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Abstract: Change detection is one of the main applications in earth observation but currently there are
only a few approaches based on radar imagery. Available techniques strongly focus on optical data.
These techniques are often limited to static analyses of image pairs and are frequently lacking
results which address the requirements of the user. Some of these shortcomings include integration
of user’s expertise, transparency of methods, and communication of results in a comprehensive
understandable way. This study introduces an index describing changes in the savanna ecosystem
around the refugee camp Djabal, Eastern Chad, based on a time-series of ALOS PALSAR data
between 2007 and 2017. Texture based land-use/land cover classifications are transferred to values of
natural resources which include comprehensive pertinent expert knowledge about the contributions
of the classes to environmental integrity and human security. Changes between the images are
analyzed, within grid cells of one kilometer diameter, according to changes of natural resources and
the variability of these changes. Our results show the highest resource availability for the year of
2008 but no general decline in natural resources. Largest loss of resources occurred between 2010 and
2011 but regeneration could be observed in the following years. Neither the settlements nor the wadi
areas of high ecologic importance underwent significant changes during the last decade.

Keywords: ALOS PALSAR; multi-temporal analysis; resource monitoring; refugee camps; synthetic
aperture radar (SAR)

1. Introduction

Detecting and understanding processes at the earth’s surface are among the key tasks of spaceborne
remote sensing. Thousands of images stored in archives allow for the analysis of dense time-series of
nearly every region of the earth. In particular is the Landsat continuity mission, delivering valuable data
since the 1970s, which provides an excellent foundation of long-term observations [1,2]. Their potential
for the mapping of land-use and land cover (LULC) has been demonstrated in numerous studies which
exploit the temporal variability of the image information in different methodological frameworks [3–10].
Among others, Song et al. portray the problems regarding atmospheric disturbances in the data and
raise the question to what extent these applications are affected by cloud cover [11]. Of primary
concern is large-scaled classification of LULC often being constrained by cloud cover. According to the
US Department of Energy, about 52% of global land surfaces are covered by clouds on average [12].
In particular, regions within the intertropical convergence zone (ITC) are highly affected by seasonal
or full-year cloud coverage [13–15] which hinders proper analysis of LULC based on series of optical
satellite imagery [16–18].

To overcome this dependency upon favorable atmospheric conditions, satellites with synthetic
aperture radar (SAR), operating at wavelengths which can penetrate cloud cover, are employed.
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Their reliability in acquiring usable imagery is one of the main reasons to utilize them in LULC
applications. Accordingly, the long-term missions of ERS-1/2 [19] and RADARSAT-1/2 [20], plus the
relatively recent Sentinel-1 constellation [21] which was launched in 2014, show high potential for the
investigation of changes in land cover over decades. They also serve well as complementary sources
when operating at the same wavelength [22,23].

The use of SAR imagery has proven effective for LULC classification in many cases. Early studies
mostly applied knowledge-based methods on SAR backscatter in order to separate different classes
of land cover [24–26]. In fact, the first article published in Remote Sensing of Environment, back in
1969, was an interpretation key for SAR backscatter at the landscape level [27]. These studies require
detailed a-priori knowledge about the study area but offer a high degree of control to the user.
Additional features were used to further increase the classification quality in later approaches,
mainly interferometric parameters such as coherence [28–30], but also textural information within
the intensity values at different levels [31–33]. Besides these technological advances, new methods
of supervised classification were developed to assign classes based on sample data. These were required
because, in contrast to optical image information, SAR parameters are not necessarily of consistent
units and value ranges. Among the most popular methods are Bayesian classifiers [34–36], neural
networks [37–39] and random forest classifiers [40–42]. These developments targeting LULC classifications
were complemented by progress in SAR polarimetry. Deeper knowledge of the backscattering behavior
of surfaces and decompositions into different scattering mechanisms additionally increased the quality of
analyses related to land cover [43–46].

Utilizing SAR imagery in a multi-temporal context to monitor changes in land-use or land cover
requires particular attention because of the characteristics of image acquisition and signal propagation.
While the very identification of areas of change is scientifically well-proven and widely-used [47–49],
quantitative and long-term monitoring of distinct classes requires accurate calibration and a robust
handling of speckle [50,51].

Studies investigating landscape sensitivity, the severity of disturbances and human impact based
on SAR data are rare: Townsend and Foster proposed a statistical indicator for the intensity of flooding
for the Roanoke River floodplain (United States) based on eleven RADARSAT-1 scenes acquired
over a period of seventeen months [52]. They used the distinctive signature of water in SAR images
expressed in usually very low backscatter values. They achieved overall model accuracies of 87.8%,
however they only looked at two classes (flooded and non-flooded). Beisl et al. followed a similar
approach for the estimation of landscape sensitivity towards floods based on two JERS-1 mosaics in
Western Arizona [53]. Their study targeted four LULC classes and five levels of flood hazards but only
compared two images (pre- and post-flooding).

Hoffmann et al. derived forest fire damage in East Kalimantan, Indonesia, based on 56 scenes
of ERS-2 from 1997 [54]. They discriminated three different classes of burn severity and additionally
derived a LULC classification. This study is one of the few making full use of large SAR archives for
the assessment of impacts of disturbances on landscapes.

As well, human impacts upon forest systems deforestation of the Amazon rainforests is of special
interest in remote sensing studies. Saatchi et al. made use of the polarimetric covariance between
channels of SIR-C [55], comparing an intra-annual pair of images—interferometric signatures and
coherence [56]. L-band data have been found to be of special importance due to its pronounced
interaction with vegetation volumes such as canopy structures [57–59]. Most of the studies, however,
do not make use of large sets of SAR images provided by the JAXA archives.

For the African continent, Mitchard et al. have found a robust relationship for the estimation
of biomass changes in savanna ecosystems [60,61]. They derived change maps based on 7 biomass
classes for an image pair from 1997 (JERS-1) and 2007 (ALOS PALSAR).

Shen et al. used polarimetric RADARSAT-2 data to derive landscape metrics from eight LULC
classes in the Nanjishan Wetland Nature Reserve, PR China [62]. Although this approach aims at a deeper
understanding of the classified landscape it doesn’t make allowance to investigate temporal changes.
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Based on the prior developments and findings we identified the following research deficits.
While indices of spatial change based on optical data are numerous, there is almost no SAR-based
methodology for long-term analysis of landscape developments at a class level. Pixel-based approaches
developed for optical data are not applicable for SAR data as they do not allow for smaller
misclassifications or isolated pixels arising from speckle effects. Additionally, most studies strongly
focus on a stepwise comparison of image pairs without considering the total variation along the full
time-series [63]. This is especially a problem in landscapes with high dynamics due to wild-fires,
land degradation, vegetation encroachment or strong human impact. For those situations, distinct
indices have to be developed, especially when dealing with SAR or very high resolution (VHR)
optical data [64]. Other indices are highly elaborate but hard to read for people from outside the
field of research. Accordingly, Walker and Peters argue that findings of multi-temporal remote
sensing products are often complicated to read or even misleading and susceptible to making false
conclusions [65].

In order to perform long-term analyses of landscape change independently from cloud cover,
a robust and transparent approach based on radar data has to be developed. As a result, an integrative
index should explain both the location and intensity of changes, as well as their implications for
environmental integrity and human well-being. This index must be reproducible and adjustable to
different needs of the users according to the significance of the targeted classes. Still, it has to be easy
to interpret for anyone, especially because stakeholders and decision-makers are often not familiar
with or interested in the technical background [66–68].

In this paper, we propose an approach challenging these requirements. For this purpose,
we investigate landscape changes in a savannah ecosystem in Eastern Chad. As it is located at
the southern border of the Sahel, desertification, impacts of climate change, and limited resources are
of main concern [69,70]. These types of savannas are observed to show significant changes regarding
vegetation persistence during the last two decades, both positive and negative [71]. The study is
used to answer the following questions: How, where, and how much did the semi-arid landscape
change during the last ten years? Can an overall decrease of natural resources, such as the availability
of fire wood, be observed and to what extent? Do the LULC types show different developments
regarding dynamics and variability? Can land degradation be observed in the direct surroundings
of the settlements as an indicator of human impact? And finally, can these aspects be visualized
in an output map which is easy to read and still includes the severity of changes during the entire
period investigated?

2. Materials and Methods

2.1. Study Area

The study area is located in the center of the Sila region of Eastern Chad (Figure 1, upper right map).
It hosts a total population of about 470,000 inhabitants, resulting in a moderately low population
density of 12.5 inhabitants per square kilometer [72]. It includes the town of Goz Beïda and the refugee
camp of Djabal which was opened to Sudanese refugees in 2004 as a consequence of the large influx
of people seeking shelter from the Darfur crisis [73]. Djabal is one of numerous refugee settlements
(both temporary and permanent) along the 500 km long Sudanese border within Chad’s territory
which were established for people fleeing from civil war and environmental degradation [74,75].

The region lies at the southern border of the Sahel and is regularly affected by droughts [76] but
receives more than 600 mm of annual precipitation on average, allowing for small-scaled agricultural
use [77]. A decrease of summer rains and an increase of temperatures by 0.8◦ Celsius for the past
25 years have been reported, leading to both stronger dependency on crop yields and higher pressure
on usable land [78]. Precipitation is mainly limited to the rainy season between June and September
while the rest of the year is considered as highly arid. Climate can therefore be described as BSh
(Hot semi-arid climate), referring to the Köppen-Geiger scheme.
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The area is dominated by Precambrian bedrock and Tertiary sediments as it lies at the transition
between the geological Sud province and the Nubian Shield within the Chad Basin [79]. Both camp
Djabal and Goz Beïda are located at around 575 m above sea level but they are framed by the Hadjer
Arkop massif in the south and northwest reaching up to 900 m [80]. Due to its location at the transition
from desert to savannas most of the study area is covered by edaphic grassland, rupicolous shrubs,
and scattered dry forest. Generally, tree cover is sparse in this area and mainly consists of single
deciduous trees of the Combretaceae family [81]. The ridges of the Hadjer Arkop massif are sparsely
covered by various Boswellia trees and shrubs [82]. Wadi Aouada, ranging from West to North across
the study area, is accompanied by smaller semi-deciduous riparian forests (Figure 1, main map).
Agricultural use of this land lies at around 30% and mainly concentrates around the few settlements.
It is composed of small-scaled semi-permanent cultivation and bush fallow.

Goz Beïda lies along an important transport axis of Eastern Chad which connects the large cities
of the North (Fada) with the ones in the South (Sarh). A Dutch military base (Ciara) under the mandate
of the European Union was temporarily established between 2008 and 2009 as an additional peace
force in the region [83]. Today, only the Goz Beïda airport remains at this location.
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Figure 1. Location and landscape characteristics of the study area.

2.2. Data and Pre-Processing

2.2.1. Satellite Imagery

As the investigated ecosystem shows strong seasonal dynamics, the data to be used should be
selected carefully. Therefore, all investigated data were acquired during the dry season which extends
from November until March where rainfall below 5 mm is expected. These conditions are favorable
because SAR backscatter strongly varies with changing soil moisture. This could cause temporally
misleading signatures during the rainy season, e.g., high values at smooth and non-vegetated bare soil.
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Additionally, overall vegetation dynamics are smaller during the dry season which increases the
inter-annual comparability of the images despite smaller temporal differences.

Table 1 lists all satellite images used in this study. Considering its temporal coverage, wavelength,
and high spatial resolution, ALOS PALSAR has been chosen as a main input. Landsat data was
additionally used for the collection of reference data. For each year analyzed, a pair of ALOS and
Landsat imagery has been found with a temporal difference ∆t between 0 and 30 days. There is a gap of
observation between 2012 and 2015 because the ALOS PALSAR archive only features data between 2006
and 2011 and ALOS-2 (Daichi) was launched in May 2014. Landsat ETM+ data experienced a failure
of its Scan Line Corrector mechanism in May 2003 causing striped gaps in the data (SLC-off) [84].
However, our study area lies in the center of the scene where this effect is minimal, since 2015 data
from Landsat 8 (OLI/TIRS) could be used instead.

Table 1. Satellite imagery used in this study.

Year/∆t Date Sensor Comment

2007/18 days 24 December 2006 ALOS PALSAR SLC-off
11 January 2007 Landsat ETM+

2008/2 days 27 December 2007 ALOS PALSAR SLC-off
29 December 2007 Landsat ETM+

2009/18 days 29 December 2008 ALOS PALSAR SLC-off
16 January 2009 Landsat ETM+

2010/30 days 2 December 2009 Landsat ETM+ SLC-off
1 January 2010 ALOS PALSAR

2011/20 days 19 February 2011 ALOS PALSAR SLC-off
11 March 2011 Landsat ETM+

2015/0 days 23 January 2015 ALOS-2
23 January 2015 Landsat OLI/TIRS

2016/6 days 22 January 2016 ALOS-2
28 January 2016 Landsat OLI/TIRS

2017/15 days 2 March 2017 ALOS-2
15 February 2017 Landsat OLI/TIRS

2.2.2. Pre-Processing and Collection of Samples

ALOS data was obtained as Level 1.1 products in Slant Range Complex format [85,86]. Pre-processing
included radiometric calibration to radar brightness (Beta Naught, β◦ [87]), multi-looking (n = 2), terrain
flattening to normalize radiometric effects caused by different incidence angles (Flattened Gamma Naught,
γ◦ [88]) and Range-Doppler terrain correction to adjust topographic distortions using a digital elevation
model (1 Arc-Second SRTM) [89]. All rasters were resampled to a common ground resolution of 30 m.
No speckle filtering was applied in order to conserve image texture as accuracies of classifications based
on SAR texture alone are reported to decrease when speckle was removed [90,91].

In order to derive additional information layers we derived image textures based on the
concept of Grey-Level Co-Occurrence Matrix (GLCM) [92] consisting of Cluster Prominence, Cluster
Shade, Correlation, Difference Of Entropies, Difference Of Variances, Energy, Entropy, Grey-Level
Nonuniformity, HT10, Haralick Correlation, High Grey-Level Run Emphasis, IC1, IC2, Inertia,
Inverse Difference Moment, Long Run Low Grey-Level Emphasis, Low Grey-Level Run Emphasis,
Mean, Run Length Non-uniformity, Run Percentage, Short Run High Grey-Level Emphasis, Short Run
Low Grey-Level Emphasis, Sum Entropy, Sum Variance, and Variance. Each of these 25 textures was
calculated for kernels of 3, 9, and 15 pixels in order to extract patterns emerging at different spatial
scales, leading to a total of 75 SAR texture layers per analyzed year.
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Landsat data was obtained as Level-1T (terrain corrected) products. All rasters were radiometrically
corrected by applying conversion top of atmosphere (TOA) reflectance and dark object subtraction
(DOS) [93,94].

Six LULC classes were defined for the analysis: (1) urban areas, (2) bare soil, (3) bare rock, (4) grassland,
(5) shrubland, and (6) forest. We did not include water as a separate class since the study area does not
feature any permanent water bodies and the few remaining temporary flooded areas are covered by the
forests of Wadi Aouada.

Each class is represented by training areas which were automatically derived from the
Landsat scenes. We utilized indices and threshold values from several studies to define areas which
characterize the corresponding class to a best possible degree in each scene. These are listed in Table 2.
The selection of training samples underlies two steps. First, representative areas for every class are
derived in each year observed (see Table 1). Areas which are assigned to the same class throughout all
scenes were then considered as stable over time and transparent according to the corresponding LULC.
For example, a Normalized Difference Vegetation Index (NDVI) value greater than 0.2 is reported as
high for the dry season in Sudanian savanna as found in the study area [95]. If a pixel fulfills this
criterion throughout all images it was considered as forest. Information from near infrared (NIR) and
short wave infrared (SWIR) bands was used for criteria of the classes grassland and shrubland but also
for thresholds for the abiotic surfaces of bare rock and soil. As reference for urban areas, the extent of
camp Djabal in the year 2007 was digitized from the Landsat image. These areas are observed to be
stable over time as the camp reached a stable phase.

To prevent misclassifications, we removed areas smaller than 500,000 m2 from the identified
sample areas. Recognizing the these kinds of savanna ecosystems are highly affected by wildfires [96],
we calculated the Normalized Burn Ratio (NBR [97]) for all years and scenes. This characterizes burnt
areas which were excluded from the identification of sample areas because they no longer reveal
which land cover was present before the fire. Furthermore, clouded areas were excluded throughout
all scenes.

In a second step, a number of 1600 random points was generated within the remaining areas as
sample locations for the SAR classification (see Section 2.3). This technique guarantees that the sample
points were chosen both stratified and random while partially respecting the spatial occurrence of each
class within the study area. Table 2 lists the criteria used for their identification of the sample areas
and the final number of samples per class.

Table 2. Land-use and land cover (LULC) classes and identification of sample areas in the study area.

Class Samples Criterion Source

Urban area 161 (7.2%) Area of the camp in 2007 -
Bare soil 390 (17.6%) Red < 0.25 & SWIR1 > 0.35 Drury (2001) [98]
Bare rock 352 (15.9%) SWIR1/SWIR2 > 1.5 Drury (2001) [98]
Grassland 374 (15.6%) NDVI > 0.15 & NDVI < 0.25 Forkuor et al. (2012) [95]
Shrubland 126 (5.6%) Red < 0.2 & NIR > 0.3 & SWIR < 0.3 Liu et al. (2016) [99]

Forest 172 (7.8%) NDVI > 0.2 Forkuor et al. (2012) [95]
Burnt areas 0 (0%) NBR > 0.15 López-García & Caselles (1991) [97]

Figure 2 shows the remaining areas which were used for the stratified random sampling. It shows
the result of the criteria given in Table 2 which helped to identify stable LULC areas over the
investigated period. Clearly visible are camp Djabal in the middle, surrounded by mostly bare
soil resulting from less vegetation cover and agricultural use, the bare rocks of Hadjer Arkop and the
denser forests of Wadi Aouada in the Northwest. As indicated in Figure 1 grassland and shrubland
cover the wide plains in the North and East.



Remote Sens. 2017, 9, 359 7 of 23
Remote Sens. 2017, 9, 359  7 of 22 

 

 
Figure 2. Identified areas used for the stratified random sampling. 

2.3. Image Classification 

Image classification was performed for each SAR image in Table 1 in order to analyze the 
temporal developments in the study area. However, as a huge number of SAR textures are used 
covering many different value ranges in various units, traditional classifiers for pixel-based 
approaches—such as k-means clustering [100] or Maximum Likelihood estimation [101]—are not 
suitable. We therefore chose a Random Forest classifier (RF [102]) for our study. It is based on the 
concept of classification and regression trees (CARTs [103]) and repeatedly uses random subsets of 
the training data for the modeling of target classes. This automatically makes the best use of the 
feature data (texture layers in our case) with the best prediction ability to make LULC estimations for 
the full scene. For each year, we calculated a number of n = 500 classification trees based on random 
subsets of √n = 22 features. Figure 3 shows the outcomes of the classification as an intermediate 
product of the analysis. 

An accuracy assessment has been performed by manually collected sampling points. These 
points were visually placed on the Landsat image of each year independently from the sampling 
areas described in Section 2.2 so they represent the real occurrence of each LULC during each time 
step. A number of 150 points was collected per class and year which were then compared with the 
results from the SAR classification for the generation of a confusion matrix. 

We achieved overall accuracies of 84.4% (2007), 83.3% (2008), 85.7% (2009), 85.0% (2010), 84.0% 
(2011), 80.3% (2015), 82.3% (2016) and 81.47% (2017) with respective Kappa values of 0.81 (2007), 0.80 
(2008), 0.83 (2009), 0.81 (2010), 0.81 (2011), 0.76 (2015), 0.78 (2016) and 0.77 (2017). These may appear 
low for change detection approaches at first sight, but the proposed evaluation of changes by an 
aggregated index (see Section 2.4) is not pixel-based and compensates smaller misclassifications. As 
shown in Tables 3 and 4, urban areas and bare rock show the highest accuracies due to their clear 
signal in both the optical and the radar images. Bare soil areas also show high accuracies because of 
its distinct backscatter characteristics during the dry season, but were misclassified as grassland in 
some areas of transition. The tables also show that grassland was over-estimated throughout all 

Figure 2. Identified areas used for the stratified random sampling.

2.3. Image Classification

Image classification was performed for each SAR image in Table 1 in order to analyze the temporal
developments in the study area. However, as a huge number of SAR textures are used covering many
different value ranges in various units, traditional classifiers for pixel-based approaches—such as
k-means clustering [100] or Maximum Likelihood estimation [101]—are not suitable. We therefore
chose a Random Forest classifier (RF [102]) for our study. It is based on the concept of classification
and regression trees (CARTs [103]) and repeatedly uses random subsets of the training data for the
modeling of target classes. This automatically makes the best use of the feature data (texture layers in
our case) with the best prediction ability to make LULC estimations for the full scene. For each year,
we calculated a number of n = 500 classification trees based on random subsets of

√
n = 22 features.

Figure 3 shows the outcomes of the classification as an intermediate product of the analysis.
An accuracy assessment has been performed by manually collected sampling points. These points

were visually placed on the Landsat image of each year independently from the sampling areas
described in Section 2.2 so they represent the real occurrence of each LULC during each time step.
A number of 150 points was collected per class and year which were then compared with the results
from the SAR classification for the generation of a confusion matrix.

We achieved overall accuracies of 84.4% (2007), 83.3% (2008), 85.7% (2009), 85.0% (2010),
84.0% (2011), 80.3% (2015), 82.3% (2016) and 81.47% (2017) with respective Kappa values of 0.81 (2007),
0.80 (2008), 0.83 (2009), 0.81 (2010), 0.81 (2011), 0.76 (2015), 0.78 (2016) and 0.77 (2017). These may
appear low for change detection approaches at first sight, but the proposed evaluation of changes by
an aggregated index (see Section 2.4) is not pixel-based and compensates smaller misclassifications.
As shown in Tables 3 and 4, urban areas and bare rock show the highest accuracies due to their clear
signal in both the optical and the radar images. Bare soil areas also show high accuracies because of its
distinct backscatter characteristics during the dry season, but were misclassified as grassland in some
areas of transition. The tables also show that grassland was over-estimated throughout all images
(low user’s accuracies) while shrubland and forest reveal the lowest producer’s accuracies due to their
similar signature in the SAR data.
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Table 3. Producer’s accuracy for the texture-based classification of SAR images using the Random
Forest classifier.

2007 2008 2009 2010 2011 2015 2016 2017

Urban area 89.3% 91.3% 90.7% 92.0% 89.3% 86.0% 90.7% 70.53%
Bare soil 92.0% 90.7% 92.0% 93.3% 92.0% 89.3% 86.7% 77.88%
Bare rock 96.0% 95.3% 96.0% 94.0% 96.0% 94.0% 93.3% 90.91%
Grassland 83.3% 80.7% 88.7% 83.3% 82.0% 94.0% 76.7% 82.23%
Shrubland 75.3% 70.7% 76.0% 77.3% 75.3% 68.7% 76.7% 82.64%

Forest 70.7% 71.3% 70.7% 70.0% 69.3% 67.3% 64.0% 66.92%

Table 4. User’s accuracy for the texture-based classification of SAR images using the Random
Forest classifier.

2007 2008 2009 2010 2011 2015 2016 2017

Urban area 100.0% 100.0% 100.0% 100.0% 98.5% 99.2% 100.0% 100.0%
Bare soil 82.6% 84.5% 84.7% 85.4% 82.1% 76.1% 79.3% 82.5%
Bare rock 97.3% 95.3% 99.3% 97.2% 94.1% 95.9% 94.0% 95.9%
Grassland 63.1% 61.4% 64.6% 62.8% 64.7% 57.8% 59.3% 57.6%
Shrubland 83.7% 84.8% 85.7% 82.3% 82.5% 80.5% 80.5% 78.4%

Forest 89.8% 82.3% 90.6% 92.9% 89.7% 84.2% 93.2% 87.3%

2.4. Index of Landscape Change

As described in the previous section, pixel-based image classifications based on SAR data can
reveal smaller misclassifications due to the lack of spectral diversity. These can, of course, lead to false
conclusions in multi-temporal approaches when wrongly classified pixels may appear as change in
land-use or land cover. Furthermore, changes from one class into another within single pixels do not
allow for implications on the state of the environment, nor do they reveal the consequences of these
changes for man. For this reason, Hagenlocher et al. proposed a weighted index which estimates the
impact of LULC changes within larger aggregated units in terms of environmental integrity and human
security [104]. It is uses expert-based weightings which determine its ecologic and social-economic
value of each LULC class so that changes can directly be interpreted as a percentage of resource
depletion for different sectors in the study area. This weighted natural resource depletion index
(NRDw) was originally designed for very high-resolution data which needed to be aggregated at
a larger level in order to overcome the limitations of pixel-based approaches for change detection.
We transferred this concept on to the SAR data to compensate the deficiencies of our classification
resulting from lack of spectral diversity, as reported in Section 2.3.

The weights were defined by two regional experts with ecological and humanitarian background
as shown in Table 5. They refer to environmental integrity (EnvInt) and human security (HumSec)
which were then averaged to a mean value of abundant natural resources (NR) of each pixel. As our
study addresses the human-related aspects of landscape change, we used a ratio of 0.35/0.65 for the
calculation of NR to place emphasis on their socio-economic impact.

Table 5. Importance of the analyzed land-use and land cover classes on environmental integrity (EnvInt)
and human security (HumSec) for the calculations of an integrated value of natural resources (NR).

Class EnvInt 35% HumSec 65% NR 100%

Urban area 0.00 0.50 0.313
Bare soil 0.30 0.35 0.331
Bare rock 0.20 0.25 0.231
Grassland 0.50 0.45 0.469
Shrubland 0.70 0.75 0.731

Forest 0.95 0.90 0.919
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We chose a hexagon grid with a diameter of 1 km as a unit of analysis which aggregates the NR
values of inherent LULC classes according to their spatial proportions within the grid cells. We chose
hexagons as spatial units because they are suitable to represent nearest neighbor areas in a regular
structure and, compared to rectangles, reduce sampling bias at their edges. Additionally, they are
reported to support visual inspection of spatial patterns [105]. These NR values can then pairwise be
compared per grid cell in order to retrieve its percentage increase or decrease of resources for different
time increments. An example for the calculation of the NRDw is given in Figure 3.

Figure 4 shows the design of the study: Based on the eight SAR images eight LULC classifications
have been derived. The weighted index for Natural Resource Depletion is then calculated per
image pair. The result is shown as an example for the first image pair of 2007 and 2008. This map
indicates the spatial distribution of changes as well as their estimated impact on natural environment.
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2.5. Index of Landscape Variability

Besides observing inter-annual changes, general conclusions about developments within an area
can be derived best based on direct comparisons of conditions at the beginning and the end of the
investigated time. However, this excludes two major points in change detection.

Firstly, savanna ecosystems are subject of large biotic and abiotic variation at multiple
spatiotemporal scales [106]. It is a key task of remote sensing to reveal these variations to an adequate
degree [107]. Besides simply comparing the intensity of changes, information on the temporal variability
of regions—or in other words, the sum of all changes along the investigated period—has to be
communicated as well. Surely, some areas remain stable after the transition of one LULC class into
another while others tend to underlie regular variations. Analyzing changes over multiple images,
especially in a region at the border between two ecosystems, surely should include the aspect of
resilience towards long-term exterior influences.

Secondly, class-based measurements are always subject to smaller misclassifications, especially
if the data source is challenging. It is still widely reported that classifications based on SAR data
alone are outperformed by approaches using multispectral optical data [108–110]. Similarly, single
misclassifications within a time-series can distort the results towards changes which did not happen.
In addition to that, the dates of image acquisitions are highly sensitive towards seasonal variations.
Even if all images were taken at the same date of the year, inter-annual shifts in phenology of even
a few weeks could cause the erroneous detection of ‘pseudo changes’.

Consequently, a second indicator is needed which spatially allocates high temporal variation
within the study area and simultaneously quantifies the number of smaller changes which might only
be subject to seasonal shifts in phenology.

We therefore decided to apply a post-classification change vector analysis. Vector-based approaches
make use of a feature space consisting of spectral or classified information and the temporal
dimension [111,112]. In our case, the variable determining the value of each hexagon grid cell is
its weighted sum of natural resources as described in the previous section. These values are then plotted
against the temporal period which is analyzed as exemplified in Figure 5: In a first step, the length
of the vector describing overall change (Co) is calculated based on the NR values of 2007 and 2017.
As a second variable contributing to the variability of an area, the length of the change vectors between
each chronological image pairs are summed up to create the sum of annual changes (Ca). For reasons
of normalization, a factor of 10 has been applied to NR values for the calculation of vector lengths
(e.g., a NR decrease of 0.55 to 0.40 during one year leads to a x-distance of 1.5 instead of 0.15. This is
done because the y-distance is 1 except for 2011–2015). The ratio of Co and Ca is then calculated and
describes the variability (v) of the corresponding hexagon cell throughout the observed period. If Co

and Ca are of same length, v gets the value of 1. The longer the vectors of annual changes in relation to
the overall change, the higher is the calculated variability v which is therefore a dimensionless value
between 0 and 7, as the sum of the maximum NR value of 1 for a period of seven investigated years.
This information can then be included in the discussion of the results as an indicator of variability and
instability of an area.
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3. Results

3.1. Annual Changes

3.1.1. Natural Resources

The results gathered based on the LULC classifications were transferred into NR for a hexagon
grid as described in Section 2.4. A summary of different statistics over all 1793 grid cells is given in
Table 6. It shows that overall resources did not significantly decline within the study area during the
investigated period. Neither their mean (NRmean) nor their median (NRmedian) shows significant trends.
A smaller drop of NRmedian can be observed for 2015. This indicates that natural resources were
slightly the lowest in that year or at least at the time of image acquisition. This is supported by the
value of the overall sum of all Natural Resources (NRsum). However, the percentiles of 95% and 5%
(NR95% and NR5%) indicate that this could also have been caused by a smaller proportion of outliers
for the year 2015.

Table 6. Development of Natural Resources (NR) and weighted Natural Resource Depletion (NRDw).

2007 2008 2009 2010 2011 2015 2016 2017

NRmax 91.9% 91.5% 90.7% 90.1% 91.4% 91.7% 89.5% 88.6%
NR95% 73.5% 76.2% 74.7% 74.3% 74.6% 73.9% 73.1% 73.3%
NRmean 46.9% 47.1% 47.0% 47.1% 46.9% 46.5% 46.8% 47.0%

NRmedian 45.7% 45.4% 45.9% 45.9% 45.8% 44.3% 45.6% 45.1%
NR5% 24.8% 24.4% 25.0% 24.9% 24.2% 25.0% 25.4% 25.6%
NRmin 23.1% 23.1% 23.1% 23.1% 23.1% 23.1% 23.1% 23.1%
NRsum 840.8 844.6 843.5 843.8 840.7 833.1 839.9 842.8

NRDw mean 0.187% −0.037% 0.016% −0.175% −0.421% 0.379% 0.158%
NRDw net 3.36 −0.65 0.28 −3.14 −7.55 6.79 2.83

A small decline in the maximum NR value (NRmax) reached can be observed as it decreases
from 91.9% to 88.6% over the investigated period. The minimum (NRmin) was constant each year as
it represents cells which are completely covered by bare rock—this being the class with the lowest
attributed importance (see Table 5).

Overall, no significant change can be observed for the investigated area. A spatially explicit
description of changes based on the weighted Natural Resource Depletion is presented in Section 3.1.2.
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3.1.2. Natural Resource Depletion

Based on the derivation of NR values for each grid cell their impact upon environmental integrity
(EnvInt, 35%) and human security (HumSec, 65%) can be estimated. Their summarized temporal
development is demonstrated in Table 6: The mean change of resources (NRDw mean) ranges between
+0.379% (2015–2016) and −0.421% (2011–2015). This means that positive and negative changes widely
balance within the study area. At no time are changes dominated in one direction only. This is even
more clearly shown by the median, which is not given in the table, as it levels at 0.0 throughout
all years. Still, there are some years which show a slightly higher impact than others. If the NRDw

values of all grid cells are added together per year (NRDw net), values between 6.79 and −7.55 emerge.
These reveal a more distinct view on the impact of changes over time. While the overall changes in the
study area are around ±3, a more pronounced impact of −7.55 can be assigned to the period between
2011 and 2015 as a consequence of missing data for an annual change detection.

However, the large increase between 2015 and 2016 (+6.79) indicates that the remarkably low
value in 2015 of (−7.55) is not only caused by the longer time span but also depicts a local negative
peak which needs to be discussed in Section 4.

The main advantage of the NRDw is that a value of percentaged increase or decrease of landscape
quality can be assigned to each grid cell. This allows for the spatial characterization of landscape
changes and their impacts. The results are provided as maps for the image pairs throughout the
investigated period as demonstrated in Figure 6. It shows where the environment within the study
area changed during the investigated years and in which directions changes occured regarding the
expert-based weights shown in Table 5. At a first impression, no clear trends can be recognized in
the maps. In particular, the regions around Camp Djabal and Goz Beïda show no considerable decrease
in environmental resources during the last ten years. Also, the Hadjer Arkop massif is predominantly
stable during the investigated period. Variations in NR can well be observed around Wadi Aouada
and its areas of higher and more developed vegetation. Whether these are just of seasonal nature or
a steady development cannot be clarified by comparing single conditions within time-series. This will
be addressed more specifically in Section 3.2. In general, the areas of strongest developments are
shrubland in the Southeast of the study area and grassland-covered plains in the North.
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3.2. Overall Change and Variability of Natural Resources

As indicated in Section 2.5, attentive interpretation of change intensities requires information
on the variability of the different grid cells. If an area shows moderate change between 2007 and
2017, but a high variability, as derived according to Figure 5, this area is either subject to higher
intra-annual or inter-annual seasonal changes or to generally observable instabilities regarding the
interrelations between related types of land cover (such as shrubland or grassland). In turn, if a low
variability (smaller than 1.5) can be observed, changes are rather of long-term nature, such as trends in
vegetation cover or transitions between types of land-use (bare soil to built-up areas). Figure 7 shows
the changes as assessed by the NRDw between 2007 and 2017 in combination with the variability v
per grid cell. While colors indicate the direction and severity of changes, line signatures within the
grid cells indicate their variability. Developments can now be interpreted regarding their long-term
information content and the affinity of an area towards changes. The indications from Section 3.1.2 can
be affirmed and specified: There is no general loss of natural resources in the study area but certain
areas are more prone to change than others. Areas around the settlements are almost stable whereas
grids of both positive and negative development are accumulated at the South East of the study area.
These result from the transition between forest and shrubland. Variability values of mostly above 2.00
indicate that this area is not gradually changing but generally prone to changes. Similar developments
can be attached to Wadi Aouada where forest, shrubland, and grassland underlie both seasonal and
inter-annual changes.Remote Sens. 2017, 9, 359  13 of 22 
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General conclusions about the study area can be drawn based on the statistical distribution
of the different variability values compared to their NRDw value as shown in Figure 8. It clearly
demonstrates that areas of smaller variability (v < 2.00) form the majority in the study area whereas
areas with distinctively high variability (v > 4.00) are very rare. It furthermore shows that areas
with slight changes (±2%) are more frequent than areas with no change at all, especially for higher
variabilities. This indicates that many areas within the study area are affected by smaller changes
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and show a relatively unsteady development. It is additionally interesting that areas of highest
positive development (>8%) increase with larger variability. This leads to the conclusion that some
of them may also result from misclassifications as the classes of high variability no longer show an
equal distribution.
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4. Discussion

Altogether, the proposed approach allows the derivation of detailed change maps along a series
of SAR images which exceed the information content of standard transition matrices between classes.
However, there are things to notice in both the ecologic and methodic domain. This section aggregates
our findings in the perspective of landscape development and according to the requirements defined
in the introduction.

4.1. Landscape Changes

One main point to report is that the landscape in the study area did not underlie large-scale
changes, neither positively nor negatively. As shown in Figure 6, there in fact are certain hot spots of
accumulated change over the investigated period, however, these did not add up to a gradual overall
increase or decrease of landscape quality for larger areas.

Addressing anthropogenic impact on the investigated landscape, neither of the two main
settlements of camp Djabal and the city of Goz Beïda, nor the plains within the Hadjer Arkop massif,
had noticeable impact on their surrounding landscapes. These findings were expected in terms of
no reported growth of these settlements during the investigated period [113–115]. It is still notable
that this landscape did not negatively respond to the direct presence of human activities as arid
savannas are often observed to be susceptible towards anthropogenic pressure [116]. One reason for
the described stability within this area is the high amount of bare soil as a consequence of the relatively
intensive agricultural use. Accordingly, their NR values were already quite low and only expansion
of human settlements—or the transition from soil areas to bare rock—would have caused negative
NRDw developments. In addition to that, no source of land degradation or desertification, as it might
be indicated by transitions from vegetation to bare soil or soil to rock, could be observed among the
bare rock areas of the Hadjer Arkop massif.

One region which was prone to many changes during the investigated period is Wadi Aouada,
reaching from the West to the North of the study area. As it is the only area with vital vegetation
of higher orders during the whole year, it is particularly prone to changes in external circumstances.
A direct comparison of the NR of 2007 with 2017 (Figure 7) does not depict a clear image on which
parts of the wadi underlay significant positive or negative developments. It can, however, be stated
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that the core area of the wadi did not change in a critical degree—for example, due to erosion
or lesser subsurface drainage. Looking at the annual changes in Figure 6 indicates that there are
some years where the wadi is subject to larger changes, notably 2008–2009 (positive) and 2010–2011
(negative). These observations could be linked to climatic variations. However, comparison to records
of temperature and precipitation provided by the Climatic Research Unit (CRU) of University of East
Anglia (UEA) [117] does not confirm these trends. As Figure 9 shows, the contrary could have been
expected as a considerable decrease in precipitation occurred between 2008 and 2009, which in turn
shows the most visible positive development within Wadi Aouada. So it can be concluded that climatic
variations are most likely not responsible for the smaller changes within the wadi. We expect them to
result from overall variation in the vegetation signature within the SAR data.
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Another mentionable point is the striking accumulation of negative NRDw values in for 2011–2015
in the North of the Hadjer Arkop massif near the center of the study area. However, the fact that
this area is again strikingly positive for the subsequent image pair from 2015–2016 indicates that
this anomaly is rather the outcome of a wrong classification. The low variability values in this area
(Figure 7) furthermore support this indication and lead to the conclusion that this area is in fact stable
regarding LULC and the assessed changes are wrong. Nevertheless, many larger changes for the
period from 2011–2015 are realistic results obtained by the observed increment of 4 years instead of one.
But this is one example of how investigating variabilities along a time-series can help to detect errors
and check the results for plausibility.

To further test the overall condition of the landscape for interrelations with climatic conditions,
we compared the sum of all NRDw values per year, (NRDw net), with the corresponding change in
annual precipitation (∆prec) as shown in Table 7. We found a Pearson correlation coefficient of r = 0.47
between both variables which affirms that overall sum of natural resources could in fact fluctuate to
a certain degree according to the water availability in the study area. A correlation of r = −0.61 was
found for the relationship between NRDw net and the temporal baseline between the respective SAR
images (SAR ∆d), defined as the absolute difference in days from an optimum temporal difference
between two images of 365 days. It seems obvious that potential changes increase if both images are
not taken on the same day of the year. The larger the difference of two images regarding their time of
acquisition (see Table 1), the higher is the risk of identifying changes related to phenology instead of
identifying changes to overall development of a landscape.
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Table 7. NRDw net values for the investigated time-steps compared to trends in precipitation (∆prec)
and temporal baselines of the used SAR images (SAR ∆d).

2007–2008 2008–2009 2009–2010 2010–2011 2011–2015 2015–2016 2016–2017 r (NRDw)

NRDw net 3.36 −0.66 0.28 −3.14 −7.55 6.80 2.833 1.00
∆prec −37.7 −55.7 97.7 −49.9 −74.6 15.8 - * 0.47

SAR ∆d 12 12 18 88 1078 ** 8 12 −0.61

* Changes in precipitation could not be assessed between 2016 and 2017 as no all-season records were available at
the time of the study. ** In order to not distort the statistics, the temporal baseline of four years was excluded from
the calculation of r.

Lastly, the histogram in Figure 8 demonstrates how changes in the image can be interpreted
regarding their long-term predication. Overall changes with low variabilities (between 1.00 and 1.50)
make up 72% in our study. If frequencies are not equally distributed in both positive and negative
directions, trends can be evaluated regarding their variability. We found that high variability values
either indicate single misclassifications between scenes or, when spatially aggregated, characterize
areas of constant change. In the latter case, intensities of changes should be interpreted with more care.

4.2. Methods

On the technical side the following points can be highlighted. As the first findings made by
Braun et al. [23] indicated, the application of the NRDw concept from Hagenlocher et al. [104] is
transferable to radar imagery of medium spatial resolution. This study was able to provide a framework
more robust towards smaller misclassifications as they often occur in SAR data which is still flexible
enough to be based on different sensors or to be transferred to other regions. The results created reflect
different aspects of landscape changes: namely environmental integrity and human security which can
be weighted according to the expertise and the needs of the user. The final maps include information
on both spatial and temporal variation of landscape changes but are still easy to read and interpret.
These maps highlight regions which require special attention and allow a more differentiated dealing
with the outcomes.

ALOS PALSAR proved to be suitable for long-term landscape monitoring due to its long
wavelength interaction with volume scatterers for the discrimination of different types of vegetation.
It would have been interesting to observe how the study area changed annually in this perspective
between 2011 and 2015 but no accessible L-band data is available for this period. It is however expected
that other SAR sensors with similar archives such as ERS, Radarsat, and Envisat bear the same potential,
especially at the temporal scale. Regarding seasonality, additional data at the middle or end of the
rainy season would surely have substantially increased the validity of the approach as it could have
been used to depict a clearer image of each year’s resources. However, this data was not available for
all the investigated years. Future approaches surely should consider using a combination of several
scenes at crucial points in the study area’s phenology which can be determined by the variation of
NDVI, for example [118–120]. This would also decrease the weight of textural information in favor of
additional seasonal effects.

However, the used textures were able to discriminate all selected LULC classes to a sufficient degree.
As Tables 3 and 4 demonstrate, Grassland was the class with lowest accuracies due to its indifferent
degree of coverage in the study area and comparably low interaction with the L-band signal. Using
these large numbers of input rasters surely requires classifiers based on machine-learning which extract
the most valuable information. The random forest classifier performed efficient but other approaches,
such as support vector machines (SVM) or artificial neuronal networks (ANN), can be employed as
well for these kinds of analyses, especially when phenological variation is additionally introduced as
suggested above [121,122].

The automatic and literature-based selection of training areas proved to increase the study’s
credibility as it reduces the possible bias of manual sampling collection. In our case, field investigations
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were not possible due to security reasons but using optical data from Landsat grants for independency
of the training and validation process from the actual image classification was possible. Also worth
noting, optical data does not have to be complete or cloud free. As only the areas which consistently
fulfilled the criteria listed in Table 2 throughout all images were used for possible locations of the
randomized samples, we could flexibly deal with cloud coverage, burnt areas and missing scan lines
in Landsat ETM+ products.

Smaller misclassifications occurred between classes with similar response to the radar signal as
shown in Tables 3 and 4. These could, however, be compensated by the creation of hexagon grid
cells as a main unit of analysis. Each of them aggregates information of 1280 pixels and represents
their percentaged share as one value of natural resources. This reduces the effect of ambiguities at the
transition between two LULC classes and facilitates both the visual inspection and interpretation of
results. Detailed changes at borders between two classes are no longer visible in this approach but
since the fact that savanna ecosystems often consist of a mosaic of continuous LULC this is neither
possible nor considered as reasonable. Shifts in phenology could, however, been better handled with
an investigation over a longer time span. The longer the time-series of images, the more stable is the
approach as it more clearly reveals outliers along the investigated period. ESA’s Sentinel-1 mission lays
a solid foundation for multi-decade investigations as it was designed to continue the archived data of
ERS and Envisat. All of them operate at C-band wavelengths and a comparable spatial resolution.

One crucial point is the definition of investigated LULC classes and their corresponding
contribution to both environmental integrity and human security (see Table 5). As this has to be done
at the beginning of the study, changes in the numbers of investigated classes can, of course, strongly
affect the later results. If interest is placed on the change of a certain type of LULC, the definition of
classes should be appropriate and respectively balanced in this context. Also, the expert-based weights
have large influence on the evaluation of the changes. It is therefore advisable to include the expertise
of as many people as possible, preferably from different domains (local population, humanitarian
units, authorities, and other stakeholders). This not only provides for a balanced assessment of weights
but also prevents the abuse of weights to intentionally target desired results. As Laczko & Aghazarm
argue, research on the impacts of refugee camps upon their environment is needed but cannot act as
the only argument for repatriation in political debates [123].

Lastly, the proposed variability can be a valuable measure for both the quality and the long-term
information content of results. However, a way of normalization has to be performed when comparing
index values along a temporal sequence. We used a rather basic model of change vectors as it met our
requirements for the comparison of eight images. If longer or more detailed time-series are employed,
the concept of variability has to be refined according to variation at different temporal scales—such as
the differentiation between seasonal, inter-annual, and overall variation of a grid cell.

5. Conclusions

Our study showed that landscape changes can be analyzed by radar imagery in a transparent and
adaptive way. It is not limited to certain landscape types or specific sensors, but requires a minimum
number of consecutive images from the same time of the year. The proposed approach substantially
contributes to field of post-classification change analysis as it overcomes limitations regarding the
number of investigated scenes, the variation within the investigated time, and the occasionally
criticized complexity of high-level approaches which cannot be adapted by users with limited technical
or scientific background. It therefore serves as an ideal intermediate between innovative analyses and
user-friendly, adaptable frameworks. These will gain further importance with the growing availability
of archived and newly acquired SAR data for scientific, organizational, and commercial operational use.

The integration of user expertise about the relevance of land-use and land cover classes hinders
the automation of the process but clearly improves the validity of the results. Attaching weights to
the selected classes allows for the generation of an index which refines the results according to the
knowledge of the user and the information he requires.
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Although it did not reveal large scale trends in our study area, the proposed index is a good
approach for a semi-automated evaluation of changes over long time spans and within greater regions.
The use of radar data additionally reduces the dependency from atmospherically undisturbed
conditions. All parts of the study were performed on free and open source tools (QGIS, ESA SNAP,
OTB, Python) which allows for a transfer of the method onto other case areas. We encourage readers to
implement and further improve the proposed approach in order to increase the quality of time-series
analyses of radar data. This work is a first step towards new standards in change detection applications
which are comprehensible and still specified to the users’ needs.
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