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Abstract: This study presents the development of a semi-automated processing chain for urban
object-based land-cover and land-use classification. The processing chain is implemented in Python
and relies on existing open-source software GRASS GIS and R. The complete tool chain is available in
open access and is adaptable to specific user needs. For automation purposes, we developed two
GRASS GIS add-ons enabling users (1) to optimize segmentation parameters in an unsupervised
manner and (2) to classify remote sensing data using several individual machine learning classifiers or
their prediction combinations through voting-schemes. We tested the performance of the processing
chain using sub-metric multispectral and height data on two very different urban environments:
Ouagadougou, Burkina Faso in sub-Saharan Africa and Liège, Belgium in Western Europe. Using a
hierarchical classification scheme, the overall accuracy reached 93% at the first level (5 classes) and
about 80% at the second level (11 and 9 classes, respectively).
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1. Introduction

Land-use/land-cover (LULC) information extraction is one of the main use cases of remote
sensing imagery. The advent of sub-meter resolution data brought about the revolution of methods
from pixel-based to object-based image analysis (OBIA) involving image segmentation. The latter
provides many new opportunities and highly increases the quality of the output, but there remains a
number of challenges to address.

First of all, segmentation parameters are often selected after a tedious and time-consuming
trial-and-error refinement [1,2]. This method consists of a manual step-by-step segmentation
parameters adjustment, relying on subjective visual human interpretation. Despite such efforts,
the validity of the selected parameters is usually restricted to the specific scene under study, or even
to specific areas within this scene, and they have to be adapted for each dataset. Unsupervised
optimization methods meet the requirements for automation in the OBIA process, as they can be used
to automatically adjust the segmentation parameters [1].

Second, during the classification step, many authors use rule-based approaches, which can
be efficient on a specific dataset (e.g., [3,4]). However, their transferability remains an issue [5,6]
as they also generally rely on manual intervention by the authors, with many choices guided by scene
specificities. As an alternative, machine-learning classifiers, e.g., random forest or support vector
machines (see [7,8] for a review of applications in remote sensing), have proven their efficiency for
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remote sensing data classification. While identification of the best performing classifier cannot rely
on a priori knowledge, the combination of the results of multiple classifiers through an ensemble or
voting schemes is a solution towards the development of more automated classification processes, as it
“[...] makes the performance of the system more robust against the difficulties that each individual
classifier may have on each particular data set”. [9] (p. 705).

Third, much of the work presented on OBIA tool chains is black box. First, the specific decisions
of authors concerning parameter settings in the manual processes described above are based on their
subjective evaluation, which is not always easy to reproduce. Moreover, even if their procedures are
well documented, algorithms implemented in proprietary software cannot be properly reviewed as their
code is distributed as closed source. This concerns the core software and also, in some cases, extensions
of that software (e.g., the ‘Estimation of Scale Parameter’ (ESP) tool published in [10]). Furthermore,
only those who have access to the software can attempt the replication of the results. In times when
the reproducibility of research is high on the discussion agenda [11], the use of free and open-source
solutions, including access to the code developed by researchers in their work, becomes paramount.

Linked to the previous point, the question of access to the necessary tools is of great importance,
especially for many researchers in poorer countries where the lack of resources reduces their options [12],
and especially for research using remote sensing [13]. Again, free and open-source solutions provide an
answer to this issue by creating common-pool resources that all researchers can use, but also contribute
to. Licensing costs can also be an obstacle to the upscaling of processes, especially in times of big data
with ever-increasing spatial, spectral, and temporal resolutions [13]. Free and open-source software can
help researchers surmount this challenge by letting them run their programs on as many different cores
or machines as necessary without having to worry about software costs.

In this paper, we present a complete semi-automated processing chain for urban LULC mapping
from earth observation data, which responds at least partly to the above issues. This chain was initially
presented at the GEOBIA 2016 conference [14]. Freely available to any potential user, it should be seen
as a framework that can be reused, modified, or enhanced for further studies. The chain was developed
in a completely free and open-source environment, using GRASS GIS (Geographical Resources
Analysis Support System) [15] and R [16], and was immediately reinjected into the wider open-source
community. It contains tools for unsupervised segmentation parameter optimization, statistical
characterization of objects, and machine-learning techniques combined through a majority-voting
scheme. Care was taken to make the use of this processing chain accessible even to novice programmers.
The proposed framework was tested with similar datasets on two very different urban environments
to assess its transportability, i.e., the ability to achieve accurate classification when applying the same
generic framework to different scenes with similar datasets [17].

2. Methods and Tools

The processing chain mainly relies on the open-source software GRASS GIS, that has been in
continuous development since the 1980s and is now one of the core components of the Open Source
Geospatial software stack [18]. This multipurpose Geographical Information System is made of hundreds
of small programs [19], called ‘modules’ or ‘add-ons’, enabling users to carry out a large variety of
geospatial processes [18]. Thanks to its continuous review mechanism and to its active community that
has strong links with academia, GRASS GIS is increasingly being used by researchers [20–25]. Since 2012,
GRASS GIS has had major advances in object-based image analysis (OBIA).

The proposed chain is made of the core Python code linking GRASS GIS functions thanks
to the GRASS Python scripting library. It is implemented in a ‘Jupyter notebook’ that enables
researchers to easily share the computer code that they developed for their studies and that often
remains unpublished [26]. This programming environment allows users to mix both explanatory text
sections with the related computer code that can be executed in the same document (see Figure 1).
Care was taken to clearly document the code and to refer to the official help and/or scientific references.
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The Jupyter notebook is subdivided into several parts corresponding to the different processing steps
(see Figure 1) which are summarized in the flowchart presented in Figure 2.

The GRASS GIS add-ons used in the processing chain are briefly presented below. For a more
detailed description of those add-ons, interested readers may refer to the presentation made during
the FOSS4G 2016 conference [27].

2.1. Segmentation and Unsupervised Segmentation Parameter Optimization (USPO) Tools

The segmentation was performed using the i.segment module of GRASS GIS [28]. This module
implements image segmentation with a region-growing algorithm or an experimental mean-shift
algorithm which was added recently. The region-growing algorithm, which is used in this study, requires
a standardized ‘threshold’ parameter below which regions are merged, and a ‘minsize’ parameter
defining the minimum size of regions. As with most GRASS GIS modules, the i.segment module is
designed to handle very large datasets while keeping a low memory footprint. As an example of
the orders of magnitudes, we encountered an issue when exceeding 2 billion objects, and this issue
was solved quite quickly by the responsive GRASS Development Team. Most of the elements in the
processing chain offer the option of using parallel computing to accelerate the analyses. Scaling is thus
possible across all available cores, within the limits of available memory and input-output restrictions.

Remote Sens. 2017, 9, 358  3 of 20 

 

Care was taken to clearly document the code and to refer to the official help and/or scientific 
references. The Jupyter notebook is subdivided into several parts corresponding to the different 
processing steps (see Figure 1) which are summarized in the flowchart presented in Figure 2. 

The GRASS GIS add-ons used in the processing chain are briefly presented below. For a more 
detailed description of those add-ons, interested readers may refer to the presentation made during 
the FOSS4G 2016 conference [27]. 

2.1. Segmentation and Unsupervised Segmentation Parameter Optimization (USPO) Tools 

The segmentation was performed using the i.segment module of GRASS GIS [28]. This module 
implements image segmentation with a region-growing algorithm or an experimental mean-shift 
algorithm which was added recently. The region-growing algorithm, which is used in this study, 
requires a standardized ‘threshold’ parameter below which regions are merged, and a ‘minsize’ 
parameter defining the minimum size of regions. As with most GRASS GIS modules, the i.segment 
module is designed to handle very large datasets while keeping a low memory footprint. As an 
example of the orders of magnitudes, we encountered an issue when exceeding 2 billion objects, and 
this issue was solved quite quickly by the responsive GRASS Development Team. Most of the 
elements in the processing chain offer the option of using parallel computing to accelerate the 
analyses. Scaling is thus possible across all available cores, within the limits of available memory and 
input-output restrictions. 

 
Figure 1. Excerpt of the “Jupyter notebook” consisting of a sequence of descriptive text parts that 
document the different processing steps and cells of the Python script that can be executed directly 
from the notebook. 

Figure 1. Excerpt of the “Jupyter notebook” consisting of a sequence of descriptive text parts that
document the different processing steps and cells of the Python script that can be executed directly
from the notebook.



Remote Sens. 2017, 9, 358 4 of 20
Remote Sens. 2017, 9, 358  4 of 20 

 

 
Figure 2. Flowchart of the processing chain. 

The choice of segmentation parameters is an important step in OBIA. Indeed, the ultimate goal 
of segmentation is to cluster individual pixels into meaningful objects, i.e., objects that correspond as 
much as possible to the geographical objects of interest in the scene. Moreover, the impact of 
segmentation quality on the accuracy of the classification seems obvious, even though a recent study 
[29] argues that this link is not so straightforward.  

Usually, the selection of segmentation parameters is carried out using a ‘trial-and-error’ 
approach that relies on the visual assessment of several naïve segmentation results, and gradual 
adjustment of the segmentation parameters. This method presents the disadvantages of being 
subjective and requiring a tedious and time-consuming effort. 

When objectivity is required in the evaluation of the segmentation results, several empirical 
methods can be used. Among them, a distinction can be made between the supervised (empirical 
discrepancy methods) and the unsupervised approaches (empirical goodness methods), depending 
on the requirement of a reference object delineation [1,30]. Both supervised and unsupervised 
methods allow the comparison of different segmentation algorithms or of different parameters used 
in a single algorithm (segmentation parameter optimization). 

Figure 2. Flowchart of the processing chain.

The choice of segmentation parameters is an important step in OBIA. Indeed, the ultimate goal
of segmentation is to cluster individual pixels into meaningful objects, i.e., objects that correspond
as much as possible to the geographical objects of interest in the scene. Moreover, the impact of
segmentation quality on the accuracy of the classification seems obvious, even though a recent
study [29] argues that this link is not so straightforward.

Usually, the selection of segmentation parameters is carried out using a ‘trial-and-error’ approach
that relies on the visual assessment of several naïve segmentation results, and gradual adjustment
of the segmentation parameters. This method presents the disadvantages of being subjective and
requiring a tedious and time-consuming effort.

When objectivity is required in the evaluation of the segmentation results, several empirical
methods can be used. Among them, a distinction can be made between the supervised (empirical
discrepancy methods) and the unsupervised approaches (empirical goodness methods), depending on
the requirement of a reference object delineation [1,30]. Both supervised and unsupervised methods
allow the comparison of different segmentation algorithms or of different parameters used in a single
algorithm (segmentation parameter optimization).

Supervised evaluation methods assess the divergence between a segmented image and a reference
segmentation layer using ‘discrepancy measures’. Usually, the reference layer is created by delineating
objects manually, thus requiring a time-consuming and highly subjective task.



Remote Sens. 2017, 9, 358 5 of 20

In contrast, unsupervised evaluation methods assess the quality of a segmented image without
the need of a reference or prior knowledge. This is the major advantage of these methods that can
be used for automated segmentation parameter optimization [31]. Moreover, a recent study shows
that they can achieve similar classification accuracy [32]. The evaluation relies on ‘goodness measures’
computed directly on the segmented image that represent the characteristics of a good segmentation.
The uniformity of single objects (intra-segment homogeneity) and a significant difference between
adjacent objects (inter-segment heterogeneity), firstly presented in [33] as desired characteristics of
created objects, are now widely used in unsupervised evaluation methods. Several unsupervised
approaches have been proposed in the literature, with different goodness measures and methods for
combining them into a synthetic metric (see [1] for a review).

As we looked for automation, we elaborated a new GRASS GIS add-on for unsupervised
segmentation parameter optimization (USPO) named i.segment.uspo [34]. Its working principle
is illustrated on Figure 3. This tool is an implementation of the methods proposed by [31,35]. It relies
on optimization functions combining measures of intra-object variance weighted by object size [32]
(WV) as an intra-segment homogeneity quality measure, and spatial autocorrelation (SA) as an
inter-segment heterogeneity quality measure [35]. For the latter, the user can choose between Moran’s
I [36] or Geary’s C [37]. As the measure should be comparable for different segmentation results,
both intra-segment homogeneity and inter-segment heterogeneity measures are normalized using the
following function [35]:

F(x) =
Xmax − X

Xmax − Xmin
(1)

where F(x) is the normalized value of either WV or SA, X is the WV (or SA) value of the current
segmentation result, and Xmax and Xmin are the maximum and minimum values of WV (or SA) for
the whole stack of segmentation results to be evaluated. A high value for normalized WV (WVnorm)
indicates higher undersegmentation, while a high value for normalized SA (SAnorm) highlights a
higher oversegmentation.

The GRASS GIS add-on i.segment.uspo enables the combination of these WV and SA measures
using two different optimization functions: a simple sum of the normalized criteria values as proposed
by [35] or the F-function proposed by [31] that permits us to weight the two optimization criteria.
The F-function is calculated as follows:

F =
(

1 + α2
) ASnorm × WVnorm

α2 × ASnorm + WVnorm
(2)

where F is the ‘overall goodness’, ranging from 0 (poor quality) to 1 (high quality) [31], to be used as a
synthetic measure of the quality of the segmentation and α is a parameter that can be modified to give
more weight to WV or to SA.

This overall goodness metric was designed in order to perform unsupervised segmentation
parameter optimization for multi-scale OBIA (MS-OBIA) [31] (i.e., a process where different levels of
segmentation are used together in the classification). In the semi-automated processing chain that was
developed, the classification is performed using a single segmentation level. However, the chain could
very easily be modified to enable MS-OBIA.

As highlighted in [38], the ability of USPO approaches to produce a good segmentation for specific
features of interest in the scene is not straightforward, especially if those features are small-sized.
Regarding this issue, we clearly recommend a visual check of the segmentation results to ensure
that they are consistent with the objects of interest in the scene, as illustrated in the flowchart in
Figure 2. If this is not the case, the α parameter in the Johnsons’ optimization function can be
adapted to give more importance either to intra-segment homogeneity (set the α parameter higher
than 1 to avoid residual undersegmentation) or to inter-segment heterogeneity (set the α parameter
lower than 1 to avoid residual oversegmentation) [31]. More generally, it is clear that the ‘perfect’
segmentation does not exist [1,39,40], even if optimization methods are used. In their conclusion,
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Räsänen et al. argue that “[...] different segmentation evaluation methods should be used with care
[...]. When segmentation evaluation is rigorously used, however, it can assist in finding a more optimal
segmentation”. [29] (p. 8623).

Based on a range of parameter values provided by the user, the i.segment.uspo tool creates
a set of segmentation results that are then assessed using the optimization function (see Figure 3).
We suggest setting the range of segmentation parameter values to be tested by identifying values
resulting in clearly under-segmented and over-segmented results, and using them as extremes.
In order to reduce computation time during the optimization process, the tool provides the possibility
to optimize the segmentation parameters on several spatial subsets of the scene (i.e., several zones
limited in terms of area).

Care is recommended during the selection of those spatial subsets to ensure that they represent
the diversity of the landscape that can be found in the whole scene. Detailed results are available
(WV and AS measures and optimization scores for each segmentation parameter combination and
each spatial subset), enabling the user to make an informed choice. Provided that there are no
extreme outliers among the distribution of segmentation parameters from the different spatial subsets,
the choice amongst the results can be completely automated by, for example, selecting the lowest
value of the threshold parameter (as illustrated in Figure 2). Even though this approach could result
in oversegmentation in some parts of the scene, some studies [39,41] argue that oversegmentation is
preferable to undersegmentation, as the former can be corrected during classification, contrary to the
latter. Furthermore, some recent studies [32,42] highlight that oversegmentation, as long as it remains
at an admissible level, could be a minor issue in regard to the final classification result. Insofar that the
different spatial subsets were well chosen to ensure that they represent the diversity of landscapes in
the whole scene, the presence of extreme outliers among the optimized segmentation parameter is an
indication that segmentation using a single parameter for the whole scene is not recommended. In this
case, the whole scene could be subdivided into several more homogeneous areas according to some
specific criteria. These areas could then be used as tiles in the segmentation workflow to perform local
optimizations of the segmentation parameters [43].
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The chain was designed to perform the segmentation process by dividing the scene using a vector
layer provided by the user. This layer can consist of, e.g., arbitrary tiles or existing administrative
boundaries. This implementation also allows users to manage very large datasets.

2.2. Object Statistics Computation

Object statistics were computed using the i.segment.stats GRASS GIS add-on [44] and were used
as features in the classification process. This tool computes both the spectral statistics (e.g., min, max,
median, stddev) and morphological statistics of objects (e.g., area, perimeter, compactness, fractal
dimension). In order to speed up the calculation of the latter, another add-on, r.object.geometry [45],
was developed. This add-on eliminates the need for vectorizing segments when computing
morphological statistics, resulting in a significant gain in time.

2.3. Classification by the Combination of Multiple Machine Learning Classifiers

The classification stage of the processing chain uses the v.class.mlR GRASS GIS add-on [46].
It relies on the utilization of the “Caret” library of the R software [47], and enables the classification
of data using Support Vector Machine (currently only with a radial kernel) (SVMradial), Random
Forest (RF), Recursive partitioning (Rpart), and k-Nearest Neighbors (kNN) classifiers. This add-on
automatically tunes classifiers’ parameters using repeated cross-validation with, by default,
10 iterations of 5-fold cross-validation on the training data set. Predictions of individual classifiers are
then combined using several types of majority vote.

Four voting systems are provided: “Simple Majority Vote” (SMV), “Simple Weighted Vote”
(SWV), “Best Worst Weighted Vote” (BWWV), and “Quadratic Best Worst Weighted Vote” (QBWWV).
SMV simply consists of retaining the most frequent prediction. In the other votes, the predictions
of individual classifiers are weighted. In SWV, the weight used is strictly the accuracy of individual
classifiers estimated through cross-validation. In BWWV, the worst classifier is assigned a zero weight
and is thereby not taken into account, and the best classifier is assigned a unit weight. The remaining
classifiers are weighted linearly between 0 and 1. The last vote, QBWWV, is designed similarly to the
former but the remaining classifiers are weighted using a squared function, amplifying the importance
of more accurate classifiers. Interested readers can refer to [9] for the votes presented here and to [48]
for more advanced methods used in remote sensing field.

A noticeable advantage of GRASS GIS is that it can be connected directly to R [16,49], allowing
the exploitation of several advanced statistics methods (e.g., deep learning methods) implemented in
this open-source software.

3. Case Studies

3.1. Study Areas and Data

In order to evaluate the transportability of the proposed processing chain, we applied it to two
very different urban environments: Ouagadougou (Burkina Faso, in Sub-Saharan Africa) and Liège
(Belgium, in Western Europe). More broadly, this work is linked with two research projects dealing
with the production (Modelling and forecasting African Urban Population Patterns for vulnerability
and health assessments project (MAUPP, http://maupp.ulb.ac.be/), focusing on African Sub-Saharan
cities) and the update (SmartPop project, focusing on the Walloon region in Belgium, http://www.
issep.be/smartpop/) of LULC maps. These maps will be used later as inputs in census population
data disaggregation models.

The processing chain was first developed on Ouagadougou, the capital of Burkina Faso in Western
Africa. Covering more than 615 km2, this city has been facing intensive urban sprawl during the last
few decades similar to most sub-Saharan African cities and is characterized by very different urban
patterns, such as planned versus unplanned residential areas, among others. Then, the processing
chain was applied to the Liège area (261 km2), a Western European city located in Belgium which

http://maupp.ulb.ac.be/
http://www.issep.be/smartpop/
http://www.issep.be/smartpop/
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shows strong land artificialization (more than 55% of the territory). Urban morphologies are more
diversified (from isolated houses to 10+ storey buildings), but urban sprawl is limited and controlled
in comparison with Africa.

The datasets consist of multi-spectral and height data. For Ouagadougou, a pan sharpened
stereo WorldView-3 imagery (Visible and Near-InfraRed bands (VNIR), spatial resolution of 0.5 m)
acquired during the wet season (October 2015) and a normalized digital surface model (nDSM)
(spatial resolution of 0.5 m) produced by stereophotogrammetry from WorldView-3 stereo-pairs were
used. For Liège, the data consisted of leaf-on VNIR aerial orthophotos with a spatial resolution of
0.25 m acquired in May 2012 and a leaf-off nDSM extracted from Light Detection And Ranging data
(LiDAR) (with a point density between 1 and 3 points per square meter) that was acquired in the
winter of 2013–14.

As our processing chain is under development, we focused the classification effort on a 25 km2

subset for both cities (see Figure 4), representative of the diversity of landscapes and urban forms.
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For both cities, the classification was made on the white-squared subset. Training samples are in yellow
while the test samples are in red.

3.2. Legend/Classification Scheme

The classification scheme is organized in two hierarchical levels (see Table 1). The first level
contains only land-cover (LC) classes, while the second level is a LULC mix of classes. At both
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levels, an extra class is dedicated to shadows; their post-processing is out of the scope of this article.
The classification was made based on the second-level classes, which were aggregated to match the
first-level classes.

Table 1. Classification scheme and size of the training and test sets for Ouagadougou and Liège.

Level 1 Classes
Land Cover (LC)

Level 2 Classes
Land Use/Land Cover (LULC) Abbreviation Training Set Size Test Set Size

Ouagadougou–Burkina Faso

Artificial surfaces
Buildings BU 216 43

Swimming pools SW 90 31
Asphalt surfaces AS 119 30

Natural material
surfaces

Brown/red bare soil RBS 130 42
White/grey bare soil GBS 91 30

Vegetation

Trees TR 91 32
Mixed bare soil/vegetation MBV 99 32

Dry vegetation DV 93 32
Other vegetation OV 218 36

Water Water bodies WB 115 31

Shadow Shadow SH 90 30

Liège–Belgium

Artificial surfaces
Buildings BU 62 37

Asphalt surfaces AS 86 60

Natural material
surfaces Bare soil BS 51 42

Vegetation

Low vegetation (<1 m) LV 55 46
Medium vegetation (1–7 m) MV 49 48

High vegetation deciduous (>7 m) HVD 63 36
High vegetation coniferous (>7 m) HVC 49 43

Water Water bodies WB 72 37

Shadow Shadow SH 62 39

3.3. Sampling Scheme

Sampling was conducted outside the processing chain, by generating random points and labelling
them by hand, through visual image photo-interpretation. Although existing geodatabases were
used for stratification, visual interpretation was needed to bypass thematic or spatial accuracy issues.
In order to ensure a clear spatial independence, the training set was generated for the whole area
excluding the 25 km2 subset where the classification was produced. An independent test set was
generated inside this subset for performance evaluation purposes (see Figure 4). This procedure avoids
potential spatial autocorrelation between the training and test sets.

For Ouagadougou, the OpenStreetMap (OSM) dataset was used as far as possible according to the
availability. These data were used only for stratification purposes and only for some specific classes,
i.e., for second-level classes of ‘buildings’, ‘asphalt surfaces’, and ‘water bodies’. When OSM datasets
consisted of lines, as it is the case for asphalt roads and watercourses, buffers were created. Manual
sampling was required for ‘swimming pools’ and ‘shadow’ classes. Intensive visual interpretation was
needed for labelling each sampled point individually and to bypass mislabelled (cases where OSM
attributes were false) and spatial inaccurate issues coming from the OSM data.

For Liège, existing official geodatabases from the national administration, i.e., ‘TOP10V’ (Institut
Géographique National (IGN), 2010), and from the regional administration, i.e., ‘Projet Informatique de
Cartographie Continue’ (PICC) (Service Public de Wallonie (SPW), 2007), were used for the stratification
of the majority of second-level classes. Manual sampling was needed for the class ‘shadow’. Given the
production date of the geodatabases used, a visual validation of the samples was needed to match
the 2012/2013 land-cover status. In total, 1352 training points and 369 test points were created for
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Ouagadougou and 549 training points and 388 test points for Liège. The smaller size of the training
set for Liège is explained by the reduced number of classes, their higher spectral consistency, and the
intensive use of reference geodatabases. The class-distribution details are presented in Table 1.

Training and test points were used to automatically select intersecting segments and create the
training and test sets. Although there is risk that some imperfect segments are used, the advantage of
this strategy is that the same labelled set of points can be used with different segmentation results.

3.4. Segmentation

The segmentation and unsupervised segmentation parameter optimization (USPO) steps were
carried out using multispectral information. For Ouagadougou, NDVI was also used as an additional
layer. The nDSM layer was not used for the segmentation because of its insufficient geometric precision.
The “minsize” parameter was set in order to match a chosen minimum mapping unit. The latter
was defined according to the geographical context based on the smallest house/shelter: 2 m2 for
Ouagadougou and 15 m2 for Liège. The intervention of the operator in the USPO process was limited to
identification of the range of “threshold” parameters to be tested (minimum, maximum, and intervals),
by manually looking for the thresholds resulting in clearly over-segmented or under-segmented
objects. The optimized threshold was then automatically determined via the i.segment.uspo add-on.
When giving the same weight to both intra-object homogeneity and inter-object heterogeneity
measures (with the Johnson’s α parameter set to 1), objects of interest like small houses or trees were
undersegmented. To avoid this issue, Johnson’s α parameter was then set to 1.25 for both Ouagadougou
and Liège, in order to give more importance to intra-object homogeneity in the optimization function.

3.5. Classification Feature

For both case studies, the minimum, maximum, range, standard deviation, sum, and median statistics
were computed for segments on the multispectral bands, NDVI and nDSM. These spectral statistics were
completed with the morphological attributes of the objects (area, perimeter, and compactness).

4. Results

The classifications were performed at the second level of the legend scheme (see Table 1) using
four individual machine learning classifiers that were combined using four voting systems. For each
classification, the second-level classes were then aggregated to obtain the classes of the first level.
The overall accuracy as well as Cohen’s Kappa metric of individual classifiers and vote combinations
are presented in Table 2.

Table 2. Performance evaluation of individual classifiers and the four different voting systems. For each
line, the highest value is in bold. OA: Overall accuracy. L1 and L2: Levels of the classification scheme.
kNN: k-Nearest Neighbors. Rpart: Recursive partitioning. SVMradial: Support Vector Machine with
radial kernel. RF: Random Forest. SMV: Simple Majority Vote. SWV: Simple Weighted Vote. BWWV:
Best Worst Weighted Vote. QBWWV: Quadratic Best Worst Weighted Vote.

Individual Classifiers Votes

kNN Rpart SVMradial RF SMV BWWV QBWWV SWV

Ouagadougou
L1

Kappa 0.69 0.80 0.84 0.90 0.87 0.90 0.90 0.90
OA 77% 85% 88% 93% 91% 92% 92% 93%

L2
Kappa 0.45 0.69 0.72 0.79 0.76 0.79 0.79 0.79

OA 50% 72% 75% 81% 78% 81% 81% 81%

Liège
L1

Kappa 0.75 0.83 0.87 0.89 0.88 0.89 0.89 0.89
OA 82% 88% 90% 92% 91% 92% 92% 93%

L2
Kappa 0.44 0.71 0.71 0.77 0.74 0.76 0.76 0.76

OA 50% 74% 74% 79% 77% 79% 79% 79%
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The ranking of individual classifiers’ performance is the same for Ouagadougou and Liège,
with Random Forest (RF) performing best (overall accuracy (OA) of 81% and 79%, respectively),
followed by Support Vector Machine with radial kernel (SVMradial) (75% and 74% OA, respectively),
then Recursive partitioning (Rpart) (72% and 74% OA, respectively), and finally K–Nearest Neighbors
classifier (kNN) (both 50% OA).

In the proposed processing chain, the training set is created by selecting the objects that contain
the manually labelled point (see Figure 2), without any visual check. This design could result in the
presence of mis-segmented objects in the training set which could perturb the classifiers. This explains
why RF outperformed SVM, as studies show that RF is very robust when trained with imperfect
data [50], while SVM is very sensitive to the presence of noise in the training set [51].

The user’s and producer’s accuracy computed on second-level classes are provided for each
classification in Tables A1 and A2. As assessing the performance with these measures can become very
confusing, the F-score (harmonic mean of the user’s and producer’s accuracy) is used as a synthetic
accuracy metric [52,53] in order to compare the classifiers’ performance on a class basis. The ‘buildings’
class is of particular importance in the context of the MAUPP and SmartPop projects since their final
objective is to disaggregate census population data using LULC maps in order to model the spatial
distribution of population densities. Using RF, this class reached a high accuracy for both case studies,
with an F-score of 0.93 for Ouagadougou and 0.91 for Liège (see Table 3). For Ouagadougou, RF
impressively outperformed Rpart and SVM for the class ‘buildings’ (both reaching an F-score of 0.78).
This is also true for asphalt surfaces, with an F-score of 0.83 for RF, 0.61 for Rpart, and 0.55 for SVM.
Again, those observations can be explained by the robustness of RF when dealing with imperfect data.

Table 3. F-score for individual classes for the second level (L2) of the classification. For each line, the
highest value is in bold. kNN: k-Nearest Neighbors. Rpart: Recursive partitioning. SVMradial: Support
Vector Machine with radial kernel. RF: Random Forest. SMV: Simple Majority Vote. SWV: Simple
Weighted Vote. BWWV: Best Worst Weighted Vote. QBWWV: Quadratic Best Worst Weighted Vote.

Individual Classifiers Votes

Level 2 Classes kNN Rpart SVMradial RF SMV SWV BWWV QBWWV

Ouagadougou–Burkina Faso

Buildings 0.62 0.78 0.78 0.93 0.86 0.93 0.92 0.92
Swimming pools 0.91 0.92 0.97 0.98 0.98 0.98 0.98 0.98
Asphalt surfaces 0.50 0.61 0.55 0.83 0.80 0.83 0.83 0.83

Brown/red bare soil 0.52 0.75 0.65 0.78 0.77 0.77 0.77 0.77
White/grey bare soil 0.26 0.69 0.71 0.72 0.65 0.70 0.70 0.70

Trees 0.58 0.83 0.83 0.85 0.82 0.84 0.85 0.85
Mixed bare soil/vegetation 0.29 0.62 0.59 0.56 0.57 0.58 0.58 0.58

Dry vegetation 0.08 0.48 0.65 0.61 0.64 0.63 0.62 0.62
Other vegetation 0.55 0.71 0.73 0.77 0.75 0.78 0.81 0.81

Inland waters 0.19 0.74 0.85 0.87 0.75 0.85 0.85 0.85
Shadow 0.75 0.72 0.93 0.94 0.95 0.95 0.94 0.94

Liège–Belgium

Buildings 0.51 0.92 0.83 0.91 0.93 0.93 0.91 0.91
Asphalt surfaces 0.64 0.71 0.77 0.82 0.78 0.82 0.82 0.82

Low vegetation (<1 m) 0.37 0.77 0.71 0.80 0.80 0.77 0.77 0.77
Medium vegetation (1–7 m) 0.34 0.67 0.62 0.69 0.67 0.67 0.67 0.67

High vegetation deciduous (>7 m) 0.29 0.61 0.59 0.63 0.60 0.62 0.62 0.62
High vegetation coniferous (>7 m) 0.36 0.72 0.67 0.73 0.68 0.73 0.73 0.73

Bare soil 0.49 0.63 0.71 0.74 0.66 0.75 0.74 0.74
Inland waters 0.81 0.89 0.92 0.97 0.97 0.97 0.97 0.97

Shadow 0.70 0.79 0.89 0.90 0.90 0.90 0.90 0.90

While satisfactory F-scores were obtained for specific classes such as ‘buildings’, ‘asphalt surfaces’,
or ‘water bodies’, the accuracy is quite low for the other classes. It is also interesting to note that SVM
and Rpart outperformed RF for specific classes in Ouagadougou (‘dry vegetation’ and ‘mixed bare
soil/vegetation’, respectively).
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The analysis of individual classifiers’ confusion matrices (see Tables 4 and 5) revealed that, for both
case studies, confusions occurred mainly between the different vegetation classes (46% and 61% of
the whole confusions in Ouagadougou and Liège, respectively). In Ouagadougou, confusion also
appeared between the bare soils classes (Brown/red bare soils; White/grey bare soils) and asphalt
surfaces, shown in Table 4. Thanks to the hierarchical design of the legend, those confusions were
greatly reduced when aggregating the second level classes to reach the first level of the legend. For this
level, the overall accuracy is 93% for both case studies when considering the best performing voting
scheme, i.e., the Simple Weighted Vote (SWV), shown in Table 2.

Table 4. Confusion matrix for the Simple Weighted Vote on Ouagadougou, Burkina Faso. Values are
given as a percentage of the reference test set (column-based normalization). Diagonal values
correspond to the producer accuracy. BU: Buildings, SW: Swimming pools, AS: Asphalt surfaces,
RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed bare soil/vegetation,
DV: Dry vegetation, OV: Other vegetation, WB: Water bodies, SH: Shadow.

Reference

L2 Classes BU SW AS RBS GBS TR MBV DV OV WB SH

Simple Weighted
Vote (SWV)

BU 97.7 0 0 0 6.67 0 0 0 0 9.68 0
SW 0 96.8 0 0 0 0 0 0 0 0 0
AS 0 0 90 11.9 0 0 0 9.38 0 0 0

RBS 0 0 3.33 85.7 36.7 0 6.25 0 0 3.23 0
GBS 0 0 0 0 53.3 0 0 0 0 0 0
TR 0 0 0 0 0 90.6 0 3.13 19.4 0 0

MBV 2.33 0 0 2.38 3.33 0 50 12.5 0 0 0
DV 0 0 0 0 0 0 40.6 65.6 2.78 0 0
OV 0 0 0 0 0 9.38 3.13 6.25 77.8 3.23 3.33
WB 0 0 6.67 0 0 0 0 3.13 0 80.6 0
SH 0 3.23 0 0 0 0 0 0 0 3.23 96.7

Despite the combination of individual predictions, majority votes do not perform better than
the best individual classifier for the classes with high confusion, i.e., vegetation and bare soil classes.
Conversely, the accuracy of other classes was improved by the votes. For example, it can be observed in
Table 3 that the classes of ‘buildings’ and ‘bare soil’ benefit from the votes in Liège. The improvement
resulting from the vote is more noticeable for the ‘other vegetation’ class in Ouagadougou, where the
best-performing individual classifier (RF) reached an F-score of 0.77 while weighted votes (BWWV,
QBWWV) reached 0.81. These balanced results, with votes outperforming individual classifiers for
some classes and underperforming for others are consistent with the previous research [9]. The current
method of attributing weight during the vote, using the overall accuracy of individual classifiers,
is quite simple. Other methods might be implemented in order to take into account the performance
of each classifier for specific classes (see [54] for a review of decision level fusion methods used in
remote sensing).

Regarding segmentation, the use of an optimized segmentation parameter provided by
i.segment.uspo achieved satisfactory results in our case studies. Even if the quantitative assessment of
the segmentation’s quality is not in the scope of this paper, a visual check of Figure 5 reveals that the
images are segmented into meaningful objects.

Even though a rigorous comparison of the results using different datasets and training/test
sets could not be performed, the results obtained by applying the proposed semi-automated
processing chain on two very different urban contexts are similar and attest the transportability
of the proposed framework.



Remote Sens. 2017, 9, 358 13 of 20

Remote Sens. 2017, 9, 358  13 of 20 

 

 

Figure 5. True color composite (top), results of segmentation with Unsupervised Segmentation 
Parameter Optimization USPO (middle), classification at the second level with SWV vote (bottom) 
on a subset for each case study. BU: Buildings, SW: Swimming pools, AS: Asphalt surfaces, BS: Bare 
soil, RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed bare soil/vegetation, 
DV: Dry vegetation, LV: Low vegetation, MV: Medium vegetation, HVD: High vegetation 
deciduous, HVD: High vegetation coniferous, OV: Other vegetation, WB: Water bodies, SH: Shadow. 

  

Figure 5. True color composite (top), results of segmentation with Unsupervised Segmentation
Parameter Optimization USPO (middle), classification at the second level with SWV vote (bottom) on a
subset for each case study. BU: Buildings, SW: Swimming pools, AS: Asphalt surfaces, BS: Bare soil,
RBS: Brown/red bare soil, GBS: White/grey bare soil, TR: Tree, MBV: Mixed bare soil/vegetation,
DV: Dry vegetation, LV: Low vegetation, MV: Medium vegetation, HVD: High vegetation deciduous,
HVD: High vegetation coniferous, OV: Other vegetation, WB: Water bodies, SH: Shadow.



Remote Sens. 2017, 9, 358 14 of 20

Table 5. Confusion matrix for the Simple Weighted Vote on Liège, Belgium. Values are given as a
percentage of the reference test set (column-based normalization). Diagonal values correspond to the
producer accuracy. BU: Buildings, AS: Asphalt surfaces, LV: Low vegetation, MV: Medium vegetation,
HVD: High vegetation deciduous, HVD: High vegetation coniferous, BS: Bare soil, WB: Water bodies,
SH: Shadow.

Reference

L2 Classes BU AS LV MV HVD HVC BS WB SH

Simple Weighted
Vote (SWV)

BU 89.2 1.67 0 0 0 0 0 0 0
AS 5.41 80 0 0 0 0 16.7 0 0
LV 0 0 71.7 8.33 0 0 7.14 0 0
MV 0 0 28.3 64.6 0 0 2.38 0 0

HVD 0 0 0 25 75 27.9 0 0 0
HVC 0 0 0 2.08 22.2 72.1 0 0 5.13

BS 2.7 15 0 0 0 0 73.8 0 0
WB 0 0 0 0 0 0 0 94.6 0
SH 2.7 3.33 0 0 2.78 0 0 5.41 94.9

5. Discussion and Perspectives

The entire semi-automated processing chain for urban OBIA classification, relying on open-source
solutions, is available on a dedicated Github repository (https://github.com/tgrippa/Opensource_
OBIA_processing_chain). As it is shared under the CC-BY 4.0 Creative Common Licence, anyone
interested can use and/or adapt it to match different project-specific needs, by integrating additional
steps (e.g., automated image pre-processing, computation of spectral or textural indices, automated
sampling based on existing reference geodatasets).

Other frameworks relying on open-source solutions have already been proposed for the extraction
of valuable geographical information from remote sensing data [53,55–58]. Some of them are distributed
as a plug-in or a toolbox for existing geographical information systems, mainly for QGIS [55,56,58],
and present the advantage of providing a comforting environment for users, making their use
quite simple.

For most of them, pixel-based image classification is their core task. However, some include basic
object-based capabilities. For example, in the context of a pixel-based supervised classification, the Semi
Automated Classification Plug-in (SACP) [55] enables the user to save time when creating regions of
interest (ROI), as these are created using a region growing segmentation, starting from pixel seeds
defined by the user. Another example is the ‘Twinned Object and Pixel-based Automated Classification
chain’ (TWOPAC) plug-in that enables performing classification using object-based derived features,
but considers the segmentation as well as the object features computation as pre-processing steps to be
performed outside of the tool [59].

After our investigations, we found only one existing open-source framework that allowed us
to perform a complete object-based image analysis from segmentation to classification [57]. It relies
fully on Python libraries and is a highly modular solution for object-based image analysis, as it can
be linked with a lot of existing functions and software. Unfortunately, it could be very difficult for
researchers without strong programming skills to handle this kind of framework.

In this paper, we propose a contribution toward the development of a fully automated processing
chain for object-based image analysis. The advantage of the framework we propose is that it relies
on the open-source software GRASS GIS, which has had recent enhancements for object-based image
analysis, enabling the development of more automated procedures. As GRASS GIS offers a graphical
user interface (GUI), the different commands can be tested in the GUI during the script development
stage, and can then be included in the processing chain thanks to the GRASS Python scripting library.
Another key advantage of GRASS GIS is its users’ and developers’ community, which is usually helpful
and responsive.

https://github.com/tgrippa/Opensource_OBIA_processing_chain
https://github.com/tgrippa/Opensource_OBIA_processing_chain
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Even though enhancements are desirable, the semi-automated processing chain currently achieved
interesting results, as shown through the two case studies presented in this paper. Perspectives on
further developments are discussed below in this section.

The generation of training and validation samples still requires strong manual expert intervention.
This remains a challenge to be overcome by future research looking for automation, especially when
highly accurate reference geodatabases are not available. In that case, alternative data such as
OpenStreetMap data could be used, but their quality is often inconsistent and they should therefore be
assessed prior to any automated use. Issues of co-registration with VHR imagery might also arise when
using such data sets. The practical implementation of an active learning strategy [60], which could
help in building efficient training sets more rapidly, is currently under development in GRASS GIS.

In order to improve the segmentation and hence the resulting classification, we intend to
implement a multi-scale segmentation strategy, which has proved its ability to enhance the classification
performance in a previous study [31]. Segmentation strategies using superpixels could also be
investigated for further enhancements, since a new add-on [61] implementing SLIC superpixels method
has been developed recently. This approach has provided interesting results in recent research [42].

Another improvement method concerns the features used as inputs in the classification process.
Currently, only relatively simple object statistics are used. Band ratios and several textural indices will
be added. They will be automatically computed and submitted to a feature selection procedure for
those classifiers that do not include feature selection inherently.

During parameter tuning, spatial autocorrelation between the training and test sets created
in cross-validation can lead to undetected overfitting and an overvaluation of the accuracy [62,63].
To reduce this potential bias and obtain better bootstrap error estimates, we will investigate the
possibility of implementing spatial cross-validation, i.e., a spatially-constrained partitioning of the
training and test sets created in cross-validation [64]. In addition, more classifiers will also be included.

Moreover, we will explore the possibility of implementing other strategies for the combination
of multiple classifiers (see [48,54,65] for a review). The voting systems currently used to combine
predictions are based on weights derived from the overall accuracy or kappa of individual classifiers,
but in some cases, the non-best classifiers outperformed the best classifier's performance for specific
classes (see Table 3).

Since the performance of different LULC mapping methods is currently being assessed in the
SmartPop project, our open-source semi-automated approach is being compared to a rule-based
approach, developed in a proprietary software. The latter integrates existing ancillary vector layers
(buildings, roads, rails, and water bodies) in the segmentation. Constrained segmentation using
ancillary vector layers in GRASS GIS will be investigated in future studies.

In the near future, the processing chain will be tested on different datasets and/or cities. For the
MAUPP project, Synthetic Aperture Radar (SAR) data will be added as an input in order to improve
the accuracy and the chain will be applied to Ouagadougou (Burkina Faso), Dakar, and Saint-Louis
(Senegal). For the SmartPop project, Pléiades imagery will be used instead of orthophotos in order to
assess the comparative advantage of each dataset. Thereafter, the efficiency of the processing chain
will be tested for the automated processing of a very large area (i.e., the Walloon Region in Belgium),
taking advantage of the parallel computing options in the different modules.

6. Conclusions

In times when the reproducibility of research and the sharing of existing solutions is high on
the discussion agenda, the development of free and open-source solutions becomes paramount.
In this paper, a semi-automated processing chain for urban object-based classification is proposed as a
contribution towards the development of a transparent and open-source fully automated processing
chain for urban land-use/land-cover mapping from earth observation data. This processing chain,
relying on existing open-source geospatial software, is very adaptable and transportable to similar
datasets. It proved its ability of being quickly customizable in order to match the requirements of
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different projects, with very different urban morphologies and different datasets. Freely available for
anyone interested, it should be seen as a framework to be reused and enhanced for further studies.
The results achieved on our case studies are very interesting, taking into account the complexity of the
urban environments and the detail of the legend.
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Appendix

Table A1. Performance evaluation of the level-2 classification of Ouagadougou, Burkina Faso. Producer
accuracy (PA) and User accuracy (UA) for each class of the second level of classification. For each
line, the highest value is in bold. BU: Buildings. SW: Swimming pools. AS: Asphalt surfaces.
RBS: Brown/red bare soil. GBS: White/grey bare soil. TR: Trees. MBV: Mixed bare soil/vegetation.
DV: Dry vegetation. OV: Other vegetation. WB: Water bodies. SH: Shadow.

Individual Classifiers Votes

Level 2 Classes Accuracy kNN Rpart SVMradial RF SMV SWV BWWV QBWWV

BU
PA: 79.1% 79.1% 100.0% 95.3% 97.7% 97.7% 95.3% 95.3%
UA: 51.5% 77.3% 64.2% 91.1% 76.4% 89.4% 89.1% 89.1%

SW
PA: 83.9% 87.1% 93.5% 96.8% 96.8% 96.8% 96.8% 96.8%
UA: 100.0% 96.4% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

AS
PA: 56.7% 83.3% 56.7% 90.0% 86.7% 90.0% 90.0% 90.0%
UA: 44.7% 48.1% 53.1% 77.1% 74.3% 77.1% 77.1% 77.1%

RBS
PA: 57.1% 83.3% 64.3% 85.7% 85.7% 85.7% 85.7% 85.7%
UA: 47.1% 68.6% 65.9% 72.0% 69.2% 70.6% 70.6% 70.6%

GBS
PA: 26.7% 56.7% 56.7% 56.7% 50.0% 53.3% 53.3% 53.3%
UA: 25.0% 89.5% 94.4% 100.0% 93.8% 100.0% 100.0% 100.0%

TR
PA: 50.0% 96.9% 81.3% 90.6% 90.6% 90.6% 90.6% 90.6%
UA: 69.6% 72.1% 83.9% 80.6% 74.4% 78.4% 80.6% 80.6%

MBV
PA: 28.1% 62.5% 46.9% 46.9% 50.0% 50.0% 50.0% 50.0%
UA: 30.0% 60.6% 78.9% 68.2% 66.7% 69.6% 69.6% 69.6%

DV
PA: 6.3% 46.9% 71.9% 62.5% 65.6% 65.6% 65.6% 65.6%
UA: 12.5% 50.0% 59.0% 58.8% 61.8% 60.0% 58.3% 58.3%

OV
PA: 63.9% 61.1% 72.2% 80.6% 69.4% 77.8% 80.6% 80.6%
UA: 48.9% 84.6% 74.3% 74.4% 80.6% 77.8% 80.6% 80.6%

WB
PA: 12.9% 64.5% 80.6% 83.9% 64.5% 80.6% 80.6% 80.6%
UA: 36.4% 87.0% 89.3% 89.7% 90.9% 89.3% 89.3% 89.3%

SH
PA: 73.3% 60.0% 93.3% 96.7% 96.7% 96.7% 96.7% 96.7%
UA: 75.9% 90.0% 93.3% 90.6% 93.5% 93.5% 90.6% 90.6%

OA 50,1% 71.5% 74.8% 81.0% 78.3% 81.0% 81.0% 81.0%

Kappa 0.45 0.69 0.72 0.79 0.76 0.79 0.79 0.79

http://maupp.ulb.ac.be
http://maupp.ulb.ac.be
http://www.issep.be/smartpop
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Table A2. Performance evaluation of the level-2 classification of Liège, Belgium. Producer accuracy (PA)
and User accuracy (UA) for each class of the second level of classification. For each line, the highest
value is in bold. BU: Buildings. AS: Asphalt surfaces. LV: Low vegetation (<1 m). MV: Medium
vegetation (1–7 m). HVD: High vegetation deciduous (>7 m). HVC: High vegetation coniferous (>7 m).
BS: Bare soil. WB: Water bodies. SH: Shadow.

Individual Classifiers Votes

Level 2 Classes Accuracy kNN Rpart SVMradial RF SMV SWV BWWV QBWWV

BU
PA: 48.6% 89.2% 81.1% 86.5% 91.9% 89.2% 86.5% 86.5%
UA: 52.9% 94.3% 85.7% 97.0% 94.4% 97.1% 97.0% 97.0%

AS
PA: 78.3% 70.0% 76.7% 78.3% 81.7% 80.0% 80.0% 80.0%
UA: 54.7% 72.4% 76.7% 85.5% 75.4% 84.2% 84.2% 84.2%

LV
PA: 32.6% 69.6% 65.2% 78.3% 78.3% 71.7% 71.7% 71.7%
UA: 42.9% 86.5% 76.9% 81.8% 81.8% 82.5% 82.5% 82.5%

MV
PA: 33.3% 68.8% 58.3% 64.6% 62.5% 64.6% 64.6% 64.6%
UA: 34.8% 66.0% 66.7% 73.8% 73.2% 68.9% 68.9% 68.9%

HVD
PA: 33.3% 72.2% 75.0% 75.0% 75.0% 75.0% 75.0% 75.0%
UA: 25.0% 53.1% 49.1% 54.0% 50.0% 52.9% 52.9% 52.9%

HVC
PA: 34.9% 74.4% 62.8% 72.1% 65.1% 72.1% 72.1% 72.1%
UA: 37.5% 69.6% 71.1% 73.8% 71.8% 73.8% 73.8% 73.8%

BS
PA: 40.5% 61.9% 69.0% 76.2% 57.1% 73.8% 73.8% 73.8%
UA: 60.7% 65.0% 72.5% 72.7% 77.4% 75.6% 73.8% 73.8%

WB
PA: 73.0% 97.3% 91.9% 94.6% 94.6% 94.6% 94.6% 94.6%
UA: 90.0% 81.8% 91.9% 100.0% 100.0% 100.0% 100.0% 100.0%

SH
PA: 71.8% 69.2% 92.3% 94.9% 94.9% 94.9% 94.9% 94.9%
UA: 68.3% 93.1% 85.7% 86.0% 86.0% 86.0% 86.0% 86.0%

OA 50.3% 74.0% 74.0% 79.4% 77.3% 78.9% 78.6% 78.6%

Kappa 0.44 0.71 0.71 0.77 0.74 0.76 0.76 0.76
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