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Abstract: Detection of clouds over polar areas from satellite radiometric measurements in the visible
and IR atmospheric window region is rather difficult because of the high albedo of snow, possible ice
covered surfaces, very low humidity, and the usual presence of atmospheric temperature inversion.
Cold and highly reflective polar surfaces provide little thermal and visible contrast between clouds
and the background surface. Moreover, due to the presence of temperature inversion, clouds are
not always identifiable as being colder than the background. In addition, low humidity often causes
polar clouds to be optically thin. Finally, polar clouds are usually composed of a mixture of ice
and water, which leads to an unclear spectral signature. Single and bi-spectral threshold methods
are sometimes inappropriate due to a large variability of surface emissivity and cloud conditions.
The objective of this study is to demonstrate the crucial role played by surface emissivity in the
detection of polar winter clouds and the potential improvement offered by infrared hyperspectral
observations, such as from the Infrared Atmospheric Sounding Interferometer (IASI). In this paper
a new approach for cloud detection is proposed and validated exploiting active measurements from
satellite sensors, i.e., the CloudSat cloud profiling radar (CPR) and the Cloud-Aerosol Lidar with
Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO). For a homogenous IASI field of view (FOVs), the proposed cloud detection
scheme tallies with the combined CPR and CALIOP product in classifying 98.11% of the FOVs as
cloudy and also classifies 97.54% of the FOVs as clear. The Hansen Kuipers discriminant reaches 0.95.

Keywords: cloud detection; arctic night; surface emissivity

1. Introduction

The advent of new satellite observations promises to transform cloud-climate studies [1], especially
in the polar regions [2]. Satellite observations are currently exploited to improve cloud parameterization
in climate models [3], to measure cloud occurrence and persistence [4], and to study cloud-surface
interactions [5]. An important reason for improving satellite cloud detection methods is that many
remote sensing applications require clear skies in order to work accurately (e.g., sea surface temperature
retrievals, ocean colour retrievals, surface albedo retrievals, snow and sea ice mapping). In addition,
the magnitude of Arctic warming depends on cloud climatology greatly, as Arctic clouds exert a strong
influence on the underlying surface and the Arctic climate in general [6]. Even the presence of thin
cirrus clouds, if undetected, can impact radiative transfer calculations significantly. Cirrus clouds
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are crucially important to the global radiative process and the thermal balance of the Earth, allowing
solar heating while reducing infrared radiation cooling to space. The radiation balance in the polar
regions is yet to be understood due to the lack of accurate cloud climatology [7–9]. This is mostly
because of the difficulty in detecting clouds by passive satellite sensors over snow and ice surfaces,
where it is difficult to distinguish between the reflectance and temperature of clouds and those of
the underlying surface [2,10]. A further difficulty in polar regions is the false identification of clouds
due to polar atmospheric temperature inversions, which causes clouds to be even warmer than the
underlying snow or ice surface. This paper focuses on the Arctic region, which is still poorly covered by
conventional meteorological sounding, due to the hostile environment. The high spectral resolution of
advanced infrared sensors can significantly improve temperature and moisture soundings if compared
with the other operational retrievals. Infrared observations, however, are frequently affected by the
presence of clouds in the field of view (FOV). Thus, observations must be processed for operational data
assimilation and inversion of geophysical parameters by screening the cloud-contaminated soundings.
Polar-orbiting satellites provide frequent overpasses on the Arctic area with sufficient spatial resolution;
nevertheless, cloud detection and parameter retrieval are still very difficult at high latitudes. Most of
the Arctic surface is covered with snow and ice, which reduces the visible contrast between clouds and
surface. In addition, during the winter there is little solar contribution, therefore techniques based on
reflectance in the visible and near infrared (e.g., 1.6 µm channel) are not applicable. Moreover, Arctic
clouds are often low and thin and composed of mixtures of ice and water [7]. Over most surface types,
visible/infrared (VIS/IR) threshold techniques are generally sufficient to detect clouds since they are
both brighter and colder than the surface. For example, a FOV is identified as cloudy when its visible
reflectance is 3% higher than the reflectance of the surrounding FOVs and its brightness temperature
(BT) is 3 ◦C lower than the BT of the surrounding FOVs [11]. However, threshold methods experience
difficulties in the Arctic region stemming from low-to-no contrast between clouds and underlying
snow–sea ice surface in the visible reflectances and the IR brightness temperatures [12–15].

As such, uncertainties related to surface emissivity play an important role, since spectral emissivity
for ice/snow surfaces may differ significantly depending upon microphysical properties. Furthermore,
in particular cases the spectral emissivity of ice/snow surfaces may resemble the spectral signatures
of clouds when observed by satellite and could potentially confuse detection techniques relying
on thresholds. This in particular affects the infrared (IR) window tests usually exploited in cloud
detection schemes over the Arctic region [16–18]. Indeed, global validation of satellite cloud detection
demonstrated the poorest performances over the polar regions during winter [15,19]. Therefore, much
effort has been spent lately in improving cloud detection in the Arctic [20,21]. It follows that the vast
majority of improvements over earlier cloud mask algorithm concern nighttime scenes, including polar
night [22,23]. Nowadays, current operational cloud detection algorithms exploit more sophisticated
procedures for detecting polar night-time clouds, including dynamic thresholds, ancillary data, and
snow and ice identification [24–26]. Recently, the availability of ultrasensitive day/night band channels
in the visible/near-infrared range [27], capable of measuring extremely low light such as reflected
moonlight, stimulated the development of new nighttime lunar cloud properties algorithms [28].

In this study, we analyse the spectrally-resolved radiance over an Arctic area to detect cloud
contamination in the sensor FOV. Over the last few years meteorological satellites have carried infrared
sensors with very high spectral resolutions. The spectral radiances of these new sensors contain the
fingerprint of the underlying emitting surface, which may be used both to estimate the emissivity and
identify the presence of clouds over peculiar surfaces, e.g., a desert [29].

Section 2 describes the instruments and data description. The effect of sea/ice/snow emissivity
spectra on simulated radiances in the IR wavenumber range often used for cloud detection
(750–1000 cm−1) is studied in Section 3. Section 4 reports the impact of surface emissivity uncertainties
on the performances of polar night-time cloud detection techniques based on hyperspectral
observations and a possible improvement to polar cloud detection methods. Finally, a validation
of the described method is reported in Section 5, using the combined CPR and CALIOP products
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(2B-GEOPROF-LIDAR) distributed by the CloudSat data processing centre (http://cloudsat.atmos.
colostate.edu/).

2. Instruments and Data Description

The Infrared Atmospheric Sounding Interferometer (IASI) consists of a Fourier Transform
Spectrometer based on a Michelson Interferometer [30]. The instrument provides spectra of high
radiometric quality at 0.5 cm−1 resolution, from 645 to 2760 cm−1. Data samples are taken at intervals
of 25 km along and across the track, each sample having a maximum diameter of about 12 km.
IASI is a key payload element of the Meteorological Operational satellite (MetOp) series of European
meteorological polar-orbit satellites [31]. IASI has been designed for operational meteorological
soundings with a very high level of accuracy being devoted to improved medium range weather
forecast. The temperature is measured under clear sky with a vertical resolution of 1 km in the lower
troposphere, a horizontal resolution of 25 km, and an accuracy of 1 K. The humidity is measured
under clear sky with a vertical resolution of 1–2 km in the lower troposphere, a horizontal resolution of
25 km, with an accuracy of 10%. It is also designed for atmospheric chemistry observations, aimed at
estimating and monitoring trace gases like ozone, methane, or carbon monoxide on a global scale [30].

The Advanced Very High Resolution Radiometer (AVHRR/3) is one of the instruments provided
by the U.S. National Oceanic and Atmospheric Administration (NOAA) to fly on MetOp-A.
The AVHRR/3 scans the Earth surface in six spectral bands in the range of 0.58–12.5 µm. The instrument
has an instantaneous FOV of 1.3 milliradians providing a nominal spatial resolution of 1.1 km at nadir.
(http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html).

The Moderate–Resolution Imaging Spectroradiometer (MODIS) is an instrument of the Earth
Observing System (EOS) and it measures radiances at 36 wavelengths (from 0.4 to 14.5 µm) at 250 m
spatial resolution in two visible bands, 500 m resolution in five visible bands, and 1000 m resolution in
the infrared bands [22,32].

CloudSat is an experimental satellite that uses radar to observe clouds and precipitation from
space. The Cloud Profiling Radar (CPR), the main instrument on CloudSat, is a 94 GHz radar providing
vertically-resolved information on cloud location, cloud ice and liquid water content, precipitation,
cloud classification, radiative fluxes, and heating rates [33]. The vertical resolution is 480 m with 240 m
sampling, and the horizontal resolution is approximately 1.4 km (cross-track) × 2.5 km (along-track)
with sampling roughly every 1 km. Range bins with detectable hydrometeors are reported in the
2B-GEOPROF product [34]. A cloudy range bin is associated with a confidence mask value that ranges
from 0–40. Values ≥30 are confidently associated with clouds although values as low as six suggest
clouds approximately 50% of the time [35].

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) payload
consists of three nadir-viewing instruments: the Cloud-Aerosol Lidar with Orthogonal Polarization
(CALIOP), the imaging infrared radiometer (IIR), and the wide field camera (WFC) [36].
This instrument synergy enables the retrieval of a wide range of aerosol and cloud products including:
vertically-resolved aerosol and cloud layers, extinction, optical depth, aerosol and cloud type, cloud
water phase, cirrus emissivity, and particle size and shape [36,37]. The horizontal resolution is 70 m
with an instantaneous field of view (IFOV) sampled at 333 m intervals along the track, and the vertical
resolution is 30 m.

A combined radar-lidar product (2B-GEOPROF-LIDAR) is available [35]. The 2B-GEOPROF-LIDAR
algorithm is designed to extract maximum information from the combined radar and lidar sensors in
order to provide the best description of the occurrence of hydrometeor layers in the vertical column.
The CPR radar and CALIPSO lidar provide complementary information regarding the occurrence of
hydrometeor layers in the vertical column. The radar penetrates optically thick layers that attenuate
the lidar signal, and it observes layers of cloud-free precipitation that may not be observed by the
lidar. The lidar senses tenuous hydrometeor layers that are below the detection threshold of the
radar, e.g., the top of optically thin ice cloud layers that the radar would miss, and with higher spatial
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resolution than the radar. Note that CloudSat and CALIPSO are active instruments and consequently
do not suffer from the same passive instrument retrieval challenges over bright and cold surfaces [3].
Since the two instruments have different features such as vertical resolution, spatial resolution, and
spatial frequency, the spatial domain of the output products of this algorithm is defined in terms of the
spatial grid of the CPR. The GEOPROF-LIDAR swath data include the cloud fraction, the number of
hydrometeor layers, the height of layer base, the height of layer top, and the contribution flag for each
layer base and top.

3. Emissivity and Simulated IASI Data

3.1. Observed Arctic Emissivity Spectra

Arctic regions are characterized by different surface types, such as land, ice, snow, and sea-water,
having significantly different infrared spectral emissivity (ξλ), due to their intrinsic microphysical
properties. Furthermore, even for the same surface type there may be discrepancies because of other
effects including, but not limited to, surface roughness, impurities, grain size, and wetness.

Infrared spectral emissivity was measured for a large variety of natural materials at the Institute
for Computational Earth System Science (ICESS) of the University of California in Santa Barbara
(UCSB) [38], and are available on the UCSB Emissivity Library web site (http://www.icess.ucsb.
edu/modis/EMIS/html/em.html). The observing angle used to measure these emissivity spectra
is 10 degrees off nadir. In this study, we consider the UCSB emissivity spectra for ice, snow, and
sea-water, as illustrated in Figure 1. Significant differences in spectral emissivity are evident in the
750–1000 cm−1 range, where ξλ differ by 5–6% for ice, snow, and sea-water surfaces.
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Figure 1. Spectral emissivity for cases of sea-water, ice, and snow surfaces (data from the MODIS UCSB
Emissivity Library).

Due to the spectral features in the 750–1000 cm−1 range, uncertainties in ξλ play an important
role in cloud detection. In fact, a test often used in cloud detection algorithms relies on the differential
absorption of ice and liquid water in the 833–1111 cm−1 range, as illustrated by the absorption
coefficient spectra in Figure 2 [17,18,20].

Accordingly, the difference between observations at 833.33 cm−1 and 909.09 cm−1 was
demonstrated to be indicative of cloud presence [17,18,20].
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Figure 2. Liquid and solid water absorption coefficient spectra (after Hale and Querry [39], and
Warren [40]).

3.2. Simulated Clear-Sky IASI Spectra

High resolution IASI radiance spectra are simulated by processing a set of 305 polar temperatures
and humidity profiles, selected from the Thermodynamic Initial Guess Retrieval (TIGR) dataset [41]
and from radiosondes launched during the Arctic Water Vapor Intensive Operational Period 2004 [42]
from the Atmospheric Radiation Measurement Program [43] North Slope of Alaska site [44], in order
to study the effect on ξλ of cloud detection algorithms.

The radiative transfer model used for clear sky simulation is the Line-By-Line Radiative Transfer
Model (LBLRTM) [45]. Figures 3 and 4 show selected IASI spectra simulated using the TIGR
temperature and humidity profiles shown in Figure 5 and the ice and sea-water surface emissivities
in Figure 1. As expected, the simulated spectra in Figure 3 show significantly different slopes
in the 750–1000 cm−1 range with respect to those in Figure 4, despite the same temperature and
humidity profiles, demonstrating the impact of the different surface emissivities. The spectral
features of emissivity clearly cause the simulated brightness temperatures to significantly vary in the
750–1000 cm−1 range; differences as large as 2.5 K are imputable uniquely to the surface emissivity, as
there is no cloud involved in these simulated spectra.
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shown in Figures 3 and 4.

3.3. Simulated Cloudy IASI Spectra

Cloudy sky radiance spectra are simulated by using the Radiative Transfer model (RTX) [46–49].
RTX solves the radiative transfer equation with the adding and doubling method taking into account
multiple scattering by randomly-oriented particles. Polarized radiation is considered in terms of
Stokes parameters under the hypothesis of a plane-parallel and vertically inhomogeneous atmosphere
including both thermal and solar sources. The spectral properties of atmospheric gases are computed
with the Line-ByLine RadiativeTransfer Model (LBLRTM) model, while the extinction and scattering
coefficients as well as the single scattering albedo and the Lagrange coefficients are computed
for a gamma-modified size distribution of cloud particles (water and ice) using a Mie code [50].
The assumption of spherical ice particles in the near-IR through far-IR region is adopted here [51,52].
We assume this approximation as valid for the purpose of this study, although we are aware of implied
limitations [53–56] that may affect polar radiative transfer in the presence of non-spherical ice particles.
Future work will be dedicated to investigate the impact of this approximation on the cloud detection
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performances. We set a fixed observing angle at 10 degrees off nadir, while other parameters are varied
as indicated in Table 1. In particular, we considered spectral emissivity from three different surface
types, clear and cloudy sky (three cloud phases), eight values for cloud particle effective radius (reff),
seven different cloud top heights (CTH), and six different values for cloud liquid or ice water content
(cwc). Using these different combinations, we obtained 1008 cloud simulated spectra for the three
considered types of surface emissivity (ice, snow, and sea-water). The cloud geometrical thickness is
0.5 km for clouds with CTP = 5.2 and 5.7 km, 0.8 km for clouds with CTP = 3.2 and 3.7 km, and finally
1 km for clouds with CTP = 0.5, 2.2 and 2.7 km. We assume that the vertical profile of cloud parameters
is homogeneous.

Table 1. List of parameters varied for producing the data set of high resolution infrared (IR)
upwelling spectra.

Emissivity (ελ) Ice, Snow and Sea-Water

Cloud Phase Clear-sky, liquid, ice, and mixed phase
Cloud particle effective radius (reff) 5, 10, 15, 20, 30, 50, 70, 100 µm

Ice or liquid water content (cwc) 0.001, 0.005, 0.01, 0.03, 0.05, 0.07 g/m3

Cloud top (CTH) 0.5, 2.2, 2.7, 3.2, 3.7, 5.1, 5.5 km

The spectral emissivities (Figure 1) and the radiosonde temperature and humidity profiles
(Figure 6) have been used to simulate the selected simulated spectra (Figures 7–10). The atmospheric
profiles show an inversion strength of about 15 K and an evident dry layer at the inversion top. It is
worth noticing that clear-sky conditions were reported during the radiosonde launch. Because of the
inversion and the subsequent ambiguous temperature-height relationship, satellite observations at
window channels would show about the same brightness temperature in clear sky or in the presence
of a thick cloud top located at approximately 650 mb. Nevertheless, temperature inversions have been
used in cloud detection algorithms as indicators of clear sky [20,57], as they can be detected by satellite
infrared measurements using channels with weighting functions peaking in the lower troposphere.
However, Holz and Ackerman [18] studied temperature inversions above the Arctic stratus and
suggested that these cases could potentially confuse cloud detection based on the temperature inversion
test only.
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Figures 7 and 8 show clear and cloudy simulated BT spectra using ice surface emissivity with
reff = 5 µm, two valu–es for cwc (0.01–0.05 g/m3), and three values for CTH (2.2–2.7–0.5 km for
water clouds and 3.7–3.2–0.5 km for ice clouds) in the presence of a water cloud and an ice cloud,
respectively. Figures 9 and 10 are the same as Figures 7 and 8 but using sea-water surface emissivity.
In the case of ice surface emissivity and water clouds, the slope decreases in the 750–1000 cm−1 range
compared to clear sky, and BTs increase for all the used cloud tops and cwc combinations with respect
to clear sky BTs (Figure 7). For ice emissivity and ice clouds, the slope and BTs in the 750–1000 cm−1

range may decrease or increase according to CTH and cwc compared to sea-water emissivity and
clear sky. In particular, in the cases reported in Figure 8, BTs decrease when CTH = 3.7 km, and the
slope decreases when CTH = 3.2 and 0.5 km. For sea-water emissivity and water clouds, BTs increase
compared to clear sky BTs, but the slope changes according to CTH and cwc (Figure 9). As far as
sea-water emissivity and ice clouds are concerned, the slope and BTs decrease or increase compared to
clear sky BTs in the 750–1000 cm−1 range according to CTH and cwc (Figure 10). By comparing the
results obtained using ice, snow, and sea-water emissivity both in clear and cloudy sky, it is evident
that spectral features strictly related to the emissivity typical of polar surfaces are very similar to
cloud spectral signatures, despite some minor differences. This analysis suggests that cloud detection
techniques relying on thresholds cannot easily distinguish between clear-sky and cloudy cases. Both
kinds of ice clouds and ice surface emissivity cause the slope to increase in the 750–1000 cm−1 range,
and hence it is difficult to detect cloud presence on the basis of the window spectral region. Some ice
clouds for instance cause the slope to increase when using sea-water emissivity (Figure 10), while they
can cause the slope to decrease when using ice surface emissivity, according to microphysical cloud
parameters (Figure 8).
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Figure 10. Simulated IASI brightness temperature spectra in clear and cloudy sky using sea-water
surface emissivity. Ice clouds with reff = 5 µm, cwc = 0.01 and 0.05 g/m3, CTH = 3.2, 3.7, and 0.5 km.

4. Arctic Cloud Detection

In this study, we analyse the IR window tests usually exploited in cloud detection schemes [16,17]
over the Arctic region. These tests, listed in Table 2, have been adapted to work with IASI data. In order
to understand the performance of the window IR threshold tests listed in Table 2, we applied them
to the set of 305 simulated clear-sky spectra described in Section 3. Results are reported in Table 3.
Table 3 shows that the tests in Table 2 are able to detect clear sky correctly only in the case of sea-water
surface. Clear spectra are misidentified as cloudy when using ice or snow surfaces, because surface
emissivity spectral features cause clear-sky BTs to resemble cloud signatures in the 750–1000 cm−1

range (Figure 3). These results confirm that night-time window IR threshold tests are not able to
detect clear-sky spectra on ice and snow surfaces. We also applied the above-mentioned tests to
the simulated cloudy spectra described in Section 3. The results are reported in Table 4. The tests
misidentified “cloud-as-clear” for about 20–30% of the spectra, depending upon the surface emissivity
used. In order to improve the capability of detecting clouds in the polar region, we examined the
clear-sky spectral signal in the window region between 750–1000 cm−1. We can see that the shape
of the window spectrum remains the same when changing atmospheric profiles and using the same
emissivity (Figures 3 and 4).

For evaluating the variability of the correlation between the simulated spectra, we computed the
correlation coefficient between a reference clear IASI spectrum simulated with a fixed emissivity and
912 clear IASI spectra simulated using temperature and humidity profiles and ice, sea-water, and snow
emissivity (as described in Section 3). In particular, for fixed ice emissivity the correlation coefficients
are reported in Figure 11. The correlation coefficient estimation is restricted to a set of microwindows,
centred at 787.5, 820.5, 874.0, and 960.0 cm−1 with a width of 5 cm−1. These microwindows have
been determined by minimizing the noise in order to give a sufficiently fine representation of the
window shape.
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Table 2. Cloud mask spectral tests (TEST IR).

Measured Inversion Strength >10 K Clear

BT800–BT1100
<−0.05 Ice cloud

>1.0 Water cloud

BT960–BT1100 >1.0 Water cloud

Table 3. Percentage of simulated clear spectra detected incorrectly, over the entire set (305 Field of
Views (FOVs) for each emissivity). The spectrum is declared clear if the correlation coefficient is greater
than 0.98, otherwise it is declared as cloudy.

IR Tests Correlation Test

Emissivity Percent of clear FOVs detected as cloudy (%) Percent of clear FOVs detected as cloudy (%)
Ice 100 2

Snow 100 2
Sea-Water 15 0

Table 4. Percentage of simulated cloud spectra detected incorrectly over the entire set (1008 Field of
Views (FOVs) for each emissivity).

IR Tests Correlation Test

Emissivity Percent of cloudy FOVs detected as clear (%) Percent of cloudy FOVs detected as clear (%)
Ice 20.2 0.9

Snow 28.1 7.6
Sea-Water 28.4 4.7
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Figure 11. Correlation coefficient between an IASI spectrum simulated using ice emissivity and IASI
spectra simulated using different temperatures and humidity profiles, and sea-water (black diamond),
ice (red dot), and snow (green square) emissivities.

The calculation indicates that the correlation coefficient between different clear IASI spectra
simulated with the same emissivity, but different temperature and humidity profiles, reaches values
close to 1. In order to detect cloud and clear simulated spectra (as described in Section 3) we
calculated the correlation coefficient between a fixed clear and the examined IASI spectra. If the
correlation coefficient is greater than 0.98 the spectrum is declared clear, otherwise it is declared as
cloudy. This threshold has been derived considering both simulated and measured IASI spectra for
different emissivities.
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Applying this correlation test (denominated Test 1 in the following) to the cloud simulated spectra,
the number of cloudy spectra detected as clear decreases considerably with respect to the IR tests, and
most of the clear spectra are detected correctly (Table 3).

In order to validate the correlation test with real data, we built a database with IASI clear
spectra measured in the Arctic region including 500 night granule IASI l1c data from 1 November to
31 December 2008 between 55◦N–75◦N and 149◦W–168◦E. Of these granules, 400 are used for building
the clear dataset, and the others for validating the algorithm. The emissivity has been derived from
MOD11 surface products [58], and the MODIS product is derived from a physics-based day/night LST
algorithm used to retrieve surface band emissivities and temperatures simultaneously from a pair of
daytime and nighttime MODIS observations in 20, 22, 23, 29, and 31–33 channels over all types of land
cover. The clear IASI spectra are identified by using 2B-GEOPROF-LIDAR products. The correlation
coefficients for Test 1 have been computed between the examined IASI spectrum and a restricted set of
spectra selected among the measured clear IASI database according to the surface and satellite zenith
angle. If the correlation coefficient (Test 1) is below a certain dynamic threshold [59] the spectrum is
identified as cloudy, while if the correlation test is successful, the spectrum in analysis undergoes the
following additional tests in order to estimate if it is clear or partially cloudy. The correlation for sea-water
surface (Figure 11) and also for other non-heterogeneous surfaces is much lower, and consequently the
test works less well. For this reason, these three other tests have been added to detected cloudy FOVS.

Test 2 is the shortwave-longwave (SW-LW) window test. This test uses brightness temperatures of
two IASI atmospheric window channels, one in the shortwave (SW) region at 2558.224 cm−1 and the
other in the longwave (LW) region at 903.5 cm−1. The field of view is clear if the difference between
the two channels remains within the predetermined dynamic thresholds e1a and e1b [59].

Test 3 is the shortwave-longwave (SW LW) test. A set of 92 IASI channels in the LW region are
used to predict the IASI channel at 2525.130 cm−1 in the SW. The regression analysis is done with
a least square stepwise backward glance technique [60]. The code used for the regression is RLSTP on
the International Mathematical and Statistical Library (IMSL) [61]. The best predictors are extracted
from the first 1421 IASI SW channels and they are found to be the same for all the scanning angles.
The selected 92 predictors explain more than 99.99% of the total variance. The field of view is defined
as clear if the difference between the predicted and observed brightness temperatures is within fixed
dynamic thresholds e1a and e1b.

Test 4 is the Window spatial variability test. This final test is based on one IASI LW window
channel (903.5 cm−1). For each FOV, the brightness temperature at this channel is compared with
the BT values of the surrounding FOVs (3 × 3 box), corresponding to similar characteristics in terms
of surface type and orography. If the brightness temperature of the central FOV is colder than the
values of surrounding FOVs by more than a selected threshold, the central FOV is categorized as
cloudy. These tests were also used with success in the Atmospheric Infrared Sounder (AIRS) cloud
detection [59]. The IASI FOV is classified as clear if at least one of the tests in the sequence 2 to 4 is
successful, otherwise the FOV is classified as partially cloudy.

The dynamic thresholds are obtained from the use of the measured and simulated clear-sky
datasets. Simulated data provide a useful estimate of the variability of the threshold values around
the mean value that should be exploited. In this approach, the difference between the predicted and
measured channel brightness temperatures is assumed to be within a range, whose medium value is
calculated from the measured data, while the boundaries (minimum and maximum) are estimated
from the simulated data. The cloud detection scheme selects the dynamic threshold values and the test
coefficients according to the satellite zenith angle, land cover, and the maximum spectrum brightness
temperature [59].

5. Validation of Cloud Detection

The validation of the arctic cloud detection algorithm was carried out on the basis of spatial and
temporal co-located products from 2B-GEOPROF-LIDAR and the Advanced Very High Resolution
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Radiometer (AVHRR/3). The first step considers the 2B-GEOPROF-LIDAR product within the IASI
FOV; if this contains both clear and cloudy 2B-GEOPROF-LIDAR pixels, the IASI FOV is classified as
“partially cloudy”, otherwise the procedure goes to the next step. Thus, the second step is reached
only if the 2B-GEOPROF-LIDAR pixels are all either clear or cloudy, though this information cannot
be extended to the IASI FOVs, since IASI FOVs are always larger than the area covered by the
2B-GEOPROF-LIDAR product. Let us note that the CPR footprint is approximately 2.5 km (along
track) by 1.4 km (across-track), while the IASI FOV size is 12 km at nadir. The CloudSat/CPR overlaps
IASI FOVS along a diagonal, so that the IASI FOV is never completely covered by the CPR pixels.
The number of pixels along the CloudSat/CALIPSO track within the IASI footprint depends on the
satellite view angle. Figure 12 shows one IASI spectrum and the 2B-GEOPROF-LIDAR cloud profiling
product co-located on the IASI footprint for a high cloud.
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within the IASI footprint; each point indicates the presence of clouds at height level (y axis) and
2B-GEOPROF-LIDAR pixel number (x axis).

In the second step, the homogeneity of the IASI FOVs is investigated by using simultaneous
AVHRR data within the IASI FOVs. The homogeneity criterion is satisfied when all the AVHRR/3
FOVs co-located on the IASI FOV are either clear or cloudy, then the IASI FOV is classified as “clear” or
“cloudy” according to the 2B-GEOPROF-LIDAR product (all either clear or cloudy). If the homogeneity
criterion is not satisfied, then the IASI FOV is classified as “partially cloudy”. It is worth noting that
the Mask AVHRR for Inversion ATOVS (MAIA) cloud detection [62] has been used to classify AVHRR
FOVs. The performances for tests 1 to 4 (denominated TS1–4 tests from now onwards) and for the IR
tests are described in terms of probability of detection and misidentification rates. We define N10 as the
number of cloudy cases misidentified as clear (misses) and N01 the number of clear cases misidentified
as cloudy (false). N11 and N00 corresponds to the number of cases correctly identified as cloudy and
clear, respectively. Using these numbers we define the accuracy (A), the probability of detection (POD),
the false alarm ratio (FAR), and the Hansen Kuipers discriminant (HK) as the following:

A = (N11 + N00)/(N11 + N00 + N01 + N10)
POD = N11/(N10 + N11)
FAR = N01/(N11 + N01)
HK = (N11/(N11 + N10)) − (N01/(N01 + N00))

In Table 5 we report the performances, in terms of probability of detection and misidentification
rates, of three cloud detection algorithms: TS1–4, the IR tests, and the tests exploited in the MODIS
collection 6 (C6) for polar night-time cloud detection [24,26]. For homogeneous IASI FOVs, the TS1–4
tests tally with 2B-GEOPROF-LIDAR in classifying 97.54% of clear FOVs as clear and also in classifying
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98.11% of cloudy FOVs as cloudy. The probability of cloud detection POD is 98.10%, while the false
alarm ratio FAR is 1.23% and the HK discriminant reaches 0.95. For homogeneous IASI FOVs, the
IR tests tally with 2B-GEOPROF-LIDAR in classifying 67.11% of clear FOVs as clear and 70.91% of
cloudy FOVs as cloudy; POD is 70.91%, while the false alarm ratio is 18.79% and the HK discriminant
is 0.38. Tables 6 and 7 show the performance of the TS1–4, IR tests, and MODIS C6 in terms of
probability of detection and misidentification rates for clouds with the optical depth smaller or larger
than three, respectively. The cloud optical depth, the 2B-TAU product, is distributed by the CloudSat
data processing centre (http://cloudsat.atmos.colostate.edu/). The 2B-TAU product is based on
MODIS radiance data, CPR reflectivity and other ancillary data (e.g., geolocation, surface albedo, and
time). The cloud optical depth (COD) has been estimated only for completely covered homogeneous
IASI FOVS, and the homogeneity is investigated by AVHRR. If the 2B-GEOPROF-LIDAR COD is the
same for the all pixels within the IASI footprint, we suppose that it is the same for the whole IASI
FOV. For a cloud optical depth smaller than three, the TS1–4 tests tally with 2B-GEOPROF-LIDAR in
classifying 97.89% of cloudy FOVs as cloudy. For a cloud optical depth greater than three the TS1–4
tests classify 98.15% of cloudy FOVs correctly. Therefore, the tests confirm good performances for thin
clouds also. The IR tests tally with 2B-GEOPROF-LIDAR in classifying 67.16% and 71.49% of cloudy
FOVs as cloudy respectively for cloud optical smaller or larger than three. For non-homogenous
partially cloudy IASI FOVs, the TS1–4 tests detect 88.5% of FOVs correctly (Table 8). Judging from
the 2B-GEOPROF-LIDAR product, by visual inspection of several cases, the lower score in partially
cloudy cases is typically due to low broken clouds that are not often identified correctly by the tests.
Nonetheless, the TS1–4 tests together with dynamic land cover information considerably increase the
accuracy of the cloud mask when compared to the IR tests.

Table 5. Statistics for the window IR tests, theTS1–4 proposed tests, and the Moderate–Resolution
Imaging Spectroradiometer MODIS collection C6 tests considering the homogenous Field of Views
(FOVs). Number of total FOVs: 2932; number of cloudy FOVs: 1956; number of clear FOVs: 976.
N00: number of cases correctly identified as clear. N11: number of cases correctly identified as cloudy.
N01: number of clear cases misidentified as cloudy. N10: number of cloudy cases misidentified as clear.
A; accuracy, POD: probability of detection, FAR: the false alarm ratio, HK: Hansen Kuipers discriminant.

IR Tests MODIS C6 Tests TS1–4 Tests

Percent of clear FOVs detected as clear (%) 67.11 84.03 97.54
Percent of cloudy FOVs detected as cloudy (%) 70.91 88.80 98.11

N00 655 821 952
N11 1387 1736 1919
N01 321 156 24
N10 569 219 37

A (%) 69.74 87.21 98.05
POD (%) 70.91 88.79 98.10
FAR (%) 18.79 8.24 1.23

HK 0.38 0.73 0.95

Table 6. Statistics for the IR, TS1–4, and MODIS C6 tests considering cloudy Field of Views (FOVs)
having an optical depth smaller than 3. Number of cloudy FOVs: 332. N11: number of cases correctly
identified as cloudy. N10: number of cloudy cases misidentified as clear.

IR Tests MODIS C6 Tests TS1–4 Tests

Percent of cloudy FOVs detected as cloudy (%) 67.16 84.04 97.89
N11 223 279 325
N10 109 43 7
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Table 7. Statistics for the IR, TS1–4, and MODIS C6 tests considering cloudy Field of Views (FOVs)
having an optical depth greater than 3. Number of cloudy FOVs: 1624. N11: number of cases correctly
identified as cloudy. N10: number of cloudy cases misidentified as clear.

IR Tests MODIS C6 Tests TS1–4 Tests

Percent of cloudy FOVs detected as cloudy (%) 71.49 85.16 98.15
N11 1161 1383 1594
N10 463 241 30

Table 8. Percentage of IASI Field of Views (FOVs) exactly detected considering the non-homogenous
FOVs, (partially cloudy). Number of total partially cloudy FOVs: 1484.

TS1–4 Tests

Percent of partially cloudy FOVs exactly detected (%) 88.5
Percent of partially cloudy FOVs detected as cloudy (%) 3.3
Percent of partially cloudy FOVs detected as clear (%) 8.2

6. Conclusions

This work reports on the results obtained investigating the effect of surface emissivity on polar
night-time cloud detection algorithms. Based on a simulated dataset of IR upwelling radiation spectra
with different emissivities, cloud phases, optical depths, and particle effective radii and shapes,
we find that uncertainties in surface emissivity play a dominant role in the performances of the
window threshold test often used in cloud detection during the night. In fact, clear-sky spectra
computed by using typical polar surface emissivities do resemble cloud signatures, especially in
the 750–1000 cm−1 range. This causes inaccuracy when using cloud detection techniques relying
on thresholds (e.g., BT(11 µm)–BT(12 µm) test). As such, the performances of polar night-time
cloud detection algorithms based on IASI simulated data show relatively low “cloudy-as-clear” but
large “clear-as-cloudy” misidentification rates. This suggests that detection techniques relying on
thresholds are appropriate for definite areas with well-known and/or stable surface emissivity, but
the same threshold may not be exported to other polar areas with different characteristics. The cloud
detection tests proposed here are able to detect cloudy IASI FOVs in the Arctic region, for different and
complex surface types. For homogenous IASI FOVs, the cloud detection scheme tallies with combined
radar-lidar detection (2B-GEOPROF-LIDAR) in correctly classifying 98.11% of FOVs as cloudy and
also in correctly classifying 97.54% of FOVs as clear. The probability of cloud detection (POD) is 98.10%
and the false alarm (FAR) is 1.23 and the HK discriminant reaches 0.95. For non-homogenous partially
cloudy IASI FOVs, the cloud detection scheme detects 88.5% of FOVs correctly. For cloud optical depths
smaller than three, the cloud detection scheme classifies 98.15% of FOVs correctly. Therefore, the cloud
detection tests proposed also confirm good performances for thin clouds. This lower score is found to
be caused by the presence of low broken clouds that are often identified incorrectly. The proposed tests
together with dynamic emissivity information derived from MODIS products considerably increase
the capacity to detect clouds during the polar night with respect to the other tests available in the
open literature. Future work will be dedicated to investigate in more detail the cases of misdetection.
In particular, it is interesting to study the impact of the emissivity variability within the IASI FOV
and the effect of rapidly changing emissivity conditions due to events on shorter time-scales than the
16-day MODIS surface emissivity product.

Author Contributions: Filomena Romano and Domenico Cimini designed the research, wrote the paper and
contributed to validation process. Saverio T. Nilo , Francesco Di Paola , Elisabetta Ricciardelli, Ermann Ripepi and
Mariassunta Viggiano contributed to data processing, analysis and validation process. All the co-authors helped
to revise the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2017, 9, 406 16 of 18

References

1. Illingworth, A.J.; Barker, H.W.; Beljaars, A.; Ceccaldi, M.; Chepfer, H.; Clerbaux, N.; Cole, J.; Delanoë, J.;
Domenech, C.; Donovan, D.P. The EarthCARE satellite the next step forward in global measurements of
clouds, aerosols, precipitation, and radiation. BAMS 2015, 96, 1311–1332. [CrossRef]

2. Kay, J.E.; L’Ecuyer, T.; Chepfer, H.; Loeb, N.; Morrison, A.; Cesana, G. Recent Advances in Arctic Cloud and
Climate Research. Curr. Clim. Chang. Rep. 2016, 2, 159. [CrossRef]

3. Kay, J.E.; Bourdages, L.; Chepfer, H.; Miller, N.; Morrison, A.; Yettella, V.; Eaton, B. Evaluating and
improving cloud phase in the community atmosphere model version 5 using spaceborne lidar observations.
J. Geophys. Res. 2016, 121, 4162–4176. [CrossRef]

4. Morrison, H.; de Boer, G.; Feingold, G.; Harrington, J.Y.; Shupe, M.D.; Sulia, K. Resilience of persistent Arctic
mixed-phase clouds. Nat. Geosci. 2012, 5, 11–17. [CrossRef]

5. Taylor, P.C.; Kato, S.; Xu, K.-M.; Cai, M. Covariance between Arctic sea ice and clouds within atmospheric
state regimes at the satellite footprint level. J. Geophys. Res. Atmos. 2015, 120, 12656–12678. [CrossRef]
[PubMed]

6. Bennartz, R.; Shupe, M.D.; Turner, D.D.; Walden, V.P.; Steffen, K.; Cox, C.J.; Kulie, M.S.; Miller, N.B.;
Pettersen, C. Greenland melt extent enhanced by low-level liquid clouds. Nature 2013, 496, 83–86. [CrossRef]
[PubMed]

7. Curry, J.A.; Rossow, W.B.; Randall, D.; Schramm, J.L. Overview of Arctic cloud and radiation characteristics.
J. Clim. 1996, 9, 1731–1764. [CrossRef]

8. Schweiger, A.J.; Lindsay, R.W.; Key, J.R.; Francis, J.A. Arctic Clouds in Multiyear Satellite Data Sets.
Geophys. Res. Lett. 1999, 26, 1845–1848. [CrossRef]

9. Boucher, O.; Randall, D.D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.;
Liao, H.; Lohmann, U.; et al. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change;
Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Nauels, A., Xia, Y., Bex, V.,
Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657.

10. Heidinger, A.; Li, Y.; Baum, B.; Holz, R.; Platnick, S.; Yang, P. Retrieval of Cirrus Cloud Optical Depth under
Day and Night Conditions from MODIS Collection 6 Cloud Property Data. Remote Sens. 2015, 7, 7257–7271.
[CrossRef]

11. Welch, R.M.; Feind, R.E.; Berendes, D.; Berendes, T.A.; Kuo, K.E.; Logar, A.M. The ASTER Polar Cloud
Mask Algorithm Theoretical Basis Document, 1999. Available online: http://eospso.gsfc.nasa.gov//eos_
homepage/for_scientists/atbd/docs/ASTER/atbd-ast-13.pdf (accessed on 13 February 2017).

12. Karlsson, K.-G.; Dybbroe, A. Evaluation of Arctic cloud products from the EUMETSAT Climate Monitoring
Satellite Application Facility based on CALIPSO-CALIOP observations. Atmos. Chem. Phys. 2010, 10,
1789–1807. [CrossRef]

13. Rossow, W.B.; Garder, L.C.; Lacis, A.A. Global, seasonal cloud variations from satellite radiance measurements.
Part I: Sensitivity of analysis. J. Clim. 1989, 2, 419–458. [CrossRef]

14. Stowe, L.L.; Yeh, H.Y.M.; Eck, T.F.; Wellemeyer, C.G.; Kyle, H.L. The Nimbus-7 Cloud Data Processing Team
Nimbus-7 global cloud climatology. Part II: First year results. J. Clim. 1989, 2, 671–709. [CrossRef]

15. Liu, Y.; Ackerman, S.A.; Maddux, B.C.; Key, J.R.; Frey, R.A. Errors in Cloud Detection over the Arctic Using
a Satellite Imager and Implications for Observing Feedback Mechanisms. J. Clim. 2010, 23, 1894–1907.
[CrossRef]

16. IASI Level 2 Product Guide: EUM/OPSEPS/MAN/04/0033, EUMETSAT. Available online: www.eumetsat.int
(accessed on 15 December 2016).

17. Ackerman, S.A.; Strabala, K.I.; Menzel, W.P.; Frey, R.A.; Moeller, C.C.; Gumley, L.I. Discriminating clear-sky
from clouds with MODIS. J. Geophys. Res. 1998, 103, 32141–32158. [CrossRef]

18. Holz, R.E.; Ackerman, S.A. Arctic Winter High Spectral Resolution Cloud Height Retrievals. In Proceedings
of the Conference on Satellite Meteorology and Oceanography, Atlanta, GA, USA, 29 January–2 February 2006.

19. Holz, R.E.; Ackerman, S.A.; Nagle, F.W.; Frey, R.; Dutcher, S.; Kuehn, R.E.; Vaughan, M.A.; Baum, B.
Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation
using CALIOP. J. Geophys. Res. 2008, 113, D00A19. [CrossRef]

http://dx.doi.org/10.1175/BAMS-D-12-00227.1
http://dx.doi.org/10.1007/s40641-016-0051-9
http://dx.doi.org/10.1002/2015JD024699
http://dx.doi.org/10.1038/ngeo1332
http://dx.doi.org/10.1002/2015JD023520
http://www.ncbi.nlm.nih.gov/pubmed/27818851
http://dx.doi.org/10.1038/nature12002
http://www.ncbi.nlm.nih.gov/pubmed/23552947
http://dx.doi.org/10.1175/1520-0442(1996)009&lt;1731:OOACAR&gt;2.0.CO;2
http://dx.doi.org/10.1029/1999GL900479
http://dx.doi.org/10.3390/rs70607257
http://eospso.gsfc.nasa.gov//eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-13.pdf
http://eospso.gsfc.nasa.gov//eos_homepage/for_scientists/atbd/docs/ASTER/atbd-ast-13.pdf
http://dx.doi.org/10.5194/acp-10-1789-2010
http://dx.doi.org/10.1175/1520-0442(1989)002&lt;0419:GSCVFS&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1989)002&lt;0671:NGCCPI&gt;2.0.CO;2
http://dx.doi.org/10.1175/2009JCLI3386.1
www.eumetsat.int
http://dx.doi.org/10.1029/1998JD200032
http://dx.doi.org/10.1029/2008JD009837


Remote Sens. 2017, 9, 406 17 of 18

20. Liu, Y.; Key, J.R.; Frey, R.A.; Ackerman, S.A.; Menzel, W.P. Night Time Polar Cloud Detection with MODIS.
Remote Sens. Environ. 2004, 92, 181–194. [CrossRef]

21. Ackerman, S.A.; Holz, R.E.; Frey, R.A.; Eloranta, E.W.; Maddux, B.C.; McGill, M. Cloud detection with
MODIS. Part II: Validation. J. Atmos. Ocean. Technol. 2008, 25, 1073–1086. [CrossRef]

22. Frey, R.A.; Ackerman, S.A.; Liu, Y. Cloud detection with MODIS. Part I: Improvements in the MODIS cloud
mask for collection 5. J. Atmos. Ocean. Technol. 2008, 25, 1057E–1072E. [CrossRef]

23. King, M.D.; Platnick, S.; Menzel, W.P.; Ackerman, S.A.; Hubanks, P.A. Spatial and Temporal Distribution of
Clouds Observed by MODIS Onboard the Terra and Aqua Satellites. IEEE Trans. Geosci. Remote Sens. 2013,
51, 3826–3852. [CrossRef]

24. Baum, B.A.; Menzel, W.P.; Frey, R.A.; Tobin, D.C.; Holz, R.E.; Ackerman, S.A. MODIS Cloud-Top Property
Refinements for Collection 6. J. Appl. Meteorol. Clim. 2012, 51, 1145–1163. [CrossRef]

25. Hutchison, K.D.; Iisager, B.D.; Mahoney, R.L. Enhanced snow and ice identification with the VIIRS cloud
mask algorithm. Remote Sens. Lett. 2013, 4, 929–936. [CrossRef]

26. Platnick, S. MODIS Cloud Optical Properties: User Guide for the Collection 6 Level-2 MOD06/MYD06 Product and
Associated Level-3 Datasets; NASA Goddard: Greenbelt, MD, USA, 2014; p. 141.

27. Liang, C.K.; Mills, S.; Hauss, B.I.; Miller, S.D. Improved VIIRS Day/Night Band Imagery with Near-Constant
Contrast. TGRS 2014, 52, 11. [CrossRef]

28. Walther, A.; Heidinger, A.K.; Miller, S. The expected performance of cloud optical and microphysical
properties derived from Suomi NPP VIIRS day/night band lunar reflectance. J. Geophys. Res. Atmos. 2013,
118, 230–240. [CrossRef]

29. Masiello, G.; Serio, C.; Cuomo, V. Exploiting quartz spectral signature for the detection of cloud-affected
satellite infrared observations over African desert areas. Appl. Opt. 2004, 43, 2305–2315. [CrossRef] [PubMed]

30. Klaes, K.D.; Cohen, M.; Buhler, Y.; Schlüssel, S.; Munro, R.; Luntama, J.P.; Von Engeln, A.; Clerigh, E.O.;
Bonekamp, H.; Ackermann, J.; et al. An introduction to the EUMETSAT Polar System. Bull. Am. Meteorol. Soc.
2007, 88, 1085–1096. [CrossRef]

31. Aires, F.; Rossow, W.B.; Scott, N.A.; Chédin, A. Remote Sensing from the infrared atmospheric sounding
interferometer instrument 2. Simultaneous retrieval of temperature, water vapor and ozone atmospheric
profiles. J. Geophys. Res. 2002, 107, 4620–4631. [CrossRef]

32. Ricciardelli, E.; Romano, F.; Cuomo, V. Physical and statistical approaches for cloud identification using
Meteosat Second Generation-Spinning Enhanced Visible and Infrared Imager Data. Remote Sens. Environ.
2008, 112, 2741–2760. [CrossRef]

33. Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.;
Rossow, W.B.; Durden, S.L.; et al. The CloudSat mission and the A-train. B. Am. Meteor. Soc. 2002, 83,
1771–1790. [CrossRef]

34. Mace, G.G.; Marchand, R.; Zhang, Q.; Stephens, G. Global hydrometeor occurrence as observed by CloudSat:
Initial observations from Summer. Geophys. Res. Lett. 2006, 34, L09808.

35. Marchand, R.; Mace, G.G.; Ackerman, T.; Stephens, G. Hydrometeor Detection Using CloudSat—An
Earth-Orbiting 94-GHz Cloud Radar. J. Atmos. Ocean. Technol. 2008, 25, 519–533. [CrossRef]

36. Winker, D.M.; Pelon, J.; McCormick, M.P. The CALIPSO mission: Spaceborne lidar for observation of aerosols
and clouds. Proc. SPIE 2003, 4893, 1–11.

37. You, Y.; Kattawar, G.W.; Yang, P.; Hu, Y.X.; Baum, B.A. Sensitivity of depolarized lidar signals to cloud and
aerosol particle properties. J. Quant. Spectrosc. Radiat. Transf. 2006, 100, 470–482. [CrossRef]

38. Li, Z.L.; Becker, F.; Stoll, M.P.; Wan, Z. Evaluation of six methods for extracting relative emissivity spectra
from thermal IR images. Remote Sens. Environ. 1999, 69, 197–214. [CrossRef]

39. Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-µm. Wavelength Region. Appl. Opt.
1973, 12, 555–563. [CrossRef] [PubMed]

40. Warren, S.G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 1984, 23, 1206–1225.
[CrossRef] [PubMed]

41. Chevallier, F.; Chéruy, F.; Scott, N.A.; Chédin, A. A neural network approach for a fast and accurate
computation of longwave radiative budget. J. Appl. Meteorol. 1998, 37, 1385–1397. [CrossRef]

42. Westwater, E.R.; Cimini, D.; Mattioli, V.; Gasiewski, A.J.; Klein, M.; Leuski, V.; Liljegren, J.C. The 2004 North
Slope of Alaska Arctic Winter Radiometric Experiment: Overview and Recent Results. In Proceedings of the
ARM Science Team Meeting, Albuquerque, NM, USA, 27–31 March 2006.

http://dx.doi.org/10.1016/j.rse.2004.06.004
http://dx.doi.org/10.1175/2007JTECHA1053.1
http://dx.doi.org/10.1175/2008JTECHA1052.1
http://dx.doi.org/10.1109/TGRS.2012.2227333
http://dx.doi.org/10.1175/JAMC-D-11-0203.1
http://dx.doi.org/10.1080/2150704X.2013.815381
http://dx.doi.org/10.1109/TGRS.2014.2306132
http://dx.doi.org/10.1002/2013JD020478
http://dx.doi.org/10.1364/AO.43.002305
http://www.ncbi.nlm.nih.gov/pubmed/15098833
http://dx.doi.org/10.1175/BAMS-88-7-1085
http://dx.doi.org/10.1029/2001JD001591
http://dx.doi.org/10.1016/j.rse.2008.01.015
http://dx.doi.org/10.1175/BAMS-83-12-1771
http://dx.doi.org/10.1175/2007JTECHA1006.1
http://dx.doi.org/10.1016/j.jqsrt.2005.11.058
http://dx.doi.org/10.1016/S0034-4257(99)00049-8
http://dx.doi.org/10.1364/AO.12.000555
http://www.ncbi.nlm.nih.gov/pubmed/20125343
http://dx.doi.org/10.1364/AO.23.001206
http://www.ncbi.nlm.nih.gov/pubmed/18204705
http://dx.doi.org/10.1175/1520-0450(1998)037&lt;1385:ANNAFA&gt;2.0.CO;2


Remote Sens. 2017, 9, 406 18 of 18

43. Ackerman, T.P.; Stokes, G.; Wiscombe, W.; Turner, D. The Atmospheric Radiation Measurement Program:
First 20 Years. Available online: http://journals.ametsoc.org/toc/amsm/57 (accessed on 13 February 2017).

44. Verlinde, J.; Zak, B.D.; Shupe, M.D.; Ivey, M.D.; Stamnes, K. The ARM North Slope of Alaska (NSA) sites.
Meteorol. Monogr. 2016. [CrossRef]

45. Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S.; Iacono, M.J.; Cady-Peirera, K.; Boukabara, S.;
Brown, P.D. Atmospheric radiative transfer modeling: A summary of AER codes. J. Quant. Spectrosc.
Radiat. Transf. 2005, 91, 233–244. [CrossRef]

46. Evans, K.F.; Stephens, G.L. A new polarized atmosphere radiative transfer model. J. Quant. Spectrosc. Radiat. Transf.
1991, 46, 412–423. [CrossRef]

47. Rizzi, R.; Smith, J.A.; Di Pietro, P.; Loffredo, G. Comparison of modelled and measured stratus cloud infrared
spectral signatures. J. Geophys. Res. 2001, 106, 34109–34119. [CrossRef]

48. Amorati, R.; Rizzi, R. Radiances simulated in the presence of clouds by use of a fast radiative transfer model
and a multiple-scattering scheme. Appl. Opt. 2002, 41, 1604–1614. [CrossRef] [PubMed]

49. Maestri, T.; Rizzi, R.; Smith, J.A. Spectral infrared analysis of a cirrus cloud based on Airborne Research
Interferometer Evaluation System (ARIES) measurements. J. Geophys. Res. 2005, 110, D06111. [CrossRef]

50. Wiscombe, W.J. NCAR Technical Note, NCAR/TN-140+STR; National Centre for Atmospheric Research:
Boulder, CO, USA, 1979.

51. Grenfell, T.C.; Warren, S.G. Representation of a non-spherical ice particle by a collection of independent
spheres for scattering and absorption of radiation. J. Geophys. Res. 2010, 104, 697–709.

52. Mahesh, A.; Walden, V.P.; Warren, S. Ground-based remote sensing of cloud properties over the Antarctic
Plateau. Part II: Cloud optical depths and particle sizes. J. Appl. Meteorol. 2001, 40, 1279–1294. [CrossRef]

53. Yang, P.; Bi, L.; Baum, B.A.; Liou, K.-N.; Kattawar, G.W.; Mishchenko, M.I.; Cole, B. Spectrally consistent
scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to
100 µm. J. Atmos. Sci. 2013, 70, 330–347. [CrossRef]

54. Yang, P.; Wei, H.; Huang, H.-L.; Baum, B.A.; Hu, Y.X.; Kattawar, G.W.; Mishchenko, M.I.; Fu, Q. Scattering and
absorption property database for nonspherical ice particles in the near-through far-infrared spectral region.
Appl. Opt. 2005, 44, 5512–5523. [CrossRef] [PubMed]

55. Baum, B.A.; Yang, P.; Heymsfield, A.J.; Bansemer, A.; Cole, B.H.; Merrelli, A.; Schmitt, C.; Wang, C. Ice cloud
single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm. J. Quant.
Spectrosc. Radiat. Transf. 2014, 146, 123–139. [CrossRef]

56. Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.;
Dowling, T.; et al. The libRadtran software package for radiative transfer calculations (version 2.0.1).
Geosci. Model Dev. 2016, 9, 1647–1672. [CrossRef]

57. Ackerman, S.A. Global Satellite Observations of Negative Brightness Temperature Differences between
11 and 6.7 µm. J. Atmos. Sci. 1996, 53, 2803–2812. [CrossRef]

58. Wan, Z. MODIS Land Surface Temperature Products Users’ Guide. 2009. Available online: https://icess.eri.
ucsb.edu/modis/LstUsrGuide/usrguide.html (accessed on 13 February 2017).

59. Romano, F.D.; Cimini, D.; Rizzi, R.; Cuomo, V. Multilayered cloud parameters retrievals from combined
infrared and microwave satellite observations. J. Geophys. Res. 2007, 112, D08210. [CrossRef]

60. Efroymson, M.A. Multiple regression analysis. In Mathematical Methods for Digital Computers; Ralston, A.,
Wilf, H., Eds.; John Wiley & Sons: New York, NY, USA, 1960; pp. 191–203.

61. International Mathematical and Statistical Library. User’s Manual. IMSL Library, Fortran Subroutines for
Mathematics and Statistics; International Mathematical and Statistical Library: Houston, TX, USA, 1999;
Available online: http://docs.roguewave.com/imsl/fortran/7.0/math/math.pdf (accessed on 13 February 2017).

62. Lavanant, L. MAIA AVHRR Cloud Mask and Classification. EUMETSAT Contract Documentation Ref.
MF/DP/CMS/R&D/MAIA3, 2002. Available online: www.meteorologie.eu.org/ici/maia/maia3.pdf
(accessed on 13 February 2017).

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://journals.ametsoc.org/toc/amsm/57
http://dx.doi.org/10.1175/AMSMONOGRAPHS-D-15-0023.1
http://dx.doi.org/10.1016/j.jqsrt.2004.05.058
http://dx.doi.org/10.1016/0022-4073(91)90043-P
http://dx.doi.org/10.1029/2001JD000437
http://dx.doi.org/10.1364/AO.41.001604
http://www.ncbi.nlm.nih.gov/pubmed/11921787
http://dx.doi.org/10.1029/2004JD005098
http://dx.doi.org/10.1175/1520-0450(2001)040&lt;1279:GBIRSO&gt;2.0.CO;2
http://dx.doi.org/10.1175/JAS-D-12-039.1
http://dx.doi.org/10.1364/AO.44.005512
http://www.ncbi.nlm.nih.gov/pubmed/16161667
http://dx.doi.org/10.1016/j.jqsrt.2014.02.029
http://dx.doi.org/10.5194/gmd-9-1647-2016
http://dx.doi.org/10.1175/1520-0469(1996)053&lt;2803:GSOONB&gt;2.0.CO;2
https://icess.eri.ucsb.edu/modis/LstUsrGuide/usrguide.html
https://icess.eri.ucsb.edu/modis/LstUsrGuide/usrguide.html
http://dx.doi.org/10.1029/2006JD007745
http://docs.roguewave.com/imsl/fortran/7.0/math/math.pdf
www.meteorologie.eu.org/ici/maia/maia3.pdf
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Instruments and Data Description 
	Emissivity and Simulated IASI Data 
	Observed Arctic Emissivity Spectra 
	Simulated Clear-Sky IASI Spectra 
	Simulated Cloudy IASI Spectra 

	Arctic Cloud Detection 
	Validation of Cloud Detection 
	Conclusions 

