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Abstract: Many cities in the Global South are facing rapid population and slum growth, but lack 
detailed information to target these issues. Frequently, municipal datasets on such areas do not 
keep up with such dynamics, with data that are incomplete, inconsistent, and outdated. 
Aggregated census-based statistics refer to large and heterogeneous areas, hiding internal spatial 
differences. In recent years, several remote sensing studies developed methods for mapping slums; 
however, few studies focused on their diversity. To address this shortcoming, this study analyzes 
the capacity of very high resolution (VHR) imagery and image processing methods to map locally 
specific types of deprived areas, applied to the city of Mumbai, India. We analyze spatial, spectral, 
and textural characteristics of deprived areas, using a WorldView-2 imagery combined with 
auxiliary spatial data, a random forest classifier, and logistic regression modeling. In addition, 
image segmentation is used to aggregate results to homogenous urban patches (HUPs). The 
resulting typology of deprived areas obtains a classification accuracy of 79% for four deprived 
types and one formal built-up class. The research successfully demonstrates how image-based 
proxies from VHR imagery can help extract spatial information on the diversity and 
cross-boundary clusters of deprivation to inform strategic urban management. 

Keywords: deprivation; slum; informal settlement; urban remote sensing; logistic regression; 
random forest classifier; Mumbai 

 

1. Introduction 

Official maps often omit the existence of deprived areas [1] or declare them to be homogeneous 
[2,3]. However, deprived areas generally differ in their histories, their morphologies, services, 
socioeconomic, conditions and tenure (ranging from pavement dwellers and large slum areas to 
deprived resettlement colonies). Finding reliable information on deprived areas is a complex 
problem, as illustrated by population estimates in the large Mumbai slum Dharavi, which, according 
to [4], range from 300,000 to 900,000 inhabitants. Furthermore, deprivation mapping is often carried 
out at the administrative ward level (c.f. [5,6]), hiding spatial differences within wards and 
clustering across ward boundaries. This is a particular problem if wards are rather large, as is the 
case of the health wards in Mumbai (of which there were 88 at the time of the 2001 Census, with an 
average population of 136,000). In the 2011 Census data, the metropolitan area of Mumbai is divided 
into 24 administrative wards, with populations ranging from 127,290 (city [7]) to 941,366 people 
(suburban [8]). Linking and integrating spatially detailed information on slums to such large and 
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aggregated spatial units is a problem [9], thus even when data on slums are available they are often 
not used as useful spatial relationships cannot be built. 

Very high resolution (VHR) remote sensing imagery has become a valuable information source 
regarding urban morphologies [10–13], “providing spatially disaggregated data in a more timely 
fashion for urban planning processes” [14] (p. 2) compared to traditional ground-based surveys [15]. 
The utility of VHR imagery covering large areas is particularly relevant for complex megacities with 
rapid changes. With respect to the megacity of Mumbai, several studies have shown the potential of 
VHR imagery to map urban land uses (e.g., [16]), and particularly deprived areas (e.g., [4,15,17–19]) 
that house a large share of the population. Nevertheless, to date, little research has quantified their 
specific morphological characteristics. A first attempt by [4], measuring morphological 
characteristics of slums in Mumbai, showed them to have similar characteristics in terms of high 
densities, building size, and height, but stressed their heterogeneous morphological characteristics. 
However, they did not focus on typologies of deprivation. 

A recent review of slum mapping via remote sensing [20] revealed a range of methods and 
image features, e.g., object-based image analysis (OBIA), grey-level co-occurrence matrix (GLCM), 
and spatial metrics, where [21,22] showed the effectiveness of index-based approaches to reduce 
feature dimensionality for urban mapping. OBIA allows the extraction of roof objects as well as the 
extraction of homogeneous settlements depending on the way the scale parameters are set [23]. 
Homogenous settlements are also referred to as homogenous urban patches (HUP), following [24]. 
However, the capacity to automatically extract roof objects depends on the image resolution and 
urban morphology, which is challenging in many Asian cities, where often large areas of relatively 
small buildings display high clustering [20,25]. Several remote sensing studies have extracted slum 
settlements (or slum HUPs) (e.g., [17,23]). These studies used typical morphological characteristics 
of deprived areas (i.e., small building sizes, high densities, and organic layout pattern), allowing 
their mapping via image features (spectral, texture, or spatial metrics). Spectral information assists 
in differentiating typical roofing materials between deprived and other built-up areas. However, the 
use of different roofing materials, ranging from plastic, wood and metal to concrete and asbestos, 
makes mapping relying on spectral information alone problematic. An alternative is employing the 
GLCM, which calculates several textural measures within a user-defined window size and shift [26]. 
Previous studies employing GLCM-derived texture measures for mapping deprived areas include 
contrast [23,27], entropy [28,29], and variance [17,30]. Spatial metrics are increasingly used to 
analyze and quantify the urban morphology (e.g., [15,31,32]), where [23] showed the utility of 
combining both texture and spatial metrics for extracting slums in Pune (India), but also illustrated 
uncertainties in slum identification [33]. However, they did consider slums a ‘homogeneous zone’, 
while uncertainties might also be caused by different types of deprived areas. 

Therefore, the aim of this paper is to analyze the capacity of VHR imagery and image 
processing methods to map locally specific types of deprived areas in Mumbai, which can help in 
analyzing their diversity and clustering. The structure of the paper is as follows. Section 2 develops a 
framework for analyzing the diversity of deprived areas in VHR images. Section 3 describes the 
methodology to create a typology of deprived areas. In Section 4, a random forest classifier and 
logistic regression (LR) model are employed using VHR imagery to model deprived areas. The 
output provides significant image features of the LR model and an accuracy assessment. In Section 5, 
we discuss the main findings and the application relevance followed by conclusions on the scope, 
capacities and limitations for extracting such typologies from VHR imagery. 

2. The Diversity of Deprived Areas 

Literature on the diversity of deprived areas was utilized to conceptualize determinants that 
drive variations in their morphology, as well as variations in categorizing their morphology. Such 
conceptual information is key to establishing a typology of deprived areas for a particular 
geographic context, in this case the city of Mumbai. 



Remote Sens. 2017, 9, 384  3 of 22 

 

2.1. Conceptualizing Deprivation 

Unlike classical concepts of poverty that focus on income and consumption, the term 
“deprivation” is often used in understanding poverty as a multi-dimensional phenomenon, applied 
for example in the index of multiple deprivation [34]. Deprived areas, similar to ‘slums’ or ‘informal 
settlements’, refer to areas with sub-standard housing conditions and poor physical and 
environmental conditions offering housing to predominantly poor people [23]. They may also 
include areas that have been formally developed (e.g., resettlement colonies) but have slum-like 
living conditions [5]. Inhabitants of such areas are commonly deprived of access to basic services and 
live in overcrowded and unsafe environments. The official definitions of deprived areas and the 
terminology used to refer to such areas vary by country, but also within countries or even localities, 
where various definitions and interests are commonly found [35]. Official slum definitions can be 
very political. The Indian census has three types of slums: ’notified’ (by the government under any 
Act), ‘recognized’ (areas not formally notified but recognized by the government), and ‘identified’ 
(areas of at least 300 people or 60–70 households that live in congested and unhygienic 
environments, lack basic services, and need to be visited and registered by a Charge Officer) [36]. 
Notified and non-notified slums differ in the level of service provision, as for notified slums the local 
government has the obligation of basic service provision and upgrading [37]. Because of this, in 
India, often a large proportion of deprived areas are excluded from basic service provision and 
upgrading as they lack notification (e.g., pavement dwellers), or city governments have simply 
stopped notification processes [38]. 

According to the census of 2001 and 2011, the urban slum population in India decreased from 
26.3% [39] to 17.4% [36], suggesting the success of policy initiatives such as Basic Services for the 
Urban Poor (part of the Jawaharlal Nehru National Urban Renewal Mission; [40]). However, the real 
extent of deprived areas might be concealed by such statistics as they exclude several types of 
deprived areas (e.g., pavement dwellers and resettlement colonies) [36,38]. Administrative 
boundaries of wards have also often changed, and, furthermore, the average deprivation per ward 
(e.g., via a deprivation index [6]) may mask slum areas. 

Slums, and deprived areas in general, are “more heterogeneous than is often assumed” [38]  
(p. 60). UN-Habitat [41] analyzed the vast diversity of slum types for 30 cities in the Global South 
and North. We categorize their typology into a concept of deprived areas around three main 
determinants (Figure 1). 

As shown in Figure 1, first, deprived areas differ in terms of object types, for example, housing 
types range from pavement dwellings (using locally available material) to multi-story housing or the 
occupation of dilapidated (historic) buildings. Second, land and site characteristics such as reserves on 
public land (e.g., along roads or railways), small encroachments between formal areas or illegal 
subdivisions on agricultural land, which can have very regular patterns, result in different types of 
deprived areas differing in location, size, densities and access to services. Third, temporal dynamics 
and the history of areas determine the typology (e.g., chawls in Mumbai developed mainly in the 
early 20th century as 3–5-story housing for textile and other industrial workers). Patterns of 
settlements differ when areas are developed by collective and organized occupation, such as the 
organized land invasion in Latin America (e.g., in Lima, where several thousand people invaded 
land within one day [42]), compared to areas incrementally developed by individual households. 

Having conceptualized the determinants that produce the diversity of deprived areas, we 
explore how this diversity was recognized in previous remote sensing studies (Table 1). Table 1 
provides examples of studies in the field of remote sensing, differentiating types of deprived areas, 
which we extracted from a literature search (using Science Direct, Web of Science, and Scopus).  
All these initiatives departed from the idea of deprived areas being homogenous, stressing that such 
areas differ among themselves as well as differ from formal urban areas. The identified typologies 
range from two to seven categories and reflect the complexity and diversity of such areas across the 
globe. In some cities, the land/site characteristics have a strong determining influence, as noted for 
Cairo, where differences between developments on former agricultural land are structured by the 
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farm boundaries, while those on desert land have a less orderly morphology. Several typologies also 
include fuzzy or transition classes between informal and formal areas (i.e., semi-formal low-cost 
housing, hybrid, or ex-formal on public or private land) or formal but deprived areas (i.e., basic 
formal). By contrast, [43] showed that informal areas might not be deprived (i.e., affluent informal 
settlements), and might not be relevant targets for pro-poor policies. Thus, having spatial data on the 
combinations of such characteristics would allow for a better understanding of the spatial diversity 
of deprivation and would offer specific information useful for the development of upgrading 
programs. 

 
Figure 1. Determinants of the typology of deprived areas (conceptualized based on the UN-Habitat, 
2003). 

2.2. Deprived Areas in Mumbai: A Typology 

Deprived areas in Mumbai are diverse in terms of their physical characteristics [2,41], which we 
conceptualize utilizing the dimensions geometry, density, pattern, and environment (Figure 2). In an 
earlier study [14], we developed a typology of deprived areas for Mumbai using VHR imagery. That 
typology included five types (Table 1), established through fieldwork surveys and discussions with 
local experts. Their morphological characteristics can be associated with information extracted from 
spectral image analysis, texture analysis, and spatial metrics. This research utilizes this typology for 
mapping deprivation, but since the transition between the types ‘deprived areas with larger 
buildings/chawls’ and ‘basic formal areas’ is ambiguous, these two types are combined. This results 
in four deprived and one formal type of area (Figure 2) whose specific dimensions are translated into 
image features, allowing them to be mapped. 
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Table 1. Typologies of deprived/informal/slum areas and their categories, modified from [20] and 
their determinants (O = object types, L = land/site characteristics, T = temporal dynamics) (check 
marks: x = dominant) (x) = weak. 

  Determinants
No. Categories Location and Author(s) O L T

2  Semi-formal low-cost housing 
 Slums 

Quezon City  
(Philippines) [44] 

x x  

2 
 Type I: small to medium-sized buildings, narrow/irregular streets 
 Type II: very small buildings and high building density, 

unidentifiable roads 

Caracas (Venezuela), Kabul, 
Kandahar (Afghanistan),  
La Paz (Bolivia) [10] 

x x  

2 

 Classical informal settlements: irregular layout, small roofs, and 
high density 

 Atypical informal settlements: some regular patterns, less 
compact, even-sized roofs  

Nairobi (Kenya) [45] x x  

3 
 Informal A (squatter settlements),  
 Informal B (precarious encroachments) 
 Basic formal areas (often resettlement colonies) 

Delhi (India) [15] x x (x) 

3 
 Semi-formal on agricultural land 
 Squatting in desert land 
 Hybrid or ex-formal on public or private land  

Cairo and Alexandria (Egypt) 
(distinguished further into  
12 subtypes) [46] 

(x) x x 

3 
 Affluent informal settlements 
 Moderate informal settlements 
 Disadvantaged informal settlements 

African cities [43] x x  

3 
 Informal settlements on former agricultural land 
 Informal areas on former desert state land 
 Deteriorated historic core 

Cairo (Egypt) [47] x x x 

4 

 Resettlement colonies 
 Unauthorized colonies 
 JJ-colonies (Jhuggi Jhompri) 
 Urban villages 

Delhi (India) [48] x x x 

4 

 Very low-income settlements 
 Low-income settlements 
 Temporary settlements 
 Notified and recognized slums 

Bangalore (India) [49] x x x 

4 

 Informal settlements with regular grid 
 Transport infrastructure pattern adopted informal settlement 
 Informal settlements with concentric circular pattern around the 

utilities or urban features 
 Terrain topography adopted informal settlements 

Dar es Salaam (Tanzania) by 
[50] 

x x  

5 

 Slum pockets  
 Slum areas with small buildings  
 Slum areas with mix small/large buildings 
 Slum areas with larger buildings/chawls  
 Basic formal areas 

Mumbai (India) [14] x x (x) 

7 

 Grid outline of regular slums 
 Grid outline of irregular slums 
 Slums adapted to the terrain topography 
 Slums with a central corridor 
 Radial-shaped slums 
 Slums with platform occupation (terraces) 
 Slums occupying the hill flat heads 

East London (South Africa), 
Salvador de Bahia (Brazil) 
and Lima (Peru) [51] 

 x  
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TYPE 1 TYPE 2 TYPE 3 TYPE 4 TYPE 5

Slum pocket * Slum area, small 
buildings (slum small *)

Slum area, mix small/larger 
buildings (slum mix *) 

Basic formal and chawl 
(basic/chawl *) 

Formal areas  
(formal *) 

Geometry: Small roofs 
Density: High 
Pattern: Organic 
Environment: Pockets along 
roads or within formal areas 

Geometry: Small roofs 
Density: High 
Pattern: Organic 
Environment: Large areas 
with diverse uses 

Geometry: Small–medium roofs 
Density: Mix 
Pattern: Diverse 
Environment: Some areas in more 
elevated terrain 

Geometry: Medium roofs 
Density: High-medium 
Pattern: Some structure 
Environment: Little 
vegetation within areas 

Geometry: Large roofs 
Density: Medium - low 
Pattern: Well structured
Environment: Higher 
vegetation cover 

  

Figure 2. Typology of deprived areas and their dimensions (ground photo in 2009) (* label used). 

Our typology (Figure 2) ranges from slum pockets/encroachments (e.g., pavement dwellings) 
along physical infrastructure (Figure 3) such as highways, pipelines, or the airport area to more 
regular and well-maintained areas with houses of several floors with proper paths and open spaces 
between the houses. Type 1, slum pockets, are often temporary areas along the transport network or 
‘islands’ within formal areas, displaying poor housing structures, very high densities, and a lack of 
access to basic service provision. The second type concerns long-established and often large 
settlements with very high densities, small houses, and narrow lanes between them. Such areas 
commonly lack access to basic services such as piped water or a closed drainage system. The third 
type (Figure 4) has mixed housing sizes including slightly larger houses of 1–2 floors, though often 
in irregular arrangements with somewhat larger paths between the houses, still leaving very little 
space between the houses. Despite high densities and few open spaces, houses and spaces are often 
rather clean and well-maintained. Frequently, some basic infrastructure is present. The fourth type 
consists of a gradual transition of deprived informal to formal areas with medium-sized or larger 
buildings (e.g., chawls built for textile workers), and settlements with wider paths and streets as well 
as open but limited green spaces (e.g., resettlement colonies). These areas mostly have access to basic 
infrastructure. 

Besides the four types of deprived areas, formal areas are classified separately to analyze 
whether deprived areas differ from this type. Formal built-up areas are rather heterogeneous, but 
display a relatively regular building layout, larger building sizes, more vegetation cover, and 
commonly have lower built-up densities. The four deprived types can be relatively well 
distinguished from formal areas via the GLCM variance [17]. 

 
Figure 3. Deprived area in Mumbai along a road (ground photo in 2009). 
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Figure 4. Deprived area in Mumbai climbing up a steep slope (ground photo in 2009). 

3. Materials and Methods 

The main approach used in this study to map the diversity of physical deprivation (Figure 2) at 
the spatial level of HUPs combines VHR imageries with available spatial data. The spatial 
aggregation to HUPs is done via image segmentation, creating homogenous areas. For producing a 
typology of deprivation, both a random forest classifier and LR modeling are employed. Details on 
the study context, data, and methods are described in the following sub-sections. 

3.1. Study Area Context and Available Dataset 

The study area is the city of Mumbai, India, which has a present population of about 12.4 
million, with about 41.8% living in slums [52]. For this research, eight scenes of WorldView-2 images 
(PAN: 0.5 and MS: 2 m) acquired in 2009 have been provided by DigitalGlobe, covering an area of 
81.34 km2. The scenes are combined into one image mosaic covering a part of the city of Mumbai 
(Figure 5). 

Besides image data, several GIS layers from OpenStreetMap (downloaded in 2010 after we had 
received the images) (e.g., water bodies, roads) and the SRTM DEM via USGS (downloaded in 2016: 
version: 1 arc-second) are used. Moreover, the index of multiple deprivation (IMD) based on various 
statistics from the Indian census of 2001 (Figure 5) is available [6]. It maps multiple deprivation 
experienced within Mumbai at the level of health wards. For the city of Mumbai, the IMD ranges 
from 0.22 for the least deprived ward up to 0.44 for the most deprived ward (range 0–1). A ward 
with a hypothetical value 0 would imply a fully planned upper-middle class area, without deprived 
households, while a ward with a value of 1 would mean that all households in the entire ward are 
deprived in all aspects (i.e., have no access to sanitation, water, electricity, education, bank accounts, 
or scooters; live in overcrowded dwellings; are unemployed; and are all members of a scheduled 
caste) [6]. The temporal inconsistency of the index and imagery is discussed in Section 3.4.3. 
Although only 17 out of 88 health wards are covered by the images, the area has a good mix of the 
full range of the IMD (Figure 5).  

For developing the LR model, aimed at mapping the typology of deprivation, 94 ground-truth 
points (training sample) are available from fieldwork undertaken in 2011 and 2013. For accuracy 
assessment, an additional 170 ground-truth points were collected within three subunits through 
fieldwork in 2015 for another study [53], which we could use for this study as reference (test sample). 
The two ground-truth sets are not combined because the training set covers the entire study area, 
while the test set focuses on three subunits. All ground-truth data were collected as point data and 
recorded the dominant built-up type in the immediate surroundings. To overcome problems with 
temporal inconsistency between image and ground-truth (test) data, a visual inspection of the points 
was performed, comparing the imagery from 2009 with Google Earth images from 2015; as a result, 
four points were removed for having obvious land cover/use changes. The random selection of 
points within deprived areas led to an unequal distribution of points across the types of deprived 
areas. As a result, the types ‘slum small’ and ‘formal’ are overrepresented.  
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Figure 5. Health wards of Mumbai, classified by levels of deprivation (left; high values indicate high 
deprivation; Source: [6]) and image mosaic covering a central part of Mumbai (right; Source: 
DigitalGlobe). 

3.2. Methodology—Mapping the Diversity of Deprived Areas  

The methodology to map the diversity of deprived areas consists of (1) extracting image 
features, (2) analyzing the significance of image feature, and (3) extracting different types of 
deprived areas, presented in Figure 6.  

 
Figure 6. Methodology—mapping diversity of deprived areas in Mumbai. 

First, to extract image features, the basic land cover/use classes (built-up (deprived and formal), 
vegetation, water, soil, road, and shadow) are mapped using a RF classifier, employing our 
parameter setting of a previous study on Mumbai [17]. The NDVI (normalized difference vegetation 
index), edges and GLCM texture measures (variance, contrast, homogeneity, entropy, dissimilarity, 
and second-moment mean) are extracted using the WorldView images. For the extraction of the 
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GLCM we used a window size of 21 × 21 pixels, which was optimized in a previous study on the 
same image [17].  

The result of the land cover/use classification showing the built-up classes (deprived and 
formal) having an overall pixel-based accuracy of 90% with a Kappa of 0.87 (for details see [17]), are 
used to calculate several spatial metrics with the potential to describe aggregation (AI), shape 
(FRAC, SHAPE), density (PD), and homogeneity (SHDI and SHE) conditions in deprived areas. The 
rationale for the selection of features to map deprivation is provided in Section 3.3. The selected set 
of metrics [54] consists of: 

 Aggregation index 

( )(100)
max



ii

ii

g
AI

g
 (1) 

 Fractal dimension 


(0.25 )ij

ij

p
FRAC

a
2 ln

ln
  (2) 

 Patch density 

(10000)(100) in
PD

A
  (3) 

 Shape index 

min


ij

ij

p
SHAPE

p
 (4) 

 Shannon’s diversity index 

1
( ln ) m

i ii=
SHDI P P  (5) 

 Shannon’s evenness index 


m

i ii=
- (P *ln

SHEI
m

P )
1

ln
 (6) 

where AI: gii = number of like adjacencies, max→gii = maximum number of like adjacencies; FRAC: pij 
= perimeter (m) of patch ij, aij = area (m2) of patch ij; PD: m = number of patch types, A = total 
landscape area (m2); SHAPE: pij = perimeter of patch ij, min pij = minimum perimeter of patch ij; 
SHDI/SHEI: Pi = proportion of the landscape of class I, and m = number of classes. 

In this study, HUPs are the main spatial analysis unit for aggregating pixel-based information. 
They are areas of both homogenous textural and spectral characteristics, e.g., representing formal 
areas or deprived neighborhood types. HUPs, as defined by Liu, Clarke and Herold [24], (1) have 
homogenous texture; (2) consist of several land-cover types; (3) have matching physical boundaries; 
and (4) do not contain single objects and are sufficiently large. Thus HUPs are extracted via image 
segmentation using multi-resolution image segmentation employing the road network as thematic 
layer (to refine boundaries), with a scale parameter of 200, following our previous study in Mumbai 
[17]. However, the OSM road data have limitations in terms of consistent coverage in countries of 
the Global South [9]. In Mumbai, such inconsistencies exist in particular in slums. As a consequence, 
we did not use footpaths, which are only available for some slum areas (e.g., Dharavi).  

Second, the significance of the derived image features is analyzed. Therefore, all image features 
(e.g., based on spatial metrics, GLCM) are aggregated at HUPs and the training set of 94 
ground-truth points is used to derive significant features that differentiate types of deprived areas 
(details are given in Section 3.4.1). Third, to extract the typology of deprivation, multiple regression 
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modeling is used and the accuracy is assessed by a set of 166 test samples (details are given in 
Section 3.4.2). 

3.3. Extraction of Features to Map the Diversity of Deprivation 

Based on the four morphological dimensions of deprived areas in Mumbai, i.e., environment, 
density, geometry, and texture pattern (building on the earlier work of [4,15,22,25,55–57]), image 
features are created with the potential to capture the diversity of such areas (Figure 2). This list of 
image features (Figure 7) is generated based on distinguishing features reported in slum mapping 
studies (e.g., [4,10,22,23,56,58–60]), as well as by considering the local characteristics of deprived 
areas in Mumbai.  

Earlier studies [15,25] showed that deprived areas display diversity in terms of environmental 
(environ) features such as location on steep slope. Furthermore, land cover/use characteristics often 
vary among deprived areas; e.g., large and very densely built-up areas have little land cover/use 
heterogeneity (measured e.g., by SHDI and SHEI) while small slum pockets are often surrounded by 
vegetation or other land cover/use types. The patterns of deprived and formal areas show distinct 
differences, meaning that deprived areas commonly have more organic layouts and formal areas 
more regular ones. Yet, texture pattern differences exist among deprived areas, which can be 
measured by GLCM features. The geometry features explore object shape variations and 
arrangements (e.g., via AI, SHAPE, FRAC) [61]. Building layouts in deprived areas are often less 
complex and object sizes are small compared to formal areas. However, these features show 
variations, e.g., very small objects in areas of slum pockets compared to larger buildings in chawls or 
resettlement colonies, which can be very densely built-up. Thus density features also show variations 
among deprived areas, e.g., lower densities in areas of the type ‘slum mix’ compared to ‘slum small’. 
For a large number of features (e.g., GLCM, edge features) the panchromatic band of WorldView-2 
imagery is used, while for some density, geometry and environment features, the results are derived 
from the random forest classification (land cover/use) of the WorldView-2 images (e.g., shadow, 
built-up). For calculating some of the geometry and environment features, spatial metrics is used. 
For line density, road network data from OSM are used, while topography features are derived from 
the SRTM DEM. The features are either calculated using a 21 × 21 window (e.g., GLCM) or are 
directly captured per HUP (e.g., slope). However, the features extracted via a window are also 
aggregated to HUPs using the mean feature values (each HUP receives 34 features values). To allow 
comparability of the features, they are normalized employing the method ‘0–1 scaling’. 

 
Figure 7. Morphological dimensions of deprived areas and employed image features. 
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3.4. Modeling the Typology of Deprivation 

To model the diversity of deprivation, two major steps are necessary (details are provided in 
Sections 3.4.1 and 3.4.2): first, the significant features are extracted; and second, they are used within 
a regression model to classify the HUPs. This is done in a stepwise process (Table 2) using the 
normalized features per HUP (Figure 7) to model the typology of deprivation. Thus first, a binary 
backward LR model (modeling the class probability), second, a multinomial LR model (assessing the 
separability of deprived types), and third, four binary LR models (extracting the probability values 
of HUPs belonging to one of the four deprived types) are set up. For all models, features at the 95% 
confidence interval are considered significant (p < 0.05); features below this level are considered not 
significant and are therefore not included. For building the LR models, the first set of ground truth 
(training) data is used. The result is a fuzzy classification; each HUP obtains probability values of all 
built-up types. However, for the final classification the class with the highest probability is selected. 
The steps to arrive at this final typology are detailed in the following sub-sections.  

Table 2. Overview of different logistic regression (LG) models. 

LR Models Type Classes No. Classes Input Output 

1st model Binary LG Formal and deprived 2 All significant 
features 

LR model differentiating 
formal and deprived 

2nd model Multiple LG 
Slum pocket, slum small, slum 

mix, basic/chawl, formal 
5 

All significant 
features 

List of features modeling 
deprived types 

3rd model Binary LG 
Slum pocket, slum small, slum 

mix, basic/chawl, formal 
2  

(in 4 models)
All features of  

2nd model 
LR model classifying the 
typology of deprivation 

3.4.1. Significance of Image Features 

Before employing the features within a regression analysis, their multi-collinearity is analyzed 
using the VIF (variable inflation factor) value, where values should be below 10 to avoid serious 
problems of multi-collinearity [62]. The commonly used VIF threshold value of 10 is used [62,63] 
(other sources suggest a value of 5 [64]). Considering that morphological features have a general 
tendency to correlate, the maximal threshold is selected. Thus only very highly correlating features 
are identified and excluded. Besides analyzing multi-collinearity, the means of all features of the 
built-up types (deprived and formal) are plotted. This allows us to analyze whether features show 
differences for the deprived types. Both the ability to differentiate between deprived types and 
multi-collinearity are used to arrive at a pre-selection of features to be entered into the regression 
model. This step is necessary as the number of training data points would not support the use of a 
very large set of variables (features).  

For the first model, a binary LR model, all deprived types are merged and tested to see whether 
deprived and formal HUPs can be easily differentiated. The model eliminates all non-significant 
features, thereby simplifying the calculation of the HUP probability. In addition, it provides 
classification accuracy and probability values of class memberships (Equation (7)), allowing us to 
classify all HUPs (also HUPs where no ground truth data is available). 
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 (7) 

where P(y) is the probability of y occurring, e: natural logarithm base, b0: interception at y-axis and b1: 
line gradient. 

The result provides the classification of all formal HUPs. To avoid formal areas with larger 
vegetation cover being classified as vegetation HUPs, the classification rule allocates HUPs with a 
mix of vegetation and formal areas to formal areas when the vegetation cover is less than 60%. HUPs 
with more than 60% vegetation cover are classified as vegetation; however, such HUPs might still 
contain individual buildings. 

The second model, a multinomial LR model, assesses whether the features (Figure 7) are able to 
distinguish the different types of deprived areas. The result shows the significant features to be used 
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for the third LR model and the resulting classification accuracies for the various types of deprived 
areas. 

3.4.2. Extracting the Typology of Deprivation 

Employing a third LR model, the most significant features per deprived type are extracted by 
four binary backward LR models. The obtained coefficients and constants for the four deprived 
types are used to calculate the probability of each HUP to belong to a specific type using Equation 
(7). Each built-up HUP (using the result of the land cover/use classification) is classified in a vector 
environment according to the highest probability of the five built-up types. All other non-built-up 
HUPs are also classified using the result of the land cover/use classification; only roads and water 
bodies are derived from OSM. The strength of the model is assessed via the classification accuracy 
and Nagelkerke R2. In a final step, the accuracy of the classification is assessed using the second set 
of 166 ground truth (test) data using the overall accuracy and Kappa. 

3.4.3. Cross-Boundary Health Ward Clusters of Deprivation 

To illustrate the application potential of mapping the typology of deprivation, the results of the 
HUP-based deprivation map and the ward boundaries (including the index of multiple deprivation) 
are superimposed. Despite the temporal inconsistency of the data, this comparison illustrates the 
different aggregation levels of the datasets for a central area of Mumbai, where large areas have been 
relatively stable between 2001 and 2009 (the center was already in 2001 very densely built up, not 
allowing for much in the way of horizontal building dynamics). This comparison focuses on 
problems of aggregated administrative units for analyzing aspects of the urban morphology, as also 
illustrated in [12]. 

4. Results 

In this section, we present the results of the stepwise process to extract the typology of deprived 
areas based on the most significant features. We also illustrate how such data can visualize clusters 
of deprivation across ward boundaries and show their diversity.  

4.1. Analyzing the Correlation of Potential Features 

Both the ability to distinguish the five built-up types and the correlation of all 34 image features 
(Figure 7) are analyzed for all image features aggregated at the level of built-up HUPs. Many of the 
features highly correlate with several others. Therefore, the most correlating and least differing 
features are excluded from the selection. Mean feature values per built-up class are shown in Figure 
8. For several features, formal areas show large differences with the deprived area types, e.g., 
‘GLCM variance’, ‘built-up PD’ (patch density), ‘shadow and line density’, ‘shape index’ and 
‘vegetation percentage’. However, for ‘GLCM entropy STD’, ‘built-up density’ and ‘mean built-up 
area’ formal areas and slum pockets have rather similar values. This seems rather surprising, but is 
caused by small slum pockets often being part of a larger HUP, which also contains non-built-up 
classes (e.g., soil) or in-between formal areas, while formal HUPs are often rather small because of 
the surrounding vegetation cover being part of a different HUP. This is also confirmed by the high 
‘land cover/use (lc/u) evenness’ value of slum pockets, indicating that they have the highest mix of 
land cover/use classes. The largest ‘mean area’ is displayed by slum areas with small buildings; this 
type covers large areas across the study area. In general, slum areas with mixed building sizes are 
located at higher elevation (DEM min) and on steeper slopes (‘slope mean’). Basic formal areas and 
chawls have the ‘highest built-up densities’ and ‘GLCM second moment’, while having the lowest 
‘shadow density’. 

None of the 15 remaining features has a VIF value of more than 10 (critical value), but several 
have more than 5, which still signals relatively high collinearity (Table 3). However, all features are 
entered into the LR model. 
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Figure 8. Mean feature values of training and reference samples. 

Table 3. VIF values of morphological features of deprived areas when analyzing multi-collinearity. 

Features VIF Dimension 
Vegetation percentage 5.536 Environment 

Land cover/use evenness 4.507 Environment 
Slope mean 2.503 Environment 
DEM min 2.620 Environment 

GLCM entropy mean 5.695 Texture pattern 
GLCM entropy STD 1.444 Texture pattern 

GLCM second moment mean 3.183 Texture pattern 
GLCM variance 5.372 Texture pattern 

Built-up aggregation 4.654 Geometry 
Shadow density 1.274 Geometry 

Built-up shape index 3.896 Geometry 
Built-up mean area 3.613 Geometry 

Built-up density 6.455 Density 
Built-up Patch Density 5.186 Density 

Line density 1.618 Density 

4.2. Features Used to Distinguish between Formal and Deprived Areas 

A first binary backward LR model to distinguish between formal and deprived areas using all 
15 features shows that GLCM variance alone is sufficient to distinguish them, with a classification 
accuracy of 98.9 % and Nagelkerke R2 of 0.93. The coefficients and constants displayed in Table 4 are 
used to calculate the probability of a HUP being formally built-up. To simplify the calculation, the 
HUPs are stored as vector data and probability values are attributes.  
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Table 4. Logistic regression (LR) model distinguishing formal and deprived areas. 

Features B Sig.
GLCM variance 0.41.455924 0.002 

Constant −6.481 0.000 

4.3. Analyzing the Separability of Deprived Areas 

The second LR model analyzes whether deprived area types can be distinguished based on the 
selected set of 15 features within a multinomial LR model. Table 5 shows the classification result for 
all types using the training data, having an overall accuracy of 83%. The lowest accuracy is obtained 
for the ‘slum mix’ category, with only 61.5% correctly predicted HUPs. This was to be expected, as 
these deprived areas contain a mixture of small and large buildings, illustrating the complexity of 
slum typologies. In addition, the type ‘basic/chawl’ shows some incorrect predictions, which relates 
to the diversity within this type, ranging from chawls to resettlement colonies. Problems within the 
type ‘slum small’ often relate to the definition of HUPs that sometimes include smaller areas of other 
types and relate to the fact that ground-truth was collected as point data, not necessarily 
representing the dominant type of a larger HUP. Very stable predictions are obtained for the type 
‘slum pocket’ and the type ‘formal area’ (Table 5). However, the training samples for the type ‘slum 
pocket’ are rather few.  

Table 5. Accuracy of the multinomial LR model of all built-up types based on training samples (OA: 
overall accuracy).  

Observed 

Predicted (Training Samples)
 Slum Pocket Slum Small Slum Mix Basic/Chawl Formal Accuracy

Slum Pocket 10 0 0 0 0 100.0% 
Slum Small 0 21 2 4 0 77.8% 
Slum Mix 0 2 8 3 0 61.5% 

Basic/Chawl 0 3 2 13 0 72.2% 
Formal 0 0 0 0 26 100.0% 

Training samples (N) 10 26 12 20 26 94 
Overall percentage (N) 10.6% 27.7% 12.8% 21.3% 27.7% OA: 83.0% 

4.4. Features to Classify Deprived HUPs 

To calculate the probability of a built-up HUP belonging to a specific deprived type, four binary 
backward LR models are employed. After eliminating all non-significant features (via the second 
model), the coefficients and constants for the significant features of the four types of deprived areas 
were obtained (Table 6). Out of the 15 features, only seven significant features were finally used 
within the four LR models, i.e., ‘built-up mean area’, ‘GLCM second moment mean’, ‘GLCM entropy 
mean’, ‘built-up patch density (PD)’, ‘GLCM variance’, ‘land cover/use evenness (SHEI)’, and ‘DEM 
mean’. The most commonly reoccurring feature is the ‘GLCM variance’. The features ‘built-up mean 
area’, ‘land cover/use evenness’, and ‘DEM mean’ are significant features for two types, while others 
are only significant for a specific type, e.g., ‘GLCM entropy mean’. The coefficients and constants are 
used (Equation (7)) to calculate the HUP probabilities for all types. All models have a high 
Nagelkerke R2 (ranging from 0.88 to 0.98), showing that they have very good explanatory power, 
even though there were only a few samples for some deprived classes.  

For the classification of the formal areas, the results of Table 4 are employed. Non-built-up 
HUPs (soil and vegetation) are classified using the land cover/use classification and OSM layers 
representing water bodies and roads. The classified HUPs (Figure 9) show the distribution of 
deprived areas. At the center of the mosaic is the international airport of Mumbai, with several 
deprived areas in its environs. Most large areas consist of the type ‘slum small’, whereas the type 
‘slum pocket’ is scattered throughout the entire study area. The type ‘basic/chawl’ is found more 
towards the edges of the studied area, while the type ‘slum mix’ is often found adjacent to areas of 
the type ’slum small’. The statistics (Figure 9) show that 60.3% of the built-up area is ‘formal’, 
followed by 27.3% ‘slum small’, 5.6% ‘slum pockets’, 3.4% ‘slum mix’ and ‘basic/chawls’. Deprived 
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areas in this part of Mumbai represent almost 40% of the built-up area, while deprived areas are 
diverse (with ‘slum small’ as the most commonly occurring type).  

Table 6. LR models for all deprived area types.  

Type Features B Accuracy

Slum Pocket 

Built-up mean area 1704.6 

Nagelkerke R2: 0.88 
GLCM variance −290.4 

Built-up patch density −308.5 
Constant 227.7 

Slum Small 

GLCM variance −265.4 

Nagelkerke R2: 0.98 
Land cover/use evenness 645.0 

Built-up mean area 415.8 
Constant −513.5 

Slum Mix 

GLCM variance −974.1 

Nagelkerke R2: 0.92 
DEM mean  −492.9 

GLCM second moment mean −452.1 
Constant 317.1 

Basic/Chawl 

GLCM variance 624.87 

Nagelkerke R2: 0.87 
DEM mean −755.6 

GLCM entropy mean −149.5 
Land cover/use evenness 427.1 

Constant −102.8 

 
Figure 9. Mapping the typology of deprived areas on top of a land cover/use map (background 
image source: DigitalGlobe). 
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Some problems exist with the dominant land cover/use type per HUP. For example, formal 
HUPs that are dominated by more than 60% vegetation cover are classified as vegetation HUP (see 
example 10a). Also, smaller areas that are within a larger HUP, e.g., small formal areas within larger 
deprived areas (see the example in Figure 10b,c) are omitted. Slum pockets are most prone to be 
completely or partially omitted (see the example in Figure 10d) due to their size. The transition 
between deprived types is very much influenced by the selected scale. Thus HUPs sometimes 
include a mix of formal and slum areas (see the example in Figure 10b), while the transition zones 
between deprived types are often not entirely crisp (see the example in Figure 10c).  

(a) (b) (c) (d) 

Figure 10. Mapping a typology of deprived areas: scope and limitations. (a) Formal and vegetation; 
(b) transition between slum types; (c) mix of deprived types; (d) slum pocket partial extraction. 

The overall classification accuracy for a typology of deprived areas is 79%, with a Kappa value 
of 0.67 (Table 7). The types with the best performance (considering producer and user accuracy) are 
‘formal’ and ‘slum small’, followed by ‘basic formal/chawl’ and ‘slum pocket’. The type ‘slum mix’, 
which has in its morphological definition some degree of fuzziness, has the lowest accuracy. 
However, the results show that the employed features allow for the extraction of a complex typology 
of deprived areas, with some limitations.  

Table 7. Confusion matrix classifying HUPs according to a typology of deprived areas.  

 

GROUND REFERENCE (TEST SAMPLES)

 
Slum 

Pocket 
Slum 
Small 

Slum 
Mix 

Basic/Chawl Formal Total 
Producer 
Accuracy 

CLASSIFICATION 
RESULT 

Slum Pocket 7 2 0 0 0 9 77.8%
Slum Small 4 69 9 2 7 91 75.80%
Slum Mix 0 1 4 2 0 6 57.1%

Basic/Chawl 0 0 0 7 1 8 87.5%
Formal 2 3 0 1 45 52 88.2%
Total 13 75 13 12 53 166 
User 

Accuracy 
53.9% 92.0% 30.8% 58.3% 84.9% 

 
OA: 78.9%

Kappa: 0.671 

4.5. Cross-Boundary Health Ward Clusters of Deprivation 

In order to generate information that has societal relevance and can inform the development of 
pro-poor policies, which is often based on census data and commonly aggregated at large 
administrative units, the study examines whether such units are meaningful for mapping the 
diversity of deprivation. The results show that deprived areas do not match the boundaries of health 
wards, nor do health wards necessarily contain homogeneous types of deprivation. As illustrated in 
Figure 11, health ward boundaries crosscut large deprived areas. Furthermore, deprived areas 
within wards differ, sometimes showing adjacent areas of different deprivation types as well as 
large clusters of the same type. Analyzing deprivation based on such administrative spatial units 
obscures the real spatial extent of deprivation and could prevent the efficient targeting of pro-poor 
policies, e.g., [65] showed “considerable spatial variability” (p. 15) of deprivation (in form of a slum 
index) within administrative units (neighborhoods). Combining our classification results with the 
index of multiple deprivation reveals that wards with lower census-based deprivation values may 



Remote Sens. 2017, 9, 384  17 of 22 

 

also have large and cross-boundary clusters of deprivation (see ward A with an IMD of 0.29 in 
Figure 11), while more deprived wards may also have larger formal built-up areas (see ward B with 
an IMD of 0.39 in Figure 11).  

 
Figure 11. Cross health ward clusters of deprivation (A indicates a ward with an IMD of 0.29 and B 
has an IMD of 0.39). 

When calculating the percentage of deprived areas from the total built-up area per ward (based 
on our classification results), the Pearson correlation coefficient with the multiple deprivation index 
(IMD) is 0.83, showing that image features are helpful indicators for mapping deprivation. When 
comparing the percentage of deprived areas with the percentage of people living in slums per ward 
(census-based), the correlation, at 0.65, is much lower. This indicates that census statistics do not 
fully cover deprivation in a complex mega-city like Mumbai, and shows the high potential of VHR 
imagery, which is capable of mapping cross-ward clusters and the diversity of deprivation. 
However, this finding is limited by the temporal difference of the two datasets, as the census and 
image data have a time gap of eight years. 

5. Discussion 

The aim of the study was to analyze the capability of image processing methods to spatially 
distinguish different deprived areas in Mumbai from VHR imagery. Deprived areas in Mumbai 
have diverse and complex morphological characteristics, often overlooked in previous studies, e.g., 
[17,18]. The morphological characteristics were conceptualized into four dimensions, i.e., 
environment, texture pattern, density, and geometry, and further utilized in the image-based 
analysis to extract spatial information about their morphological differences. This not only improved 
our understanding of how to extract such information, but also has practical value. For instance, [51] 
stressed that deprived areas with a more regular pattern offer a better “base for subsequent 
improvements and installation of infrastructure”(p. 7) than areas with more irregular patterns, 
which often require more investment for upgrading. Thus, if different morphologies require 
different action for upgrading, detailed knowledge on the morphology of deprivation will support 
planning and decision-making for implementing upgrading policies [66]. However, the employed 
dimensions and their features have an inherent challenge, which refers to the spatial dimension used 
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for its measurement [12]; for instance, density measures vary considerably depending on the 
reference unit used. Thus utilizing a different spatial aggregation level, e.g., via smaller or larger 
HUPs or using more regular outlined blocks will give different feature values and impact final 
mapping results. Nevertheless, we argue that HUPs optimized for the local context are much better 
adapted to reflect the urban morphology compared to administrative units, which are often not 
suitable due to the modifiable areal unit problem (MAUP) [12] and their overly large and variable 
size. 

The extracted morphological features allowed us to capture the diversity of four deprived and 
one formal built-up area type. The significance of these image features was analyzed within a LR 
model, resulting in a set of coefficients and constants for the most significant features (i.e., GLCM 
variance, built-up mean area, land cover/use evenness (SHEI), DEM mean, GLCM second moment 
mean, GLCM entropy mean, and built-up patch density). This allowed us to calculate class 
probabilities for all HUPs, which resulted in a fuzzy probability layer at the HUP level. The final 
typology of deprived areas was based on the highest class probability. Due to the logistical 
challenges of collecting a large set of ground-truth data spread over a large urban area, the number 
of training points was relatively small. Collecting such data based on visual image interpretation, as 
is often done, would introduce a lot of uncertainty, as experts often disagree on the delineation of 
deprived areas in VHR imagery [33,67]. The increasing availability of crowdsourced data and 
Google Street View (e.g., in Indonesian cities) combined with visual image interpretation might, in 
the future, facilitate the extraction of suitable training data. Therefore, it would be interesting to 
repeat the approach for other cities using a larger set of training data. 

Through this study we distinguished different types of deprivation with an overall 
classification accuracy of 79%. Obtained accuracy levels differed by type, showing that slums with 
small buildings had the highest classification accuracy while slums with mixed building sizes and 
the transition type between chawls and basic formal areas had the lowest classification accuracy.  
The aggregation of deprived areas to HUPs allowed for mapping the dominant type of entire 
neighborhoods. However, this aggregation often led to very small clusters of slum pockets (e.g., 
small pavement dwellings) being omitted as they are frequently part of a larger (e.g., formal) HUP. 
Employing a LR model helped to reduce the computational demand, because all feature values were 
aggregated to HUPs stored as vector data (in a raster data structure, image features would consume 
several GB). HUPs are also a more meaningful spatial unit for informing pro-poor policies. 
Furthermore, LR modeling allowed the extraction of the most significant features per type, while the 
fuzzy classification facilitated a better optimization of class threshold (probability) values compared 
to standard image classification methods.  

The presented approach to capture the diversity of deprivation in a large and complex megacity 
was tailored to the local morphology of deprivation (in Mumbai) via the selected image features. 
However, the conceptual level of the four dimensions of the diversity of deprivation has the 
potential of being transferable (for concepts on measuring transferability and robustness, see 
[59,67–69]) to other cities in the Global South. Further studies are recommended to better understand 
and analyze the diversity of deprivation across the globe, as well as to decide which image features 
are relevant for specific regional conditions. 

The application potential of mapping the diversity and clustering of deprived areas was 
illustrated by overlaying the result with the health ward boundaries. This showed that large 
administrative units have limited use in mapping fine-grained patterns of deprivation in a complex 
megacity [15]. The ward boundaries sometimes cut across larger clusters of deprivation, splitting 
them into smaller subunits. For informing pro-poor policy, ward-based information hides the spatial 
heterogeneity of deprivation within wards and across boundaries, hampering effective planning and 
service provision [66]. Thus, more disaggregated and clustered information on deprivation that also 
measures its diversity could improve planning and decision-making in complex and dynamic 
megacities. It also points to the possible benefit of coordinating anti-deprivation action across ward 
jurisdictions, so that spatial coherent investments and improvements are made. Thus, VHR imagery, 
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with its potential for covering larger areas with high temporal frequency, is fit for capturing details 
of the urban morphology beyond the aggregated view of administrative units. 

6. Conclusions 

Deprived areas are not homogenous in their dimensions, and considering them as one class 
ignores their vast diversity. We have shown that their morphological differences can be captured 
from space via image-based features, used as inputs for modeling the morphological dimensions of 
deprivation, i.e., geometry, density, texture pattern, and environment, while other aspects of their 
diversity such as economic activities are not easily captured from space. Employing image-based 
features within logistic regression models allowed for the selection of the most significant features to 
build a typology of deprivation in a very complex Indian megacity. The resulting fuzzy probability 
vector layer allowed for optimizing probabilities thresholds for the different types of deprivation 
and other land cover/use types. Comparing the results with aggregated deprivation maps revealed 
the internal diversity of wards as well as the existence of cross-ward clusters of deprivation. Such 
disaggregated spatial and semantically meaningful information on deprivation from VHR imagery 
has the potential to provide relevant information for strategic urban planning and management in a 
complex and dynamic megacity. Further research could address the transferability of image features 
for mapping locally specific types of deprivation to other cities in the Global South, aiming at 
employing a larger set of training data, which would allow for using larger feature sets. This would 
address one of the identified limitations of this research but also illustrate variations in the typology 
of deprivation across the globe.  
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