
by interpreting them from the Bayesian data fusion framework. Best practices for histogram matching
of the HR panchromatic image to the intensity image are suggested to better satisfy the implicit
assumptions. The HR panchromatic image should be histogram matched using the equation derived
from the LR panchromatic and intensity images instead of using equations derived from the HR
panchromatic and expanded LR intensity images. This is because (i) one assumption suggests the
negligible difference between the HR intensity and panchromatic images; and (ii) the relationship
between the HR intensity and panchromatic images is comparable to the relationship between the
LR intensity and panchromatic images provided the LR panchromatic image is derived from the
HR panchromatic image by considering the multispectral sensor modulation transfer functions. We
tested the two different histogram-matching equations using the GIHS, GS, and adaptive GS (GSA)
methods on both QuickBird and WorldView-2 top-of-atmosphere reflectance images and proved that
the suggested histogram-matching equation is effective. The usefulness of the statistical assumptions
revealed in this study for method developers is discussed. For example, none of the CS methods can
produce pansharpened images spectrally consistent to the LR multispectral images since the implicit
Assumption 1 omits the spectral consistency term. Classifying the images into homogenous areas
before pansharpening can make Assumption 5 be better satisfied, i.e., all of the pixels in the difference
vector between the LR and HR multispectral images (m̃−M) and in the difference vector between the
HR panchromatic and intensity images (P− I) are independent and identically distributed.
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