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Abstract: Photogrammetric point clouds (PPCs) provide a source of three-dimensional (3-D) remote
sensing data that is well-suited to use over small areas that are within the scope of observation
by unmanned aerial vehicles (UAVs). We compared PPC-based structural metrics to traditional
ground surveys conducted by field personnel in order to assess the capacity of PPC data to contribute
to vegetation-reclamation surveys. We found good statistical agreement between key structural
vegetation parameters, such as mean and maximum vegetation height, with PPC metrics successfully
predicting most height and tree-diameter metrics using multivariate linear regression. However, PPC
metrics were not as useful for estimating ground-measured vegetation cover. We believe that part of
the issue lies in the mismatch between PPC- and ground-based measurement approaches, including
subjective judgement on behalf of ground crews: a topic that requires more investigation. Our work
highlights the emerging value of UAV-based PPCs to complement, and in some cases supplement,
traditional ground-based sources of measured vegetation structure.

Keywords: unmanned aerial vehicles; photogrammetry; point clouds; vegetation structure;
vegetation height; vegetation cover; ecological recovery; reclamation

1. Introduction

Resource extraction projects and other forms of industrial development are often accompanied by
physical disturbances that require subsequent reclamation: the process of returning the disturbed area
to a reference or pre-disturbance condition. This activity is often a legal requirement of development,
and is the subject of a great deal of environmental work and regulatory oversight. For example,
the province of Alberta, Canada is supported by a strong, resource-based economy with large forestry,
agricultural and oil and gas industries [1]. However, these activities are accompanied by substantial
environmental effects, including the clearing of vegetation, removal or compaction of soils, and other
anthropogenic disturbances. Many industrial features, such as petroleum well sites, are meant to be
temporary disturbances. After a well has finished producing, the site is decommissioned and the
land reclaimed to a more natural state, according to regulations outlined by Alberta’s Environmental
Protection and Enhancement Act [2]. However, rates of post-disturbance recovery have been found
to vary considerably [3,4]. For example, Pinno and Hawkes [5] examined plant community structure
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and soil nutrient availability in reclaimed versus undisturbed locations within Alberta’s oil sands
region, and found that the soil moisture regime impacted tree height, percent shrub cover, species
richness and available soil phosphorous at recovering sites. The authors also demonstrated significant
differences remaining between sites up to 20 years after reclamation and nearby undisturbed, mature
forest stands, indicating long recovery periods.

Understanding and forecasting ecological recovery rates, which are key to managing cumulative
effects and assisting with land-use planning, requires accurate assessment and long-term monitoring
programs. No standard strategy for this currently exists in Alberta, though considerable progress has
been made [6,7]. At present, most efforts have focused on detailed vegetation and soil inventories.
These are, however, expensive to conduct and are often cost-prohibitive to carry out over large areas.
A broad-scale recovery monitoring program would require more rapid, consistent, and cost-efficient
site assessments. Exploring alternative or supplementary survey methods is therefore valuable.

Previous research has shown that vegetation structural characteristics can be collected in a
cost-effective manner through remote sensing technologies, particularly airborne Light Detection and
Ranging (LiDAR; e.g., [8–11]). By offering three-dimensional (3-D), multi-return data that interacts
with vegetation and terrain, LiDAR provides a means of recording detailed estimates of above-ground
heights at various canopy layers. However, airborne LiDAR data collection is relatively expensive,
and therefore not an ideal candidate for repeated monitoring, particularly over small areas where
economies-of-scale are limited.

Photogrammetric point clouds (PPCs) offer an alternative source of three-dimensional data that
is gaining traction as a source of information on vegetation structure [11]. PPC data are generated
from sets of densely overlapping photographs using software packages that employ photogrammetric
methods and recent advances in computer vision technology [12]. The resulting point clouds (also
known as a stereo image or image-based point clouds [13–16]) are often very dense—commonly
hundreds or even thousands of points/m2—and therefore provide a highly detailed model of the
object or surface of interest.

PPC data sets can be acquired at considerably less cost than airborne LiDAR, particularly
when generated from photographs acquired using consumer-grade digital cameras mounted on
a lightweight, unmanned aerial vehicle (UAV). This approach to 3-D remote sensing is becoming
increasingly common, as UAVs, also referred to as unmanned aerial systems, remotely piloted aircrafts,
or drones [17], become more widely accessible. UAVs offer detailed, spatially explicit coverage over
limited areas at user-defined timescales, and at a relatively low cost [18]. There is therefore a growing
body of literature on the use of UAVs for a diversity of research and scientific applications, including
precision agriculture (e.g., [19,20]), forest studies (e.g., [21–23]), rangeland monitoring (e.g., [24,25]),
archaeology (e.g., [26,27]), geology and geomorphology (e.g., [28]), and conservation and ecology
(e.g., [29–31]), among others. White et al. [32] identified PPCs generated from aerial imagery as a
technology likely to have a considerable effect in the coming years on forest-inventory practices.

Dandois and Ellis [22] described one of the earliest applications of PPCs to derive forest structural
characteristics. The authors generated tree canopy height models from both PPCs and LiDAR-based
point clouds, for the purposes of comparison. While the authors identified a number of challenges
(e.g., PPCs cannot see below a dense forest canopy as LiDAR pulses can do), they nevertheless
highlighted clear opportunities for the three-dimensional remote sensing of forest structure.

More recently, Dandois and Ellis [33] used both leaf-on and leaf-off photography to generate
high-quality canopy height models (CHMs) from UAV-generated PPCs. These models were shown
to be highly correlated with LiDAR-based CHMs, and good predictors of field-based tree height
measurements. The authors also derived aboveground biomass and carbon densities from their
UAV-based CHMs, but observed considerable error in their estimates when compared with field
measurements. In addition, Dandois and Ellis [33] employed the spectral information (i.e., red, green,
blue (RGB) data) inherent within UAV-generated photogrammetric point clouds and their record of
multiple flights over 16 months to examine spectral and structural phenological shifts in forest canopy,
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demonstrating a novel method for studying forest ecology. Other applications of UAV-derived PPCs
for estimating vegetation characteristics include those shown by Guerra-Hernandez et al. [34], Jensen
and Mathews [35], and Wallace et al. [36].

The potential of UAV-acquired data to provide a cost-effective source of vegetation information is
evident, but requires a greater understanding of the strengths and weaknesses of these data if they are
to be considered as an alternative to traditional ground observations. In particular, we need to evaluate
the capacity of PPC-based metrics within the context of accepted observational practices, such as those
currently used in contemporary vegetation-reclamation surveys. The objective of this study was to
compare structural characteristics in vegetation estimated via UAV-based PPC with traditional field
measurements of vegetation structure on a set of non-permanent human footprint features in Alberta’s
Boreal and Foothills forests. Our case study focused on a series of reclaimed oil and gas well sites in
west-central Alberta, using point-cloud metrics and evaluation techniques common to LiDAR, and
more recently, UAV-based research on vegetation described in the current remote-sensing literature.
The work could contribute to the development of rapid-assessment protocols and environmental
monitoring programs related to reclamation.

2. Materials and Methods

Our study area covers approximately 5000 km2 of the Boreal Forest and Foothills Natural Regions
of west-central Alberta, Canada (Figure 1). The area is characterized by deciduous, coniferous and
mixed-wood forested landscapes, with varying topographical, hydrological and ecological regimes.
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Figure 1. Study area map showing the location of the studied nine reclaimed well sites within
west-central Alberta, Canada and their distribution relative to the Boreal Forest and Foothills
Natural Regions.

The Foothills Natural Region is a transition zone between the Boreal Forest and Rocky Mountain
Natural Regions, with a cool, moist climate, and gently undulating to rolling hills [37]. Lower
elevations are covered by mixed-wood forests where mixtures of trembling aspen (Populus tremuloides
Michx.), lodgepole pine (Pinus contorta Dougl. var. latifolia Englem. Ex S. Watson), white spruce
(Picea glauca (Moench) Voss) and balsam poplar (Populus balsamifera L.) dominate. Higher elevations
generally support lodgepole pine stands. Wildlife species include among others woodland caribou
(Rangifer tarandus), elk (Cervus canadensis), wolverine (Gulo gulo) and grizzly bear (Ursus arctos) [37].

The Boreal Forest Natural Region is characterized by short cold summers, and long cold winters
with precipitation peaking in the summer months. The level to gently undulating terrain supports
vast deciduous, mixed-wood and coniferous forests interspersed with wetlands, which themselves are
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dominated by black spruce (Picea mariana (Mill.) Brotton, Sterns & Poggenb.), shrub or sedge fens [37].
Trembling aspen and balsam poplar are the dominant deciduous species, while the most common
conifer species include black spruce, jack pine (Pinus banksiana Lamb.) and white spruce.

Our nine study sites—each of which represents a decommissioned well site that has been cleared
and subsequently reclaimed according to provincial standards [38]—range in elevation from 763 m to
1096 m above sea level, and represent post-reclamation certification ages that ranged from 12 years to
30+ years. Two of these sites (no. 1 to 2) are located within the Boreal Forest Natural Region, while the
remaining study sites (no. 3 to 9) are located within the Foothills Natural Region (Figure 1).

2.1. Field Data Collection and Processing

Information on vegetation structure was collected at each of our nine study sites during the
summer of 2014, using a systematic sampling protocol. A series of eight 5 m × 5 m vegetation
plots were laid out at each well site—four of which were systematically placed on the wellpad itself
(i.e., the area cleared for well construction), and four of which were distributed within the nearby,
undisturbed (i.e., natural) forested landscape so as to capture the local, natural vegetative state to
which the reclaimed, disturbed area would ideally return. This is referred to as the reference condition.
The idealized plot layout is shown in Figure 2. It should be noted that the four undisturbed vegetation
plots were repositioned in the field if their intended location coincided with or were close to any
anthropogenic disturbances such as a road.
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Figure 2. Diagram showing the layout of the 5 m × 5 m vegetation survey plots used at each
of the eight studied reclaimed well sites, wherein four of the plots were located on the reclaimed
wellpad (i.e., disturbed portion) itself, while the remaining four were located in the adjacent or nearby
undisturbed areas. Global Positioning System (GPS) coordinate locations are also shown. Diagram is
not to scale. Adapted from Alberta Biodiversity Monitoring Institute, 2013 [39].

Table 1 lists the six structural vegetation measurements collected in the field at each 5 m × 5 m
plot and used in the study. Measurements were generally focused on a particular type of vegetation
growth form (herb and forb vs. shrub vs. tree), as is typical of traditional vegetation surveys for
recovery monitoring. Additional information was collected, but is not relevant to the present study
and is therefore not presented here. See Alberta Biodiversity Monitoring Institute, 2013 [39] for a full
description of field data collection protocols.

Firstly, two-dimensional herb/forb and shrub vegetation cover was estimated at three separate
height strata for each 5 m × 5 m plot: (1) <0.5 m, (2) 0.5 m to 2 m, and (3) 2 m to 5 m. Herbs and forbs
were identified as non-woody vascular plants, whereas shrubs were defined as non-tree, vascular
plants with woody stems. Small trees <1.3 m in height were included in estimates of shrub cover.
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When trees were present at a 5 m × 5 m plot, both top height (m) and diameter at breast height
(DBH: 1.3 m above ground; measured in cm) were measured for each individual tree. All live trees
≥1.3 m in height, as well as dead trees ≥1.3 m in height, and not leaning >45◦ from vertical were
measured, with the exception of Alnus (alder) or Salix (willow) species. Height was measured using a
vertex hypsometer, and DBH was measured using DBH tape. Once again, further detail can be found
in [39].

Table 1. Vegetation structural attributes surveyed in the summer of 2014 at each of the 5 m × 5 m
plots sampled at each study site, along with the abbreviations for the corresponding input variable(s)
used in the statistical analysis. Both height (GHt) and diameter at breast height (DBH) attributes are
summarized by mean, maximum (max), minimum (min), range, and standard deviation (std) on a
per-plot basis. Vegetation cover variables are already recorded as such.

Vegetation Information Relevant Analysis Variable(s)

Herb and forb cover (%) at heights < 0.5 m GHFcv<0.5
Shrub cover (%) at heights < 0.5 m GShcv<0.5

Shrub cover (%) at heights ≥ 0.5 m to 2 m GShcv0.5–2
Shrub cover (%) at heights ≥ 2 m to 5 m GShcv2–5

Tree diameter at breast height 1 (cm) DBHmean, DBHstd, DBHmax, DBHmin, DBHrange
Tree top height (m) GHtmean, GHtstd, GHtmax, GHtmin, GHtrange

1 Diameter at breast height (DBH), measured at 1.3 m above ground.

Given that shrub and herb/forb cover were estimated at the 5 m × 5 m plot level, and individual
tree locations were not recorded in the field, we used the plot as the unit of analysis (i.e., our sample
unit) in order to maintain consistency in our investigation. Therefore, tree heights and DBH
measurements were summarized for each 5 m × 5 m plot using basic descriptive statistics (mean,
standard deviation, minimum, maximum, and range) before being included in our statistical analysis
(see Table 1).

Summary statistics for the six field-measured vegetation variables measured at eight of our nine
study sites are provided in Table 2. It must be noted that due to errors in the PPC for one of our study
sites (site 3; see Section 2.2. for details), this site was removed from further analysis and is therefore
not included in the summary given in Table 2, nor in subsequent analysis results.

Table 2. Summary of field-measured vegetation cover, tree height and tree DBH recorded at the eight
reclaimed well sites within the study area. See Table 1 for meaning of variable names.

Variable Median Mean Standard Deviation Maximum Minimum

GHFcv<0.5 (%) 25.0 29.8 23.2 85.0 0.1
GShcv<0.5 (%) 0.1 7.3 12.0 45.0 0.0
GShcv0.5–2 (%) 1.1 9.0 13.7 60.0 0.0
GShcv2–5 (%) 0.0 4.2 10.0 45.0 0.0

GHt (m) 11.90 12.44 6.94 27.10 1.40
GDBH (m) 3.80 6.69 7.36 55.00 0.02

2.2. UAV Data Collection and Processing

Digital RGB photography was acquired at each study site using a Panasonic Lumix GX1 camera
mounted on a Mikrokopter Hexacopter XL—a commercially-available ‘ready-to-fly’ UAV, manually
flown over each well site. UAV observations were temporally consistent (within several weeks) with
ground vegetation observations, both of which were acquired during summer leaf-on conditions.
Specifications of the UAV are provided in Table 3. Average flying altitude over the nine study sites
ranged from 58.1 m to 74.7 m above ground. The mounted, consumer-grade camera possesses a
resolution of 4000 × 3000 pixels at a 20-mm focal length. The number of pictures captured at each site
ranged from 147 to 986. Forward and side overlap are estimated at 80% to 90%, and 70%, respectively.
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A series of three ground control points (GCPs) were also recorded at each study site using a Trimble
GeoXT handheld Global Positioning System (GPS) unit, which typically provides sub-meter accuracy.

Table 3. Specifications of the unmanned aerial vehicle (UAV) model and camera payload used in the
present study.

UAV Specifications Camera Payload

Model Mikrokopter Hexakopter XL Model Panasonic Lumix GX1
Description Multi-rotor, commercial ‘ready-to-fly’ hexcopter Camera resolution 4000 × 3000 pix (16 megapixels)

Size 102 cm (l) × 102 cm (w) Focal length 20 mm
Weight 2.7 kg Sensor size 18 mm × 13.5 mm

Max. speed 22 km/h Weight 420 g
Flight endurance 25 min

Autonomy None; manual remote control

The UAV-acquired images for each study site were converted to JPEG format, and irrelevant photos
(e.g., those taken during take-off and landing) were removed. The Agisoft PhotoScan Professional
software (http://www.agisoft.com) was used to generate image-based (i.e., photogrammetric) point
clouds for each study site through an automated set of procedures based on structure-from-motion
algorithms [40]. The overall process for point-cloud generation involves image alignment; identification
of tie points; and construction of a sparse, and then a dense, point cloud. This is followed by the
manual identification and flagging of three, spatially-distributed GCPs at each study site with their
recorded x, y and z location coordinates, as a means of georeferencing the final PPCs. We georeferenced
our PPCs to the World Geodetic System 1984 Universal Transverse Mercator Zone 11N projection.
The process produced a PPC for each of the nine study sites, contained within a LASer (LAS) file format
(see https://www.asprs.org/committee-general/laser-las-file-format-exchange-activities.html for
specifications)—the same format typically used to store LiDAR point clouds. A section of one such
PPC is shown in Figure 3.
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Figure 3. Example profile and three-dimensional view of a sample of a UAV-derived photogrammetric
point cloud (PPC), showing the detailed capture of various vegetation features.

Given the largely forested environment of our study area and the nature of PPCs—more
particularly, their basis in passive optical photography—it is inevitable that where dense forest occurs
there is an under-representation of the understory and underlying ground surface. This makes it
challenging to extract vegetation height above ground surface in heavily vegetated landscapes using
only the information contained in the PPC—a well-recognized limitation of these data [41,42]. However,
digital terrain models (DTMs) offer an accurate and reliable ‘ground’ surface for normalizing our PPCs

http://www.agisoft.com
https://www.asprs.org/committee-general/laser-las-file-format-exchange-activities.html
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to height above ground. This approach has been used successfully by a number of researchers as a
means of improving PPC height normalization (e.g., [13,22,43,44]).

To deal with this limitation in our data, we employed a set of 1-m DTMs derived from spatially
coincident LiDAR data sets acquired between 2005 and 2007, with an average point density of
1.65 points per m2. These data were acquired by Airborne Imaging (http://airborneimaging.ca/),
and accessed through the Government of Alberta. Accuracy estimates provided by Airborne Imaging
for these LiDAR point clouds comprise maximum root-mean-square errors (RMSEs) of 0.30 m and
0.45 m for the vertical and horizontal directions, respectively. Unfortunately, because our sites are in
remote, mostly natural areas there are no permanent anthropogenic structures or surfaces that can
be used to co-register the two data sets as could be done in an urban area. Nevertheless, our sites
are geomorphologically stable, are not topographically complex, with no steep slopes present. It was
therefore reasonable to assume that the aforementioned LiDAR DTMs would provide an appropriate
data source with which to normalize our UAV PPC heights to above ground.

Table 4 presents the coverage, point densities, and other details of the PPCs generated for each
of our nine study sites. The number of photos taken and aerial coverage of the point clouds differ
considerably at two of our sites (sites 6 and 7), which was the result of technological challenges with
the UAV camera payload itself during these two flights. In particular, our camera settings at these two
sites led to a longer interval between image captures, which was not discovered until later. Camera
settings were adjusted for the remaining sites to permit a shorter interval between subsequent images,
which enabled greater numbers of photos to be taken at these remaining sites. Nevertheless, ground
resolution and point densities are consistently high across all of the point clouds, indicating that the
number of photos captured at each site did not affect the quality of our resulting PPCs.

Table 4. Summary of the PPCs generated for each of the nine study sites. LiDAR: Light Detection and
Ranging; GCP: ground control points.

Study
Site

Mean Flight
Altitude (m)

No.
Photos

Ground Resolution
(m/pix)

Coverage
(km2)

Point Density
(pts/m2)

Mean GCP Error (m) Vertical Mismatch
w/LiDAR (m)x y z

No. 1 65.9 830 0.014 0.060 342.0 1.238 0.391 0.010 −0.2
No. 2 64.9 732 0.014 0.047 333.7 0.614 0.874 0.002 −0.1
No. 3 74.3 986 0.015 0.076 274.8 5.152 5.878 0.019 12.1
No. 4 70.5 584 0.015 0.056 292.4 0.733 0.880 0.024 4.8
No. 5 65.3 781 0.014 0.061 339.3 1.075 1.382 0.025 −22.1
No. 6 65.4 157 0.014 0.051 313.2 0.612 0.687 0.036 7.6
No. 7 58.1 147 0.012 0.016 437.0 0.718 0.849 0.046 −6.5
No. 8 74.7 924 0.016 0.065 245.9 0.529 0.996 0.020 2.1
No. 9 66.5 619 0.014 0.061 317.5 1.740 1.419 0.081 4.5

The PhotoScan software calculates average PPC x, y and z errors based on the RMSEs of the GCP
points themselves [45]. All but one of our PPC x and y errors were below 2 m (Table 4). The PPC for
site 3 possessed high levels of x and y errors (>5 m), which exceed levels appropriate for any further
analysis, particularly in view of our 5 m × 5 m plot size. The data from this site was therefore removed
from all further analysis.

The PPC errors estimated for the remaining eight plots are comparable to PPC errors listed
by Dandois and Ellis [33], and slightly higher than those reported by Wallace et al. [36] and
Zhang et al. [46]. Our PPC z errors were under 0.10, which are either comparable to or lower than the
vertical PPC errors reported in these studies.

We observed a vertical mismatch between the PPCs and the corresponding LiDAR-derived
DTMs at our nine study sites. The mismatch ranged from sub-meter differences to greater than 20 m,
and may be due at least in part to GCP coordinate data accuracy acquired from the mapping-grade
GPS units used in the field. It is unlikely that the temporal offset between the LiDAR acquisition
(i.e., 2005–2007) and the UAV data acquisition (2014) is a cause of this vertical mismatch. Our study
sites represent remote features that are no longer under active anthropogenic management and are thus
unlikely to have changed this drastically over the given time. A lack of clearly identifiable, permanent

http://airborneimaging.ca/
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features with known coordinates at our remote, forested study sites limits our ability to quantify any
misalignment between the data sets.

To vertically align our PPCs with the coincident LiDAR DTMs we used an in-house customized
software tool. The tool divides each PPC into a set of 50 m × 50 m tiles and normalizes each tile’s
height values using the difference between the local height minima within that tile and that within the
equivalent 50 m × 50 m section of the LiDAR DTM. We tested several tile sizes from 10 m × 10 m to
100 m × 100 m, evaluating the statistical independence between the tiles for each tile size. Smaller
tile sizes led to more tiles and a more customized local adjustment, but less statistical independence
between the tiles themselves, while the opposite was true of larger tile sizes. We found the best
compromise between number of tiles and statistical independence at the 50 m × 50 m tile size.

Once normalized to height above ground, the PPCs were clipped to the 5 m × 5 m plot areas at
each study site, and a series of metrics calculated for each plot. Tables 5 and 6 list the various height,
vegetation cover, and spectrally-based metrics that were calculated. We selected a large number and
wide variety of metrics in support of an exploratory analysis approach. Our selections were based on
metrics and RGB spectral indices commonly used or identified in the literature.

Deriving point cloud plot-level canopy height descriptive statistics (e.g., mean, maximum,
standard deviation, etc.) is standard practice in LiDAR applications to forestry, as is the calculation of
height percentiles and canopy cover or density measures at varying height strata within an area of
interest (e.g., [8,10,47]). These metrics are also now regularly applied to PPC-based studies in forested
areas (e.g., [15,16,33,41,44,48–50]). Our spectrally-based metrics are less commonly used in these types
of studies, although Dandois and Ellis [33] show the utility of PPC spectral information for examining
tree phenology on a very local and detailed scale. With the aim of exploring the potential value of
spectral metrics from PPCs in estimating forest structural attributes, we derived a number of visible
spectral band predictor variables found within the literature (e.g., [51–55]) to include in our analysis
(Table 6). In order to ensure the statistical independence between each of the clipped PPCs for the
eight 5 m × 5 m vegetation plots at each site, we performed a non-parametric Kruskal–Wallis test [56]
on a random sample of the points’ z coordinates from each plot. Our Kruksal–Wallis test results
indicated that seven of the eight plots contained at least one clipped 5 m × 5 m plot PPC that was not
a statistically independent sample, to an alpha of 0.05, when compared to one or more of the other
5 m × 5 m plot point clouds within the same study site. As a result, a total of eight plot point clouds
were removed from our analysis. It should also be noted that 11 of the vegetation plots were not
adequately represented by our PPCs due to insufficient photographic coverage resulting in gaps in
our PPCs over these plots; these ‘no data’ plots were also not included in the analysis. The remaining
46 vegetation plots comprised our analysis (i.e., n = 46).
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Table 5. Vegetation structural metrics derived from the PPCs.

Metric Description Reference(s)

Height (m)

Htmean, Htstd, and Htmax Height mean, standard deviation, and maximum

[33,41,43]

Htmad, Htmoad, and Htmead Mean, mode, and median of height absolute deviation

Htiqr Height interquartile range

Htkurt and Htskew Height distribution kurtosis and skewness

Htp5, Htp10 Htp25, Htp50, Htp75 Htp90, and Htp99 Height percentiles: 5th, 10th, 25th, 50th, 75th, 90th and 99th

Httr, Httgr, and Httngr
Total height of all data points, all ’ground‘ points and all
’non-ground‘ points

Vegratio Ratio of ’non-ground‘ to ’ground‘ data points

Vegetation Cover (%)

Cov0.25–0.5, Cov0.5–1, Cov0.5–2, Cov1–2, Cov2–5,
Cov5–10, Cov10–15, Cov15–20, and Cov20–25

Vegetation cover within various height strata (m): 0.25 to 0.5,
0.5 to 1, 0.5 to 20, 1 to 2, 2 to 5, 5 to 10, 10 to 15, 15 to 20, and
20 to 25

[43,49,50]
Cov<0.25, Cov<0.5, Cov<1.3, Cov<2, and Cov<5

Vegetation cover below particular heights (m): <0.25, <0.5,
<1.3, <2, and <5

Cov≥1.3, Cov≥2, Cov≥5, and Cov≥25
Vegetation cover at and above particular heights (m): ≥1.3,
≥2, ≥5, and ≥25

Table 6. Spectral metrics derived from the PPCs.

Type of Metric Description Reference(s)

Rmean, Rstd, Rmax, and Rmin
Red band digital number (DN) mean, standard deviation, maximum, and
minimum

Gmean, Gstd, Gmax, and Gmin Green band DN mean, standard deviation, maximum, and minimum

Bmean, Bstd, Bmax, and Bmin Blue band DN mean, standard deviation, maximum, and minimum

Rratio, Gratio, and Bratio Ratio of red, green and blue band DN to the sum of all bands’ DNs [33,54]

BGDI Blue–green difference index: (blue DN − green DN) [51]

GRDI Green–red difference index: (green DN − red DN) [53]

NGRDI Normalized green–red difference index: (green DN − red DN)/(green
DN + red DN) [53]

GBDI Red–green–blue difference index: (green DN − blue DN)/|red DN −
green DN| [51]

EGI Excessive green index: (2 × green DN) − red DN − blue DN [52]

NEGI Normalized excessive green index: ((2 × green DN) − red DN − blue
DN)/((2 × green DN) + red DN + blue DN) [52]

PPR Plant pigment ratio: (green DN − blue DN)/(green DN + blue DN) [53]

We followed three statistical approaches commonly found in the literature to test the reliability
and accuracy of PPC-based vegetation structure information: (1) correlation analysis, (2) statistical
error calculations, and (3) linear regression. These analyses were performed within the Microsoft Excel
2010 (www.microsoft.com) and IBM SPSS Statistics 20.0 (www.ibm.com/software/analytics/spss/
products/statistics/) software.

Both correlation analysis and statistical error calculations (e.g., RMSE) are used in the literature to
examine attributes that are directly comparable, such as mean tree height or canopy cover, as estimated
from point clouds versus field measurements (e.g., [41,50,57]). We calculated a traditional Pearson
correlation statistic (r) using a significance level of 0.05. We recognize that our sample size is not
large and our data not likely to be normally distributed, but note that the literature has shown the
Pearson statistic to be quite robust under both conditions [58,59]. With regard to statistical error tests,
we calculated both RMSE and relative RMSE (RMSE %). The latter is simply RMSE normalized by the
mean of the observed (e.g., field-measured) values [50], and provides a relative measure of error that
is more intuitive than the more traditional RMSE. It, too, is used by numerous examinations of PPC

www.microsoft.com
www.ibm.com/software/analytics/spss/products/statistics/
www.ibm.com/software/analytics/spss/products/statistics/
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data sets within the context of vegetation studies (e.g., [13,42–44,60]). It should be noted that tree DBH
measurements were not derivable from our PPCs, and direct comparisons of these estimates through
correlation or RMSE calculations were therefore not part of this analysis.

Our final statistical analysis involved using a forward-stepwise multivariate linear regression
as a means of modeling various vegetation structural attributes using a number of PPC-derived
vegetation metrics. This regression approach produces multivariate linear models comprising the best
set of independent or predictor variables from those provided, based on a selection criterion. In this
case, the analysis was done within IBM’s SPSS statistical software package (SPSS 20.0), which uses
F-statistics to determine which of the independent variables are the most significant predictors, and
adds them to the regression equation in a stepwise manner. Model performance is indicated by an
adjusted coefficient of determination (i.e., adjusted R2); adjusted R2 values greater than 0.70 indicate a
good model fit. Similar analyses are, again, found frequently in the literature (e.g., [13,22,33,43,61]).

3. Results

3.1. Correlation Analysis

Table 7 presents the results of our Pearson’s r correlation analysis. Statistics were not calculated
for minimum height or height range because calculations of the former from the PPCs resulted in
values at or below zero, which represent ground rather than vegetation height, and would thus not
produce informative statistical results. Since height range is calculated on the basis of height minimum,
the same holds true for this variable as well.

Table 7. Pearson’s r results comparing height and vegetation cover variables as estimated using field
measurements (i.e., GHtmean, GHtstd, . . . , GShcv2–5) versus PPCs (i.e., Htmean, Htstd, . . . , Cov2–5).

Htmean Htstd Htmax Cov<0.5 Cov0.5–2 Cov2–5

GHtmean 0.846 * – – – – –
GHtstd – 0.315 * – – – –
GHtmax – – 0.774 * – – –

GHFcv<0.5 – – – 0.189 – –
GShcv<0.5 – – – −0.182 – –
GShcv0.5–2 – – – – 0.128 –
GShcv2–5 – – – – – 0.143

* Significant at the 0.05 level.

Both mean and maximum height estimates produced statistically significant positive r values
indicating strong positive correlations between the PPC estimations and field measurements (0.846 and
0.774, respectively). Standard deviation of height did produce a statistically significant correlation
(Table 7), although the relationship was weakly positive. There were no correlations stronger than
±0.19 found between the point cloud-generated and field-based estimates of vegetation cover, and none
were statistically significant (Table 7).

Given the strong r values observed for mean and maximum height variables, we plotted the PPC
values versus field-measured estimates, and calculated ordinary least squares (OLS) equations and
corresponding R2 values for each relationship (Figure 4). Pearson’s r results for both of these variables
indicate strong correlations with OLS regressions producing moderate to good R2 values.
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3.2. Error Statistics

Table 8 lists the results of our RMSE and relative RMSE (RMSE %) calculations for mean, maximum
and standard deviation of height variables, and vegetation cover at three height strata: <0.5 m, 0.5 to
2 m and 2 to 5 m. It should be noted that for the <0.5-m height strata, the RMSE and RMSE % results in
Table 8 represent the average between comparisons of PPC estimates versus field-measured herb/forb
cover at this height, and comparisons of shrub cover at the same height.

Height metric RMSEs ranged from 3.48 m to 6.47 m, and represent between 23% and 43% of
mean field estimations. Both mean and maximum height metrics show comparable results, but height
standard deviation shows a slightly greater level of error than either of these. PPC estimations of
vegetation cover show even larger errors—with RMSEs near or above 0.20, and RMSE % values
upwards of 530%.

Table 8. Root-mean-square error (RMSE) and relative RMSE results comparing PPC and field-based
estimations of various height (m) and vegetation cover (in %) metrics.

Htmean Htstd Htmax Cov<0.5 Cov0.5–2 Cov2–5

RMSE 5.40 3.48 6.47 0.25 0.18 0.22
RMSE % 43.37 50.20 23.89 241.5 194.24 530.92

3.3. Multivariate Linear Regression

The best multivariate linear regressions for each of twelve field-measured dependent variables
are provided in Table 9. The dependent variables included descriptive metrics (e.g., mean, standard
deviation, etc.) for ground-estimated vegetation heights and DBH. Models of ground vegetation cover
were generated for only two dependent variables: shrub cover at heights < 0.5 m (GShcv<0.5), and shrub
cover at heights between 2 and 5 m (GShcv2–5). No statistically significant predictor variables were
identified for the remaining vegetation cover variables within our analysis.

More than half of the DBH and ground height variables had good model fit. Mean (GHtmean) and
minimum (GHtmin) ground tree heights produced the strongest fitting models with adjusted R2 values
of 0.914 and 0.887, respectively (Table 9). Maximum tree height (GHtmax) still had good model fit with
an R2 of 0.763, while the remaining height models produced adjusted R2 values < 0.4. Three of the
DBH variables (DBHmean, DBHmax, and DBHrange) had model fit R2 values between 0.740 and 0.857,
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while DBHmin and DBHstd showed weaker model fits with R2 values below 0.6. The vegetation cover
variable GShCv2–5 produced a model with moderately good fit and an adjusted R2 of 0.664, while
GShCv<0.5 produced a model with very minimal predictive power (Table 9).

Table 9. Variables and model equations of the multivariate linear regressions developed for
various field-based vegetation structure variables, as well as corresponding adjusted coefficient of
determination (R2) values.

Dependent Variable Independent Variable (s) Model Adjusted R2

DBHmean Htp90, Htp50, Htp99, Htskew
4.17 × Htp90 − 2.03 × Htp50 − 1.90 × Htp99 − 2.32 ×
Htskew + 7.76 0.832

DBHstd Cov≥5, BGDI, Cov≥25 0.50 × Cov≥5 + 0.001 × BGDI − 1.35 × Cov≥25 + 10.54 0.526

DBHmax
Htp90, Cov5–10, Cov≥25, Htp50, EGI,
Htmoad, Htiqr

1.50 × Htp90 + 0.28 × Cov5–10 − 7.02 × Cov≥25 − 2.45 ×
Htp50 − 0.001 × EGI + 1.66 × Htmoad + 1.92 × Htiqr +
10.066

0.857

DBHmin Htmad, Cov20–25 1.55 × Htmad + 0.11 × Cov20–25 − 0.420 0.510

DBHrange Cov≥5, Htkurt, Cov5–10, Cov≥25, BGDI 0.18 × Cov≥5 − 1.22 × Htkurt + 0.22 × Cov5–10 − 4.60 ×
Cov≥25 + 0.001 × BGDI + 13.38 0.740

GHtmean
Htp75, Gmean, Gratio, EGI, Cov10–15,
Cov≥25

0.66 × Htp75 − 0.001 × Gmean − 997.16 × Gratio + 0.003
× EGI + 0.12 × Cov10–15 − 1.14 × Cov≥25 + 395.15 0.914

GHtstd BGDI, Htmoad, Htkurt 0.001 × BGDI + 0.31 × Htmoad − 0.64 × Htkurt + 8.459 0.339

GHtmax Htp75, BGDI, Cov15–20, Rratio
1.64 × Htp75 + 0.001 × BGDI − 1.47 × Cov15–20 + 159.10
× Rratio − 40.38 0.763

GHtmin Htp75, Cov20–25, Htp5, NGRDI 0.982 × Htp75 − 0.25 × Cov20–25 − 0.46 × Htp5 − 50.91
× NGRDI + 8.452 0.887

GHtrange Htp75, BGDI 0.39 × Htp75 + 0.001 × BGDI + 10.59 0.346

GShcv<0.5 BGDI 1.61 × 10−6 × BGDI + 0.26 0.102

GShcv2–5 Cov<0.5, Bstd, Rmin
0.008 × Cov<0.5 − 1.37 × 10−5 × Bstd − 5.7 × 10−6 ×
Rmin + 0.16

0.664

It is evident (Table 9) that these models contain quite a variety of predictor variables,
with the majority of the latter appearing in no more than two of twelve models. Three predictor
variables—namely 75th height percentile (Htp75), vegetation cover at or above 25 m (Cov≥25),
and blue–green difference index (BGDI)—reappear in four or more models, however. The first of
these, Htp75, is a factor in all but one of the ground height models showing positive coefficients, while
BGDI is seen in three of these models, two of the DBH models, and in the GShcv<0.5 model (Table 9).
It should be noted that this spectral variable is associated with positive, but very small coefficients
for all six of these models. The independent variable Cov≥25 is found in three of five DBH models,
and in the model for GHtmean, where it coincides with a negative coefficient in each model. It should
be noted that while some spectral variables appear in some of our models, the majority of variables
reflect vegetation height or cover metrics.

4. Discussion

4.1. Vegetation Height

The strong, statistically significant correlations between ground and PPC estimations of mean and
maximum vegetation height demonstrated that the point clouds produced by UAV-acquired imagery
reflected on-the-ground vegetation heights quite well. Pearson’s r values of PPC and ground measures
are comparable to those found by Vastaranta et al. [60] for mean height between both LiDAR and
PPCs, and field estimates. Our R2 values from OLS regressions (see Figure 4) are also comparable
to results in the literature, although we recognize that they are on the lower end of the fit seen in
other studies. Dandois and Ellis [22], Lisein et al. [13], Zarco-Tejada et al. [57], Zahawi et al. [61] and
Jensen and Mathews [35] all report canopy height R2 values of 0.8 or above, but both Dandois and
Ellis [22] and Dandois and Ellis [33] report R2 values under 0.7 for some of their data sets. Our lower
R2 results may be due to the large variability in vegetation structure and heights within our eight
study sites, which range from non-treed grassy vegetation, to shrubby conditions, to forested sites.
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They represent both vegetation at varying successional stages as it recovers post-disturbance, as well as
nearby mature forest. This variability is reinforced by the values shown in the scatterplots comprising
Figure 4, which range from 0 m to upwards of 30+ m. Other studies do not typically contain this
much variety; in general, studies focus instead on forested or shrubby and grassy sites, rather than
including both. Another observation to note is the much lower correlation between height standard
deviations, as estimated by field data and by PPC estimates (Table 7). This is likely a direct reflection
of the differences in how heights were measured by field crews in this study, in comparison to how
height metrics were calculated from our PPCs. Field crews focused solely on tree top heights in their
measurements (Table 1), excluding even tall shrub species (e.g., Salix species), as is typical of traditional
field vegetation surveys. Our PPC heights are instead calculated from points representing all upper
canopy parts of the trees, shrubs, and grasses within each 5 m × 5 m vegetation plot—they do not
discriminate on the basis of vegetation type or other characteristics. As stated previously, it is our goal
to examine the relationship between these traditional field methods of measuring vegetation structure
and PPC-based estimates, and we must recognize that for this reason, our field data were not collected
in a manner that best supports UAV data validation, as is done elsewhere in the literature (e.g., [22,33]).
Rather, our field data were collected using traditional ground-based methods. It is understandable that
there is a difference in the standard deviation of height measurements between the two approaches.

RMSEs of vegetation heights, similar to our correlation and OLS statistics, are comparable to
values seen in the literature, although they are at the higher end of what has been published. Our height
metric RMSEs ranged from 3.48 to 6.47 m (Table 8), which are similar to numbers reported by Dandois
and Ellis, 2013 [33] that ranged from 3.9 to 10.9 m, that of White et al., 2015 [42] at 4.49 m, or those
of Järnstedt et al., 2012 [50] at 3.48 to 5.42 m. Smaller RSMEs are reported by others (e.g., <1.0 m to
1.84 m) [43,45,55]. These results suggest that our UAV PPC estimates of vegetation and tree height
contain a larger proportion of error than some studies, while being comparable to others. Our PPCs
show good potential as an additional source of information on measuring vegetation height, despite
evident differences in the field versus PPC methods of measurement.

Our values of RMSE % were notably higher than what is typically seen in the current literature.
Typical RMSE % values for height variables range from 5.04% [42] up to 28.23% [50], with most values
ranging between 10% and 20%. In contrast, our UAV height metrics showed RMSE % ranging from
23.89% to 50.20%. Because these numbers indicate poorer performance than the RMSEs themselves,
we suggest that at least with regard to vegetation height metrics, they likely reflect a difference in
mean observed ground height estimations, which are used to standardize the RMSE values to RMSE
%, rather than a difference in level of error. That is, our study areas by nature comprised mean
observed ground heights that are considerably lower than in studies where sites are consistently
forested. This leads to higher RMSE % values, because the value by which the RMSEs are standardized,
is lower. An initial review of the literature reveals that the majority of mean field vegetation or tree
heights listed in the UAV and forest structure literature are between 15 and 20 m (e.g., [16,22,43,50,60]),
while our mean field vegetation height was 12.44 m (see Table 2). Nevertheless, it is also probable
that these large RMSE % values are again a result of the different measurement strategies between
field crews and PPC calculations. The PPC metrics capture a much greater variety in vegetation
heights than was captured in our field data, rendering our comparisons less ideal than in other
studies, but nonetheless informative as a means of understanding the relationship between common
vegetation survey strategies and UAV-based approaches that may eventually complement or even
supplement them.

While it is evident that in our data there are no one-to-one relationships between field
measurements of vegetation structure and equivalent PPC metrics, another approach we employed in
our analysis—multivariate regression—attempts to explain the more complicated relationships that
exist between our two data sources, as is done frequently with LiDAR point cloud data sets [62].
Our multivariate linear regression models for GHtmax, GHtmean, and GHtmin all showed good
explanatory performance (i.e., adjusted R2 ≥ 0.70; Table 9), which are consistent with other published
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models of canopy height [13,33,43,57,61]. This further reinforces the value of our UAV PPCs for
estimating vegetation heights on the ground. However, our models for the variability-based height
measurements (GHtrange and GHtstd), showed poor performance (Table 9)—these models were not
able to capture on-the-ground variations in forest structure. This may be yet another consequence
of the difference between the field crew and PPC-based measurements of vegetation heights. Thus,
we can observe that not only is there very little directional relationship between tree height variations
as captured in our ground data and more broadly-captured vegetation height variability measured in
our PPCs, but multivariate linear regressions also did not produce a strong, indirect relationship.

Each of our vegetation height multivariate regressions is quite different with regard to the PPC
metric variables it comprises, with two recurring predictor variables: Htp75 and BGDI (Table 9).
The first of these appears in all but the GHtstd model, while the latter appears in all but the GHtmean

model. As Htp75 increases, our estimates of GHtmean, GHtmax, GHtmin, and GHtrange increase. Similarly,
increases in BGDI led to higher estimates of GHtmax, GHtmin, GHtrange, and GHtstd, but at a much
smaller rate, based on the very small coefficients associated with this variable in the models (Table 9).
While the Htp75 metric is a commonly extracted metric from PPC-based canopy height models
(e.g., [22,33,63]), it does not appear regularly in regressions of vegetation structural attributes based
on PPC metrics. Indeed, we observe that only one of our predictor variables—the 90th height
percentile (Htp90)—is cited more than once elsewhere in the literature as an important input into
PPC models (e.g., see [22,33,42]). With regard to the BGDI metric, we know of no other studies that
have incorporated spectral metrics into regression models of ground-based vegetation structural
attributes. Our results imply that spectral characteristics may play a role in explaining some of these
attributes, but more work is needed before this role can be clearly understood.

4.2. Vegetation Cover

The poor correlations observed between all of our point cloud and field-based vegetation cover
variables were both non-significant, and lower than anticipated (r < 0.2; Table 7), but do reflect
some similar observations in the literature. For instance, White et al. [42] found comparably low
correlations when comparing canopy cover estimated from airborne digital image-generated PPCs and
airborne LiDAR point clouds, while Wallace et al. [36] observed lower canopy cover estimates from
UAV-based PPCs than from UAV-borne LiDAR data. Our RMSE and RMSE % results also showed
larger differences between ground- and PPC-estimated vegetation cover than was seen in our height
metric comparisons—differences upwards of 25% in cover estimates (Table 8). In addition, multivariate
linear regressions could be produced for only two of four ground-measured vegetation cover variables.
Of these, one—the model for GShcv2–5—produced an adjusted R2 value above 0.5, which shows that
this measure of vegetation cover was modeled with moderate fit (Table 9). One possible explanation
for the better performance of PPC metrics in modeling vegetation cover at this height strata, versus
the lower strata, may relate to the limitation of PPC observations to the upper canopy surface of a
vegetated area, and the difficulty in capturing information below this canopy surface. In areas covered
by taller shrubs, vegetation cover at lower strata will be hidden from view in a PPC.

It is interesting to note that two of the three predictor variables in the GShcv2–5 model were
spectral in nature (i.e., blue band digital number standard deviation—Bstd, and red band digital
number minimum—Rmin), while the GShcv<0.5 model itself comprised one spectral variable (i.e., BGDI).
This suggests that the relationship between PPCs and estimates of vegetation cover are quite different
than those between PPCs and ground-based tree height and DBH measurements, and that the spectral
information contained in PPCs may be important in future studies examining the use of such data sets
in assessing vegetation cover.

We did not encounter other reports of RMSEs or regression model performance with regard to
vegetation cover estimates from UAV-derived data sets in the literature. Therefore, it is difficult to
tell whether these results would be typical. Nevertheless, they indicate a need to further explore
whether the poorer results in cover are due to an inability by PPCs to capture this element of vegetation
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structure. Or, as is more likely, we suggest that this is mostly due to even stronger differences in the
way these metrics are measured by field crews versus calculated from a PPC, than what is seen between
field- and PPC-based height measurements. For instance, estimates of vegetation cover from a point
cloud not only include all forms of vegetation whether they are herbs, forbs, shrubs, or tree branches,
but also, are very precisely calculated within a computer environment using strict boundaries along
the horizontal and vertical axes. In contrast, field-based estimations of vegetation cover are unlikely to
adhere to strict and precise vegetation plot boundaries or vertical strata boundaries simply because
doing so is incredibly difficult within a field setting. Deciding whether to include a particular plant or
tree, or even a particular branch within a field estimate of cover is a subjective process.

With the small vegetation plot size (5 m × 5 m) employed in this study, the potential effects of this
(at least with regards to horizontal plot boundaries) are greater than for larger plot sizes. Vegetation
along the edges of each plot will comprise a greater proportion of the overall estimate of vegetation
cover than if the plots were larger, meaning that variability or error in estimations of cover along these
boundaries makes a greater contribution to the collected data. It should also be remembered that
the in-situ field estimates of cover from this study were specific to what type of vegetation the crews
were estimating for each variable—in some instances they focused solely on herbs and forbs, while in
others they focused on woody, shrub vegetation (see Table 1). As stated previously, our PPCs do not
distinguish between different types of vegetation. Finally, vegetation cover itself was estimated by
visual inspection of the vegetation plot, which, while commonly done and valuable, can lead to highly
subjective or variable results.

Despite the above, it is worth noting that very little work has yet been done on estimating
vegetation cover from PPCs. Best practices and main sources of error and bias are not yet
understood. Further research is needed before our results regarding vegetation cover can be more
properly evaluated.

4.3. DBH

DBH was not a metric measurable by our PPC datasets, and was therefore not directly comparable
within the context of our correlation or RMSE analyses. Nevertheless, DBH is an indicator of tree age
and maturity, which are important for ecological and habitat studies for forest species [64], and is an
important input for calculations of above-ground biomass [65,66] and timber or stem volumes [67,68].
For this reason, the testing of our PPC metrics as predictor variables within multivariate linear
regressions explaining ground-measured DBHmean, DBHmax, DBHmin, DBHstd, and DBHrange, as is
done with LiDAR point clouds (e.g., [69,70]), is a worthwhile endeavor. This is supported by good
model performance observed for three of the five DBH regressions (i.e., adjusted R2 > 0.70), and
moderate performance for the remaining two models (Table 9), which speaks to the value of UAV
PPCs for capturing other important aspects of vegetation structure that are not directly measurable by
the PPCs themselves. Of the DBH variables, DBHstd and DBHmin did not elicit very good predictive
models, but unlike the case of our height regressions, DBHrange did. Why the former were not as
well-explained by PPC metrics but the latter was, is not easily explained. The models for both DBHmean

and DBHmax produced adjusted R2 values > 0.8, suggesting these two plot-level ground measurements
are modeled well using PPC metrics even though they are not easily directly measured using these
data sets.

With regard to predictor variables in our DBH models, the only variable that appears in more
than two models is Cov≥25 (Table 9). Each model is unique in its number and combination of predictor
variables. Indeed, we observe in the literature that those variables that are most important to a point
cloud metric-based model vary considerably from study to study, suggesting that models are generally
very specific to the study area for which they were generated. Many of our models incorporate both
structural and spectral PPC metrics, though the former do notably outnumber the latter. This is not
surprising, given that spectral vegetation characteristics are not generally directly related to structural
characteristics. Nevertheless, spectral metrics did appear in many of our multivariate regressions,
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and further investigations into the role these might play in future PPC-based vegetation studies would
be worthwhile. In particular, such metrics would be useful for phenological studies of local vegetation
and for better understanding the relationships between these two types of measurements [33].

4.4. Recommendations for Future Work

The work described here is exploratory, representing a first test of how characterization
of vegetation with UAV-based PPCs compares to traditional vegetation surveys on recovering
anthropogenic features in Alberta’s northern boreal forests. As such, it serves as a foundation on
which further research can be built, as well as source of insight regarding future improvements.
Regarding the latter, we offer two recommendations for those employing UAV imagery for the study
of vegetation structure.

First, we suggest that a greater number of GCPs be used for both georeferencing UAV imagery
and any PPCs generated, and for subsequent assessments of UAV image and PPC locational errors.
We found three GCPs to be a limiting factor in our work, particularly concerning the assessment of
locational errors, and would recommend the use of 10 or more GCPs, so that a portion may be used in
georeferencing, and the remainder set aside for subsequent quality assessment. This would enable a
robust understanding of data quality before undertaking analysis.

Second, we recognize the limitations of using mapping-grade GPS equipment when collecting x, y
and z locations of GCPs in the field. While sub-meter accuracy is sufficient for many purposes, it is not
ideal for applications such as these, which involve highly detailed airborne imagery with centimeter
pixel resolutions, and the detailed PPCs that are generated from them. Rather, we recommend that
survey-grade real-time kinematic GPS equipment be used to collect GCP locations, in order to obtain
centimeter-level locational accuracy that is far better suited to UAV remote sensing data sets such as
this example.

5. Conclusions

We found good agreement between estimates of mean and maximum vegetation height made
on the ground and from UAV-based PPCs. Point cloud metrics performed well within multivariate
linear regression models for most height statistics and in predicting tree diameter at breast height, both
of which are important structural attributes for examining ecological recovery after anthropogenic
disturbance. Vegetation cover estimates were not as accurately or reliably derived from our PPCs.
We believe that more research is needed using these types of data sources for estimating vegetation,
as little has been done thus far using this particular application, and also that field protocols for
ground measures need to be adjusted in UAV-based point cloud studies in order to ensure better
harmony between these two very different approaches to estimating vegetation cover. Not only should
all plants be treated similarly while measuring height and coverage, but perhaps more objective
methods of estimating coverage itself would be useful for evaluating and perhaps calibrating point
cloud-based estimations. In addition, further efforts should be made to improve the physical matching
of point cloud and plot footprint locations, perhaps through simultaneous data capture. Nevertheless,
our work highlights the potential value that UAV-derived PPCs possess as a complementary or perhaps
supplementary source of information on vegetation structure—a source of information that provides
spatially exhaustive coverage over a local area, unlike point or plot sampling, and would be beneficial
for supporting an efficient and effective long-term ecological recovery monitoring program.
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