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Abstract: Hemispherical (fisheye) photography is a well-established approach for estimating the sky
view factor (SVF). High-resolution urban models from LiDAR and oblique airborne photogrammetry
can provide continuous SVF estimates over a large urban area, but such data are not always available
and are difficult to acquire. Street view panoramas have become widely available in urban areas
worldwide: Google Street View (GSV) maintains a global network of panoramas excluding China
and several other countries; Baidu Street View (BSV) and Tencent Street View (TSV) focus their
panorama acquisition efforts within China, and have covered hundreds of cities therein. In this
paper, we approach this issue from a big data perspective by presenting and validating a method for
automatic estimation of SVF from massive amounts of street view photographs. Comparisons were
made with SVF estimates derived from two independent sources: a LiDAR-based Digital Surface
Model (DSM) and an oblique airborne photogrammetry-based 3D city model (OAP3D), resulting in
a correlation coefficient of 0.863 and 0.987, respectively. The comparisons demonstrated the capacity
of the proposed method to provide reliable SVF estimates. Additionally, we present an application
of the proposed method with about 12,000 GSV panoramas to characterize the spatial distribution
of SVF over Manhattan Island in New York City. Although this is a proof-of-concept study, it has
shown the potential of the proposed approach to assist urban climate and urban planning research.
However, further development is needed before this approach can be finally delivered to the urban
climate and urban planning communities for practical applications.

Keywords: sky view factor; Google Street View; panorama; automatic extraction; urban climate;
urban planning

1. Introduction

Sky view factor (SVF) represents the fraction of the sky that is visible from a point on a surface [1],
such as the ground. It is an important parameter in urban climate research [2–5] and urban planning
practices [6–8]. A significant relationship was found between SVF and urban heat islands at a local
scale [9]. Sky obstruction can substantially reduce the amount of solar radiation reaching the
ground [10], and hence SVF serves an important role in solar radiation modeling [11,12]. It was
found that SVF was significantly correlated with surface emissivity in urban canyons [13]. Hence,
the estimation accuracy of surface emissivity [14] and surface temperature [15] could be improved by
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accounting for the SVF effects in a radiative transfer model. Additionally, it has also been shown that
SVF could be used as a relief visualization technique to highlight terrain features [16].

The SVF in urban environments can be estimated using a variety of methods. The ArcView SVF
Extension [17] was developed to calculate SVF from 2.5D building models, which can be extruded
from building footprints with additional height information. The SkyHelios tool [18] generates virtual
fisheye images from data sources such as raster-based Digital Surface Models (DSMs) and vector-based
3D building models for SVF determination. Recently, an attempt has been made to estimate urban SVF
from Landsat data using shadow detection techniques [19]. The use of hemispherical photography for
SVF estimation has been studied and applied extensively [20–23]. Spatially continuous SVF estimates
can be obtained by generating virtual fisheye images from high-resolution DSMs [2,24] or 3D city
models [18]. Unfortunately, data sources such as 2.5D building models, high-resolution DSMs, and 3D
city models remain poorly available due to the high acquisition costs.

In the big data era, hundreds of terabytes of data are being generated from various types of
sensors and devices all over the world [25]. Traditional data processing and information extraction
methods are falling increasingly short of the expectations for big data mining. Machine learning
combined with high-performance computing have become an effective approach to extract information
and knowledge hidden behind big data [26].

A typical form of big data is street view photographs which have covered a fairly large part of
the world's urban areas. The Google Street View (GSV) effort [27] was launched in 1997, and since
then Google has hired numerous local drivers to collect panoramic photographs along nearly every
navigable road. All these panoramic photographs are freely accessible on Google Maps and via the
Google Street View Application Program Interface (API) (Figure 1). Due to business restrictions,
however, GSV [28] has not been able to cover mainland China. In the meantime, two leading Chinese
IT companies, Baidu and Tencent, have launched their respective street photography campaigns in
China. Baidu Street View (BSV) [29] and Tencent Street View (TSV) [30] have covered a fairly large part
of the urban land in China. Carrasco-Hernandez et al. [31] has showed that GSV photographs could
provide reliable SVF estimates in urban environments. Carrasco-Hernandez et al. [31] retrieved images
from GSV and stitched them together into panoramas using a software for manual sky delineation
and SVF determination. When faced with tens of thousands of panoramic images, however, the time
and labor costs associated with manual data processing can be discouragingly high. There has been
a number of studies attempting to extract information from GSV photographs using various machine
learning and image recognition techniques. Yin and Wang [32] measured visual enclosures for street
walkability using a machine learning algorithm and GSV photographs. Yin et al. [33] presented
a method to estimate pedestrian volume from GSV photographs. GSV photographs have also been
used to measure street-level greenery [34] and audit neighborhood environments [35]. Most of these
studies used a machine learning approach to extract deep-level information from street photographs.

In this paper, we aim to present and validate a framework for automatically estimating SVF from
street view panoramas, and our work mainly focuses on two parts: (1) How can a multi-perspective set
of street view images retrieved from a panorama provider be stitched back into a full panorama? It is
documented [28] that on the server side, each panorama is present in an equirectangular (Plate Carrée)
projection. The equirectangular space contains 360 degrees of horizontal view (a full wrap-around) and
180 degrees of vertical view [28]. On the client side, however, one can only retrieve images of a limited
field of view (fov) via the public APIs. Therefore, to estimate the SVF at a street location, a panorama
must first be reconstructed from a set of street images retrieved via the public APIs; (2) Can SVF be
accurately and efficiently estimated from street view photographs with a state-of-the-art deep learning
framework? Sky delineation is the most labor intensive part in hemispherical photography-based SVF
estimation. One way to automate this process is by using machine learning techniques. In comparison
to traditional machine learning techniques, deep learning can exploit both loosely defined global and
local features captured at multiple levels to achieve better prediction accuracy [36]. However, it is
important to determine to what extent reliable SVF estimates can be derived if a deep learning model
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is used for sky delineation. This can be achieved through comparisons with other SVF estimation
approaches. In addition to estimation accuracy, computational performance is another important issue
to be considered in big data utilization.
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Figure 1. Data access and coverage of the Google Street View (GSV) imagery: (a) exploring on Google
Maps; (b) requesting through the GSV Application Program Interface (API); (c) GSV coverage map
(google.com).

This paper is organized as follows. Section 2 introduces the core methodology, comprising a set of
data retrieval techniques, a deep learning model, a hemispherical transformation technique, and the
algorithm for calculating SVF. Section 3 is focused on accuracy and performance analysis. Section 4
discusses the uncertainties and future work. In Section 5, we briefly review the conclusions.

2. Methods

Here we present the four-step workflow procedure for automatically extracting SVF from street
view images (Figure 2). Step 1 and 2 are introduced together in Section 2.1, which describes how
street view data are retrieved and processed. Section 2.2 introduces the deep learning model, which
classifies the street view panoramas prepared using the techniques presented in Section 2.1. In the
final step, the panoramas are transformed into fisheye images for SVF calculation, which is described
in Section 2.3.
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Figure 2. Workflow procedure for extracting SVF from street view images.

2.1. Retrieval and Stitching of Street View Images

The method described in this section consists of two steps. The first step is to retrieve street view
images from one of the providers, which can be done using their corresponding API. Static street
view images can be requested from GSV [28], BSV [29], and TSV [30] via their respective public API.
To retrieve an image, the fov, heading, pitch, and location of the camera need to be supplied with the
HTTP request. The fov, heading, and pitch are all expressed in degrees. The HTTP request format,
however, slightly varies across these APIs. To simplify camera parameterization, we are assuming that
all images requested have equal width and height so that the vertical fov is equal to the horizontal fov.
To prevent a full panorama from being retrieved in a single image request, the maximum allowed value
of the fov is normally restricted to be smaller than 360. In the GSV API [28], for example, the maximum
allowed fov is 120. Usage examples of each of the street view image APIs are shown in Table 1.
A developer key is required for all of them. An image can be retrieved by simply pasting a request
URL into a web browser or by sending API requests in batch using any programming languages that
support the HTTP transfer protocol.

Table 1. Usage examples of the street view image APIs.

Street View API Usage Example (HTTP Request)

GSV [28] https://maps.googleapis.com/maps/api/streetview?size=400x400&location=
52.214,21.022&fov=90&heading=235&pitch=10&key=YOUR_API_KEY

Baidu Street View (BSV) [29] http://api.map.baidu.com/panorama/v2?width=512&height=256&location=
116.313393,40.04778&fov=180&ak=YOUR_API_KEY

Tencent Street View (TSV) [30] http://apis.map.qq.com/ws/streetview/v1/image?size=600x480&location=39.
940679,116.344064&pitch=0&heading=0&key=YOUR_API_KEY

https://maps.googleapis.com/maps/api/streetview?size=400x400&location=52.214, 21.022&fov=90&heading=235&pitch=10&key=YOUR_API_KEY
https://maps.googleapis.com/maps/api/streetview?size=400x400&location=52.214, 21.022&fov=90&heading=235&pitch=10&key=YOUR_API_KEY
http://api.map.baidu.com/panorama/v2?width=512&height=256&location=116.313393,40.04778&fov=180&ak=YOUR_API_KEY
http://api.map.baidu.com/panorama/v2?width=512&height=256&location=116.313393,40.04778&fov=180&ak=YOUR_API_KEY
http://apis.map.qq.com/ws/streetview/v1/image?size=600x480&location=39.940679,116.344064&pitch=0&heading=0&key=YOUR_API_KEY
http://apis.map.qq.com/ws/streetview/v1/image?size=600x480&location=39.940679,116.344064&pitch=0&heading=0&key=YOUR_API_KEY
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The next step is to stitch the retrieved street view images into panoramas. This step is trickier
and needs to be self-implemented. To stitch together a multi-perspective set of street view images
associated with the same panorama, one needs to reconstruct the rendering model with which these
images are generated from the panorama. According to the documentation [28], it is known that in
fulfilling a street view image request from a client, the equirectangular panorama hosted on the server
is mapped onto a spherical geometry, and then a 3D rendering pipeline is set up with the parameters
supplied with the HTTP request. This 3D rendering pipeline is used to draw the textured sphere onto
an image, which is then sent to the client. To map a street view image back onto an equirectangular
panorama, each pixel in the street image needs to be linked up to a pixel in the equirectangular
panorama. If a multi-perspective set of street view images retrieved fully cover the whole field of view,
it is theoretically possible to stitch them together into an equirectangular panoramic image. With the
Google Street View API, six images of 90 fov facing left, right, forward, back, up, and down, respectively,
can provide a full panoramic view. With Tencent Street View, the fov is fixed at about 60, hence more
image requests are needed to fully cover the whole field of view. The transformation that is used to
render a panorama sphere onto an image comprises the view and perspective transformations [37]:

MatViewProj = MatView×MatProj

MatView =


vRightx vUpx −vForwardx 0
vRighty vUpy −vForwardy 0
vRightz vUpz −vForwardz 0
−eyex −eyey −eyez 1



MatProj =


1

tan( f ov/2) 0 0 0

0 1
tan( f ov/2) 0 0

0 0 − Z f ar+Znear
Z f ar−Znear

0

0 0 −1 − 2×Z f ar×Znear
Z f ar−Znear



(1)

where MatView is the view transformation which defines the camera’s local coordinate system, and
MatProj is the projection transformation. MatView is a 4-by-4 matrix created from the three orthogonal
vectors which define the view-space axis and the camera position: the right vector vRight(x, y, z), the up
vector vUp(x, y, z), the view direction vector vForward(x, y, z), and camera direction vCamPos(x, y, z).
The projection matrix can be constructed with the fov and the clip plane distances Zfar and Znear.
Assuming the panorama sphere has a radius of 1 unit, Znear ∈ [0, 1] and Zfar ∈ [1, ∞].

Figure 3 shows five images retrieved from GSV with a fov of 90. Each of the images looks at
a direction along one of the world axes. To map these images back onto a panorama (Figure 3b,c)
in a spherical space, the view matrix and projection matrix associated with each image need to
be reconstructed. We use image No. 3 (Figure 3a, θ = 180◦, ϕ = 0◦) as an example to show how
the matrix construction techniques work. The world space is defined so that image No. 3 is
oriented in the negative X direction. Hence vForward(x, y, z) = (0, −1, 0), vUp(x, y, z) = (0, 0, 1),
and vRight(x, y, z) = vForward(x, y, z) × vUp(x, y, z) = (−1, 0, 0), eye(x, y, z) = (0, 0, 0). These four
parameters are used to construct the view matrix and the projection matrix (Equation (1)) with which
image No. 3 (Figure 3a) was generated. The view and projection matrices of the other images are
constructed similarly. For each pixel in the panorama (Figure 3b), a color value is sampled from the
image set by performing the following steps:

1. Transform the normalized image coordinates Ppano(u, v) (Ppanou ∈ [0, 1], Ppanov ∈ [0, 1]) into
spherical coordinates Pspherical(lon, lat). This can be easily done with the row/column index and
the spherical extent associated with the panoramic image.
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2. Transform the spherical coordinates Pspherical(lon, lat) into world space coordinates Pworld(x, y, z).
Pworldx = cos(Psphericallat)× sin(Psphericallon)

Pworldy = cos(Psphericallat)× cos(Psphericallon)

Pworldy = sin(Psphericallat)

(2)

3. Loop over the set of images and transform the world space coordinates Pworld(x, y, z, 1.0) into
clip-space coordinates Pclip(x, y, z, w) by multiplying Pworld(x, y, z, 1.0) by MatViewProj for each
image. The following equation is used to transform Pworld(x, y, z, 1) into normalized screen space
coordinates Pimage(u, v):

Pclip(x, y, z, w) = Pworld(x, y, z, 1)×MatViewProj
Pimageu = (Pclipx/Pclipw + 1)× 0.5
Pimagev =

(
Pclipy/Pclipw + 1

)
× 0.5

(3)

where, Pimageu ∈ [0, 1], Pimagev ∈ [0, 1]. If Pimageu /∈ [0, 1] or Pimagev /∈ [0, 1], the image being
considered is disregarded. Otherwise, a color value is sampled from this image at Pimage(u, v)
and copied to Ppano(u, v).

Remote Sens. 2017, 9, 411  6 of 17 

 

= cos ℎ × sin ℎ= cos ℎ × cos ℎ= sin ℎ  (2) 

3. Loop over the set of images and transform the world space coordinates Pworld(x, y, z, 1.0) into 
clip-space coordinates Pclip(x, y, z, w) by multiplying Pworld(x, y, z, 1.0) by MatViewProj for each 
image. The following equation is used to transform Pworld(x, y, z, 1) into normalized screen 
space coordinates Pimage(u, v): , , , = , , , 1 ×= + 1⁄ × 0.5= + 1⁄ × 0.5  (3) 

where, Pimageu ∈ [0, 1], Pimagev ∈ [0, 1]. If Pimageu ∉ [0, 1] or Pimagev ∉ [0, 1], the image being 
considered is disregarded. Otherwise, a color value is sampled from this image at Pimage(u, v) 
and copied to Ppano(u, v). 

 
Figure 3. Reconstruction of a panorama from a GSV image set: (a) a multi-perspective set of images 
from GSV; (b) the reconstructed panorama; (c) an illustration of the spherical coordinate system. 

The panorama stitching algorithm presented above was implemented in C++ and integrated 
into the workflow to render the retrieved street view images into panoramas. In theory, a seamless 
panorama can be reconstructed from a multi-perspective set of street view images using the 
techniques presented above. In practice, however, we observed minor misalignments in the 
panoramas reconstructed from the GSV images. The misalignments were determined to be in the 
range of 1–10 pixels in the 1024-by-1024 panoramas. We speculate that GSV may use a slightly 
different rendering model to generate images from panoramas. No misalignments were observed in 
the BSV and GSV panoramas. 
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The panorama stitching algorithm presented above was implemented in C++ and integrated into
the workflow to render the retrieved street view images into panoramas. In theory, a seamless panorama
can be reconstructed from a multi-perspective set of street view images using the techniques presented
above. In practice, however, we observed minor misalignments in the panoramas reconstructed from the
GSV images. The misalignments were determined to be in the range of 1–10 pixels in the 1024-by-1024
panoramas. We speculate that GSV may use a slightly different rendering model to generate images
from panoramas. No misalignments were observed in the BSV and GSV panoramas.
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2.2. A Deep Learning Model for Classifying Street View Images

Conventional machine-learning techniques were limited in their ability to process natural data in
their raw form. Deep learning allows computational models that consist of multiple processing layers
to learn representations of data with multiple levels of abstraction [36]. Deep convolutional neural
networks (CNNs) have the ability to automatically learn hierarchical feature representations and have
been widely used in image classification and pattern recognition [38]. For example, a CNN may abstract
raw pixels into edges in the second layer, then abstract edges into simple shapes in the following layer,
and then generalize these shapes into high-level features in higher layers. This is also known as feature
engineering [39], which is the process of using domain knowledge of the data to create features that
make machine learning algorithms work. In traditional machine learning, feature engineering relies
largely on manual extraction, which is both difficult and expensive [39]. Long et al. [40] was the first to
extend traditional CNNs into “fully-convolutional” neural networks for pixel-level image segmentation.

SegNet is a deep convolutional network architecture built on top of the Caffe deep learning
library (Figure 4). It was designed specifically for pixel-level sematic segmentation. Compared to
traditional methods, SegNet has achieved higher scores for road scene segmentation with improved
computational efficiency. When trained on a large dataset of 3433 images, SegNet has reportedly
achieved an accuracy of 96.1% for sky pixels [41]. An online demo is available at [42] for users to select
and classify a single image at a time. To batch process thousands of images, however, one needs to
compile the code and write a batch script using Python. The source code of SegNet was downloaded
from [43]. It is free for personal and research use only. The source code was modified and recompiled
so that it could run on Windows operating systems with full support for Compute Unified Device
Architecture (CUDA)-based acceleration. The program reads in a JPEG image of a specified size,
classifies it using the deep learning inference engine, and then writes out an image with a number
of classes, each of which is encoded in a unique color. In this study, we used the pre-trained SegNet
model to perform sky delineation on street view images. The SegNet model classifies a road scene
image into 12 classes. In our workflow, these 12 classes are lumped into the sky and non-sky classes in
a post-processing step. We adjusted the model so that it can accommodate 1024-by-1024 panoramic
images. We also configured the software and hardware environment so that SegNet can run in both
GPU and CPU modes for performance evaluation.
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2.3. Hemispherical Transformation and Calculation of SVF

Normally, fisheye photographs are captured and stored in a hemispherical projection. SVF calculation
is also conducted in the same hemispherical space [44]. Hence, the equirectangular panoramas are
transformed into fisheye images for visual analysis and SVF calculation (Figure 5).
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(

1− Ux
|Ux |

)
/2, Ux 6= 0

0, Ux = 0
(4)

Ppanov = 1− ‖ →
U
‖ × 0.5 (5)

where Ppano(u, v) is the normalized coordinates of a pixel in the panorama image, U(x, y) is the
coordinates of a pixel in the fisheye image, and N is a unit vector in the positive Y direction on the
fisheye image. Ppanou is obtained by normalizing the angle between U and N. The pixels of a fisheye
image are traversed to calculate the SVF value as follows:

SVF = ∑n
i=0ω× f (i)/∑n

i=0ω (6)

where ω is a weight associated with each pixel, and f (i) is a function determined by whether the sky is
visible at a pixel:

f (i) =

{
1, i f alpha = 0 (pixel is sky)
0, i f alpha > 0 (pixel is not sky)

(7)

ω can be resolved into two components, with the latter being optional. The first component
(Equation (8)) approximates the transformation from the fisheye’s equisoild angle projection to
an equal-areal projection [45]:

ω = sin(ϕ)×
( ϕ

90◦
)−1

(8)

The second component (Equation (9)) scales the incoming radiation by the Lambert’s cosine
law, and it is optional depending on how the SVF is defined. Equation (9) shows how to apply the
Lambert’s cosine law [45]:

ω = sin(ϕ)×
( ϕ

90◦
)−1
× cos(ϕ) (9)
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The Lambert’s cosine law is not considered in this study to avoid complicating the analysis, but it
can be factored in whenever necessary.

3. Comparisons and Application

In this section, we compare the SVF estimates derived from street view images with those
from two independent sources, first a DSM at 1 m resolution and then an oblique airborne
photogrammetry-based 3D city model (OAP3D) at a sub-meter resolution. The purpose of these
two groups of comparisons is to provide a relatively objective assessment of the classification and
estimation accuracy. Additionally, to test whether the proposed method can scale well to big data
volumes, an application with about 12,000 GSV panoramas is presented.

3.1. Comparison with SVF Estimates from a LiDAR-Derived DSM

The high-resolution DSM (Figure 6) was retrieved from the Natural Resources Wales LiDAR data
service. The Natural Resources Wales dataset contains digital elevation data derived from surveys
carried out over several years and covers approximately 70% of Wales. The 1 m DSM of Cardiff is
a representation of object heights such as vehicles, buildings, and vegetation. Further information about
the data is available at [46]. A total of about 400 GSV panoramas were obtained using the proposed
data retrieval techniques for automatic sky delineation and SVF estimation. SVF was calculated at
each sample location in the DSM by performing the following steps:

1. Read the surface height at the location from the DSM.
2. Set the observation height at 2.4 m above the surface. We assume that the GSV vehicle has a height

of 1.4 m and the camera is mounted 1 m above the vehicle.
3. Calculate the horizon angle along each azimuthal direction in increments of 0.1 degree.

This creates a hemispherical representation of the sky bounded by 3600 points, each of which is
given by r and θ in the polar coordinate system, where r is the normalized horizon angle [0, 1]
and θ is the normalized azimuthal angle [0, 1] respectively.

4. Allocate a 1024-by-1024 image for rasterizing the sky boundary. In the rasterization, the horizon
points are converted into image coordinates and the area within the sky boundary is filled with
a color different than the non-sky area. The SVF is estimated using the same method as described
in Section 2.3.

The comparison shows that the DSM-based SVF estimates are consistently greater than the
panorama-based estimates, although the linear regression model can explain 74.63% of the variance
(Figure 7). We manually marked the sky pixels in 30 randomly picked panoramas for classification
accuracy assessment. The assessment shows an average of 92% sky pixels were correctly identified
using SegNet with the accuracy ranging from 80% to 99%. The full statistics is given in Table 2.

Table 2. Descriptive statistics of the DSM-GSV comparison. SVF (DSM) is assumed to be the true value
variable in calculating the RMSE and MBE, although it remains unclear which variable is actually
more accurate.

Statistics SVF (DSM) SVF (GSV) SVF (GSV)–SVF (DSM)

Mean 0.54 0.47 −0.13
Maximum 0.17 0.21 −0.53
Minimum 0.84 0.83 0.93

Standard deviation 0.14 0.13 0.13
Root mean square error (RMSE) 0.1873

Mean bias error (MBE) −0.1338
Correlation coefficient (R) 0.8639
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Further visual inspections suggest a number of factors could have contributed to the
underestimation. The 1 m DSM was possibly limited by its spatial resolution to accurately capture
tree canopies. We observed that in a number of instances, the tree canopies were present in the
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sky view panorama but nearly completely missing in the DSM-derived fisheye image (Figure 8).
However, the missing tree canopies in the DSM could also be related to tree growth cycles. In some
cases, missing buildings or parts therein have been observed, which could be related to data quality
issues. Furthermore, the observation height in the DSM could also affect the SVF estimation. A lower
observation height will result in greater SVF estimates in the DSM. As the DSM dataset was derived
from surveys carried out over several years, both urban development and landscape changes over the
period of data acquisition could have contributed to the discrepancies in the comparison. It should
also be noted that the GSV API does not return the date of acquisition and that the image update
frequency varies from place to place.
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Figure 8. Examples in which the SVF estimates between the two sources show a difference greater than
0.2 (the DSM fisheye image is overlaid on top of the GSV image in both examples, where the sky and
non-sky areas in the DSM fisheye image are shaded in green and red, respectively).

To quantitatively assess the influence of vegetation presence on the discrepancies between the
GSV- and DSM-derived SVF estimates, we calculated the vegetation index of each GSV sample used
in the comparison. The vegetation index here is defined as the fraction of the upper hemisphere
occupied by pixels that are labeled as tree by SegNet (Figure 4). It is calculated in the same way as
SVF (Equations (6)–(8)), the only difference being that the integral function (Equation (6)) operates
on tree pixels instead of sky pixels. The vegetation index also falls in the range of 0 to 1. We plotted
the vegetation index against the absolute difference in SVF (Figure 9a) and found that there was not
a significant correlation. However, we observed that the discrepancy tends to increase with the GSV
vegetation index when the GSV vegetation index is in the range of 0.1–0.5. We then sorted the samples
in descending order of GSV vegetation index and incrementally filtered out samples with a GSV
vegetation index greater than a cut-off threshold. We found that the correlation coefficient maximized
at 0.8931 (Figure 9b) when the cut-off threshold was 0.1. This means the correlation coefficient increased
from 0.8639 to 0.8931 when the samples with a GSV vegetation index greater than 0.1 were filtered out
(Figure 9) and implies that vegetation might affect the difference between the GSV- and DSM-derived
SVF estimates.
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3.2. Comparison with SVF Estimates from a High-Resolution OAP3D

Here we compare the SVF estimates from a set of TSV street panoramas with those from
a high-resolution OAP3D. An OAP3D that covers a downtown area of 45 km2 with a data volume
of 64 GB was prepared (Figure 10). The oblique airborne photogrammetry was performed using
a quadcopter with an image resolution of approximately 10–20 cm. The OAP3D dataset was generated
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The comparison was made at the 30 street locations where panoramas were available from TSV.
One problem with TSV and BSV is that they provide coordinates in an undefined spatial reference
whose projection and datum information is confidential. To accurately match each panorama from
TSV to their corresponding location in the OAP3D, the position of the panorama in the OAP3D
was manually determined and then adjusted until it became difficult to observe the displacement.
SVF calculation on the OAP3D was performed using a computer graphics-based algorithm [18] by
rendering the OAP3D into an OpenGL cubemap, which was then transformed into a fisheye image.

The 30 street panoramas were reprojected into fisheye images for SVF calculation. Comparison of
the 30 automatically classified panoramas against the manually delineated reference data reveals
a classification accuracy of 98%. Visual inspections also suggest that the sky contours of the
automatically-delineated fisheye images closely match those of the OAP3D-derived virtual fisheye
images. Fitting the two sets of SVF estimates to a linear regression model resulted in an R2 of 0.9746.
This suggests there is a high agreement between the SVF values derived from the TSV panoramas and
those from the OAP3D (Figure 11). The full statistics is given in Table 3.
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Table 3. Descriptive statistics of the OAP3D-Tencent Street View (TSV) comparison. SVF (OAP3D) is
assumed to be the true value variable in calculating the RMSE and MBE, although it remains unclear
which variable is actually more accurate.

Statistics SVF (OAP3D) SVF (TSV) SVF (TSV)–SVF (OAP3D)

Mean 0.54 0.53 −0.08
Maximum 0.17 0.30 −0.17
Minimum 0.84 0.72 −0.03

Standard deviation 0.14 0.10 0.03
Root mean square error (RMSE) 0.0878

Mean bias error (MBE) −0.0821
Correlation coefficient (R) 0.9872

3.3. Application in Manhattan

Manhattan is the most densely populated area in New York City. A road map of New York City
was downloaded from http://gis.ny.gov/gisdata/inventories/ [47]. Road segments within the

http://gis.ny.gov/gisdata/inventories/
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Manhattan Borough was extracted from the road map. The resulting road map of the Manhattan
Borough has 12,528 segments totaling 1,049,285 m in length. Queries and requests of street view
images were performed at the center point of each road segment. A total of 11,709 panoramas
were reconstructed using 58,545 street view images retrieved from GSV. The sampling spacing
is approximately 100 m along each street. All of these panoramas were classified using Segnet.
The classified panoramas were then reprojected into fisheye images for SVF estimation. A shapefile
was created from the resulting set of SVF estimates for mapping and analysis (Figure 12). Figure 12
shows the spatial pattern of the SVF in Manhattan. The southern tip of Manhattan, which is the central
business district, is dominated by lower SVF values in the range of 0–0.17 (blue color). The SVF values
in the southern half appear much lower than in the northern half, due to the fact that the former is
packed with high-rise office buildings while the latter is dominated by a mix of low-rise residential
and commercial buildings. The histogram reveals that more than fifty percent of the SVF values are
below 0.4 (Figure 12).
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Computational performance is critical for big data analytics. Classification was the most
time-consuming part in the presented workflow. The tests were run on a machine with two Intel
Xeon processors (E5-2630) and a NVIDIA Quadro K4200 graphics card. We ran SegNet separately
in the CPU and GPU (CUDA) mode to classify the 11,709 1024-by-1024 panoramas. Under the CPU
mode, it took about 30 h to complete the task, reporting a processing time of about 10 s per image.
Under the GPU mode, it took only 3 h to complete the same workload, reporting a processing time of
about 1 s per image. In a previous study (Yin and Wang 2016), two days were spent classifying 3592
1664-by-832 GSV panoramas using a SVM machine learning algorithm, reporting a processing time of
20 s to 2 min per image. This implies SegNet is a highly efficient classifier even when run in the CPU
mode, although with CUDA support it can additionally gain a 10× increase in speed.

4. Discussion

More comparisons are needed to further understand the uncertainties associated with street
view panorama-based SVF estimation in different areas and contexts. It would be more convincing to
directly compare the proposed method against hemispherical photography.
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GPS positioning errors need to be considered in street view panorama-based SVF estimation.
In the comparison with the DSM-based approach, the GSV coordinates were directly used to calculate
the SVF values on the DSM and hence the difference could be susceptible to positional errors. Future
work will be needed to quantitatively evaluate the influence of GPS positional errors on the SVF
estimation accuracy.

A spatially continuous SVF map is a raster in which each cell value represents an area-averaged
SVF. In some places, small alleys and lanes can significantly lower the area-averaged SVF. As small
alleys and lanes may not be well represented in street view imagery, area-averaged SVF calculated
using the approach needs to be treated carefully.

Attention should be paid to the temporal variations in tree canopies. In temperate climates,
deciduous trees lose all of their leaves in winter, and thus the SVF values could be significantly smaller
than those in summer. Urban forestry could also greatly change tree canopy coverage in streets at the
annual and decadal time scale. Street view photographs are being updated regularly throughout the
four seasons, and hence the dynamics of tree canopies should be considered especially in urban areas
of dense tree cover.

The street view APIs do not return the date of acquisition. The update frequency of Google Street
View imagery varies from place to place. The Cardiff DSM dataset was derived from surveys carried out
over several years. As both datasets represent a mixture of temporal information, urban development
and landscape changes over the period of data acquisition could have contributed to the discrepancies
in the comparison.

High-resolution LiDAR and OAP3D data can provide continuous SVF estimates across an urban
landscape, but the acquisition and processing costs associated with LiDAR and oblique airborne
photogrammetry are so high that such data remain scarcely available to the public. Spatially resolved
SVF data are traditionally difficult to acquire due to the poor data availability of high-resolution
urban models. We believe that the proposed method has great potential to improve the availability
of spatially resolved SVF data worldwide. When high-resolution urban models are not available,
the proposed method can serve as a low-cost alternative for SVF estimation. Hence, it will greatly
benefit urban climate and planning research in the long run.

5. Conclusions

This study has explored the possibility of automatically extracting SVF information from massive
amounts of street view photographs, which are publicly available mainly through three providers,
Baidu, Tencent, and Google. A state-of-the-art deep learning framework, SegNet, was integrated into
the proposed workflow for classifying street view panoramas. The comparisons with the manually
delineated images showed that SegNet could achieve an average classification accuracy of 92–98%
for sky pixels. The classification accuracy varies from image to image in the range of 80–99%.
This suggests that the robustness of SegNet needs further improvement, which could be achieved
with more accurately labeled training images. It has been shown through the Manhattan example
that the proposed method can effectively scale to big data volumes with adequate GPU support.
The comparisons demonstrated the capacity of the method to provide reliable SVF estimates. However,
further development is needed before this approach can be practically applied to urban climate and
urban planning research.
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