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Abstract: Over the past decades, regional haze episodes have frequently occurred in eastern China,
especially in the Yangtze River Delta (YRD). Satellite derived Aerosol Optical Depth (AOD) has been
used to retrieve the spatial coverage of PM2.5 concentrations. To improve the retrieval accuracy of the
daily AOD-PM2.5 model, various auxiliary variables like meteorological or geographical factors have
been adopted into the Geographically Weighted Regression (GWR) model. However, these variables
are always arbitrarily selected without deep consideration of their potentially varying temporal or
spatial contributions in the model performance. In this manuscript, we put forward an automatic
procedure to select proper auxiliary variables from meteorological and geographical factors and
obtain their optimal combinations to construct four seasonal GWR models. We employ two different
schemes to comprehensively test the performance of our proposed GWR models: (1) comparison with
other regular GWR models by varying the number of auxiliary variables; and (2) comparison with
observed ground-level PM2.5 concentrations. The result shows that our GWR models of “AOD + 3”
with three common meteorological variables generally perform better than all the other GWR models
involved. Our models also show powerful prediction capabilities in PM2.5 concentrations with only
slight overfitting. The determination coefficients R2 of our seasonal models are 0.8259 in spring,
0.7818 in summer, 0.8407 in autumn, and 0.7689 in winter. Also, the seasonal models in summer
and autumn behave better than those in spring and winter. The comparison between seasonal and
yearly models further validates the specific seasonal pattern of auxiliary variables of the GWR model
in the YRD. We also stress the importance of key variables and propose a selection process in the
AOD-PM2.5 model. Our work validates the significance of proper auxiliary variables in modelling the
AOD-PM2.5 relationships and provides a good alternative in retrieving daily PM2.5 concentrations
from remote sensing images in the YRD.

Keywords: seasonal GWR models; auxiliary variable selection; geographically weighted model;
MODIS AOD; PM2.5 concentrations; Yangtze River Delta

1. Introduction

Widespread air pollution has become a severe problem in China, with increasing population and
pollution emissions. The Yangtze River Delta (YRD), as one of the most developed regions in eastern
China, has been suffering deterioration of air quality and even more frequent haze episodes, severely
threatening both life and health of its people. Particulate matter with an aerodynamic diameter less
than 2.5 µm (PM2.5) is one of most harmful components of pollution haze and it has severely toxic
effects on climate, environment and human health [1,2]. Numerous epidemiological studies have
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validated the direct relation between high PM2.5 concentrations and rising human health problems like
asthma, tumors, and lung cancer [3–7]. Therefore, PM2.5 concentration monitoring is a significant and
pressing issue for both assessing human health exposure and making effective air pollution control
measures in the YRD region.

Ground-based monitoring networks could provide accurate and real-time PM2.5 concentrations.
However, the discrete monitoring sites only measure PM2.5 concentrations around a certain distance of
the sites and cannot provide a spatial coverage of PM2.5 concentrations. Moreover, major monitoring
stations are scattered in urban environments and particularly in the metropolis, leaving most rural
areas uncovered. Even though the number of monitoring stations in China has been clearly increasing
in recent years, the sites are still insufficient to fill all space gaps of the YRD region [8,9].

In contrast, satellite remote sensing has distinct advantages in long-term monitoring and
large-scale spatial coverage. Many satellite sensors like MODIS, MISR, and SeaWiFS collect the
aerosol information in the atmosphere including aerosol scattering and absorption. They are widely
used in estimating and monitoring PM2.5 concentrations with aerosol optical depth (AOD). AOD
measures the light extinction by aerosol scattering and absorption and it reflects the particle number
and property of PM2.5 in the total atmosphere. The satellite sensors then estimate the spatial coverage
of daily coverage of daily PM2.5 concentrations via the retrieval relations between ground-level PM2.5

concentrations and satellite-based AOD [10–18].
The retrieval models of PM2.5 concentrations coverage from satellite-based AOD can be divided

into three main types: the scaling factor models [19,20], the physical analysis models [21,22], and the
empirical statistical models [23]. Scaling factor models mainly originate from the chemical transport
model (CTM), and they determine the scale factor between satellite-based AOD and ground-level
PM2.5 concentrations to estimate large-scale spatial distributions of satellite PM2.5 concentrations.
The models were designed for atmospheric regions without ground PM2.5 monitoring data and the
retrieval accuracy of PM2.5 concentrations is relatively low [23]. Moreover, complicated parameters
are mandatorily requiring to initialize and optimize the CTM. Different from scale factor models,
physical analysis models analyze the AOD-PM2.5 relationships and incorporate accountable physical
parameters to construct quantitative functions of satellite PM2.5 concentrations [24]. Unfortunately, it is
a big challenge to collect these physical parameters in realistic applications. Furthermore, the physical
mechanisms in reality are far more complicated than these ever-proposed formulas. Empirical statistical
models bring about more accurate distribution retrievals of PM2.5 concentrations when compared
with the physical analysis models or scaling factor models [21]. Empirical statistical models [25]
construct statistical regression functions between satellite-based AOD and in situ PM2.5 concentration
measurements, and they can be grouped into two classes including early-stage statistical models and
advanced statistical models.

Early-stage statistical models are mainly referred to as simple or multiple linear regression
models, whereas advanced statistical models develop features in delineating spatial and temporal
variations in the relationships between AOD and PM2.5 concentrations. Typical examples of advanced
statistical models are the general additive line model (GAM) [26], the geographical weighted regression
model (GWR) [27], the linear mixed effects (LME) [28], the geographically and temporarily weighted
regression model (GTWR) [29], the two step models [10,14], and the three step models [30,31]. Amongst
all of them, the GWR has a simple mathematical theory, low computational complexity, and relatively
stable performance in considering unstable relationships between ground-level PM2.5 concentrations
and remote sensed AOD [8,9,15,16,26,32]. Moreover, the GWR shows good compatibility and it is
always combined with other schemes to construct complicated statistical models such as the two
steps models [14] and three step models [31]. The behaviors of GWR correlate closely with the above
formulated models and therefore we focus our study on the GWR model and aim to promote its PM2.5

retrieval performance in realistic applications of the YRD region.
The GWR model observes that the relation between PM2.5 concentrations and AOD varies

across different spatial locations, and additional factors in geography or meteorology are usually
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incorporated into the model to help explain the generation and dilution of PM2.5 concentrations in
the atmosphere [10]. Meteorological factors are mainly derived from physical models, and typical
variables adopted in GWR include boundary layer height, relative humidity, temperature, and wind
speed etc. Geographical factors, mainly referring to the land use the regression model, to explain
spatial variations of air pollution in outdoor environments. Geographical variables mainly include
demography, land use type, elevation, and vegetation coverage ratio etc. Table 1 lists representatives
of auxiliary variables from meteorological or geographical factors in the GWR model for retrieving
daily PM2.5 concentrations. These auxiliary variables have been proven to enhance the stability of
GWR in PM2.5 concentration retrieval. However, unfortunately, two big problems still exist in how
to properly select meteorological or geographical factors, and that severely hinders the performance
improvement of the daily GWR model in realistic applications of the YRD region.

Table 1. Representatives of auxiliary variables in geographical weighted regression model (GWR)
model for PM2.5 concentrations.

Study Area Meteorological Factors Geographical Factors References

China relatively humidity, air temperature, wind
speed, horizontal visibility — [16]

Global GEOS–Chem chemical transport model (CTM) urban land cover, elevation [32]

China boundary layer height, temperature, wind
speed, relative humidity, air pressure

population density, monthly
mean normalized difference

vegetation index (NDVI)
[9]

Pearl River Delta region temperature, wind speed, relative humidity — [15]

North American
Regional

boundary layer height, relative humidity, air
temperature, wind speed percentage of forest cover [27]

(1) The subjective scheme in selecting meteorological or geographical factors might result in
unrepresentative or redundancy among different variables and that would reduce the retrieval
performance of the daily GWR model. Different meteorological or geographical factors do have
divergent contributions in the GWR model, but the contributions from these variables have never been
carefully analyzed. Meanwhile, strong intra-correlations might exist among different meteorological
or geographical factors. For example, air temperature has a negative correlation with air pressure,
and the elevation correlates closely with demography on the same sites. However, current literatures
have never carefully investigated the procedure in selecting proper meteorological or geographical
variables for daily GWR modelling. Arbitrary selection of these factors would adversely degrade the
accuracy of GWR in realistic applications.

(2) The subjective selection scheme has neglected metabolic contributions of these meteorological
or geographical factors to the retrieval performance of the daily GWR model across four different
seasons. Working mechanism and contributions of these meteorological or geographical variables
vary across different seasons, causing the wide range of daily model performance [27]. For example,
in eastern China, the wind dilutes air pollution in summer whereas it might show opposite influences
in spatial distributions of PM2.5 concentrations in winter. The reason is that the winter monsoon brings
the articles from the north of China. Accordingly, it is of great necessity to consider the particularity of
variable contributions of different factors in different seasons in order to guarantee good performance
of the GWR model.

In our previous work of literature [33], we tested different potential influences from meteorological
factors and geographical factors in retrieving PM2.5 concentrations with the regular GWR model.
In this manuscript, we design an automatic procedure to select proper variables from meteorological
or geographical factors in the YRD region and construct specific GWR models for retrieving daily
PM2.5 concentrations in four different seasons. We validate our seasonal GWR models by comparing
with regular GWR models with varying auxiliary variables and by comparing the predicted PM2.5

concentrations with the observed. As far as we know, few relevant works have carefully explored
the situation in current literatures especially for the YRD region. The recently proposed timely
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structure adaptive modeling (TSAM) tried to construct a daily AOD-PM2.5 model by selecting daily
varied auxiliary variables [34]. However, the prediction procedure of TSAM is too complicated to
implement in the YRD region. Accordingly, the objects of this manuscript are to: (1) make clear
different contributions of the main meteorological or geographical factors and their combinations
to the GWR model of the YRD region; (2) propose an automatic procedure to find proper auxiliary
variables for modelling GWR in different seasons; and (3) provide detailed equations of seasonal GWR
models to benefit the retrieval of daily PM2.5 concentrations in the YRD region.

2. Materials and Methods

2.1. Data

2.1.1. Ground-Level PM2.5 Concentration Data

Our study region YRD includes Zhejiang, Jiangsu, Anhui provinces, and Shanghai city.
We selected the year of 2013 as our study period because of the increasing public attention to haze
episodes from 2013 [35] and the data accessibility of PM2.5 monitoring sites in 2013. Figure 1 illustrates
the 123 PM2.5 monitoring sites of the YRD region in 2013. Ground-level hourly PM2.5 concentration
data was downloaded from China air quality real-time release system of the Chinese Ministry of
Environmental Protection (available at http://106.37.208.233:20035). The PM2.5 concentrations were
measured by Tapered Element Oscillating Microbalances (TEOM) or beta attenuation method (BAM or
β-gauge). The data has an uncertainty less than 0.75%, with its accuracy reaching up to±1.5 µg/m3 for
the hourly average, and hence it is accurate enough as ground truth for PM2.5 concentration measures.
From the consideration of simplicity and convenience, the PM2.5 concentration data at Beijing time
11:00 AM from 1 January to 31 December 2013 was collected to match with the passing time of the
MODIS Terra satellite (i.e., approximately 10:30 a.m. at local time).
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Figure 1. The ground PM2.5 monitoring sites and meteorology stations in the Yangtze River Delta
(YRD) region.

2.1.2. MODIS AOD

The MODIS sensors on the Terra and Aqua satellites provide global information of the
Earth-atmosphere system in 36 spectral bands from visible to thermal infrared spectrum range
(0.4–14 µm) with a swath width of 2330 km in 1–2 days. Compared with many other satellite-derived
AOD products, the MODIS AOD has the greatest reputation because of its high temporal resolutions,
relatively high spatial resolutions, good accuracy, and easy accessibility [36]. The latest MODIS AOD
production version Collection 6 is constructed from MODIS imagery via both enhanced DB and DT
algorithm and the AOD product is adaptable for both dark and bright surfaces. We in this study
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uses the Terra MODIS C6 DT 10-km AOD product and the data was download from Level-2 and
Atmosphere Archive & Distribution System of NASA (available at http://ladsweb.nascom.nasa.gov/).

2.1.3. Meteorological Datasets

Referring to previous studies, we manually choose six factors as preliminarily auxiliary
meteorological variables, including temperature (Temp), wind speed (WS), air pressure (Apre),
vapor pressure (Vpre), relative humidity (RH), and surface horizontal visibility (VSB). The particle
concentrations of PM2.5 largely depend on the meteorological conditions. High surface temperature or
high air pressure accelerates the atmospheric vertical motion to transport ground pollutants into higher
places. Wind speed is an effective index of quantifying surface motions of air flow and affects the
horizontal transport of ground pollutants. Relative humidity makes a correction of aerosol humidity
in the atmosphere in order to better match with ground dry PM2.5 concentrations. High relative
humidity largely enhances the size and light extinction of particles, which comprise the sulfate, nitrate,
and ammonium from coal and biomass burning, industrial, and vehicular sources. We also take
vapor pressure as a meteorological variable because we regard it is a comprehensive variable and it
correlates closely with the generation or aggregation of PM2.5. The daily averaged data of above five
variables were acquired from the China Daily Surface of Climatic Dataset in Chinese Meteorological
Administration (available at http://data.cma.cn/). The YRD region has a total of 72 ground-level
monitoring sites in Figure 1.

Although BLH has been a common used variable for AOD vertical correction in many previous
studies, recent real experiments proved that BLH made unclear contributions in the GWR model for
retrieving PM2.5 concentrations in the YRD [28]. The biomass burning in the YRD greatly influences
the aloft aerosol above the BLH, and the vertical correction of AOD might be underestimated by the
BLH [37]. In contrast, the visibility directly reflects the relationship between AOD and ground-level
extinction coefficient [16] and shows great significance in GWR modelling of PM2.5 concentrations [8].
Therefore, we implemented VSB as a preliminary meteorological variable rather than BLH. The
visibility data was acquired from 23 ground-level monitoring sites in the YRD and the dataset at
11:00 was collected from the National Climatic Data Center (NCDC) Global Surface Hourly database
(available at http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=hourly&layers=
1&node=gis).

2.1.4. Geographical Datasets

We also manually selected three widely used geographical factors as preliminarily auxiliary
geographical variables, geomorphy feature (GEOM), elevation, and vegetation coverage. We chose
the geomorphy feature because it impacts the spread of air pollutants. The geomorphy feature
dataset was obtained from the Institute of Geographical Sciences and Natural Resource Research,
Chinese Academy of Sciences (available at http://www.resdc.cn/data.aspx?DATAID=124), with
spatial resolutions of 10 km equal to the MODIS AOD product. The original geomorphy data was
manually recategorized from 26 classes into four new classes in YRD, including plain, platform, hill,
and mountain, in order to differentiate their influences in AOD-PM2.5 relationships. The elevation
is supposed to have negative effects on PM2.5 distributions, because of the gravity sedimentation of
air particles. The 90 m Digital Elevation Model (DEM) of SRTMDEM3 dataset was acquired from the
Geospatial Data Cloud (available at http://www.gscloud.cn/). High vegetation coverage reduces
the entry of aerosols into the atmosphere and absorbs particles in the atmosphere [38]. The 16-day
synthesized normalized difference vegetation index (NDVI) product of MODIS (MOD13A2) was
achieved from NASA (available at http://ladsweb.nascom.nasa.gov/) to represent the vegetation
coverage with spatial resolutions of 1000 m. The time of MOD13_A2 product was carefully chosen
to coincide with those of other daily datasets, including MODIS AOD, PM2.5 concentrations, and the
meteorological dataset prior to the day.

http://ladsweb.nascom.nasa.gov/
http://data.cma.cn/
http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=hourly&layers=1&node=gis
http://gis.ncdc.noaa.gov/map/viewer/#app=clim&cfg=cdo&theme=hourly&layers=1&node=gis
http://www.resdc.cn/data.aspx?DATAID=124
http://www.gscloud.cn/
http://ladsweb.nascom.nasa.gov/
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2.1.5. Data Pre-Processing and Integration

All the above datasets (Ground-level PM2.5 concentrations, MODIS AOD, meteorological data, and
geographical data) were transformed into the WGS84 geographic coordinate system. Meteorological
data and ground-level PM2.5 concentrations were acquired at different monitoring stations, and the
average distance of two kinds of station was manually measured at 0.144 degrees. We argue that the
meteorological condition varies insignificantly within the average distance and meteorological stations
are evenly distributed in the study region. So it is reasonable to spatially join each PM2.5 monitoring site
with its nearest meteorological station. Accordingly, the ground-level PM2.5 concentration measures
and its meteorological data were then registered into the same monitoring site. Meanwhile, the YRD
region was digitized into grid cells with a fixed grid size of 0.1 degrees. Using overlay analysis, the
averages of MODIS AOD and geographical data (DEM, MODIS NDVI and geomorphy data) within
each grid cell were assigned as corresponding values of its grid cell.

The MODIS AOD product has many missing pixels mainly due to cloud coverage, high surface
reflectance above bright and urban areas, and model retrieval errors. That greatly reduces the usability
of the AOD product in matching it with ground-level PM2.5 concentration measures and also lowers
the number of validated records in the GWR modelling. For the daily PM2.5 concentrations retrieval,
a proper number of daily validated records of ground-level PM2.5 concentrations and AOD is a key
point to ensure the robustness and accuracy of GWR modelling. A too small number of daily records
could not reflect the realistic spatial coverage of PM2.5 concentrations on the same day. According
to practical experience from our preliminary trials, the daily threshold of 20 records was manually
chosen to guarantee a sufficient number of validated daily records of AOD and ground-level PM2.5

concentrations; the final records in our seasonal GWR modelling are 3482 scattering in 66 days of 2013.

2.2. Method

2.2.1. The Regular GWR Model

The GWR model is a spatial regression model that generates spatially continuous coefficients
of all variables across the study area. It mainly contributes in analyzing the unstationary status
of the spatially varied relationship between independent variables and dependent variables [39].
The GWR model assumes that the AOD-PM2.5 relationship varies greatly with spatial locations
in the study area, and it has been adapted to describe the unstable relations between PM2.5

concentrations and AOD, as well as other geographical or meteorological factors. In this study,
considering the nine auxiliary variables in Table 2 to constitute the preliminary variable set AV =

{DNVI, Geom, Elev, Temp, RH, WS, Apre, Vpre, VSB}, the regular GWR model in retrieving daily
PM2.5 concentrations can be formulated as

PM2.5(i,j) = β0(i,j) + βAOD(i,j)AOD(i,j) +
c

∑
k=1

βk(i,j)AVk
SUB(i,j) (1)

where AOD(i,j) and PM2.5(i,j) represent main variables of the daily GWR model at the position i on day
j, with the coefficient of AOD as βAOD(i,j); β0(i,j) is a constant coefficient denoting the location-specific
intercept at the position i on day j; AVk

SUB denotes the k-th element of a subset selected from the set of
auxiliary variables AV, with the subset size c no less than 9, and βk(i,j) is the location-specific slope or
coefficient of its corresponding auxiliary variable AVk

SUB.
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Table 2. Main parameters of all involved variables in GWR modelling.

Data Variables (Abbreviation) Unit Time
Frequency

Spatial
Parameters

Main Variables
PM2.5 concentration PM2.5 µg/m3 Hourly 121 stations

MODIS AOD AOD — Daily 10 km

Preliminary
Auxiliary
Variables

Geographical data
NDVI — 16 days 1 km

Geomorphy (Geom) — — 10 km
DEM(Elev) m — 90 m

Meteorological data

Temperature (Temp) ◦C

Daily 72 stations
Relative humidity (RH) %

Wind speed (WS) m/s
Air pressure (Apre) Pa

Vapor pressure (Vpre) Pa
surface horizontal visibility (VSB) km Hourly 23 stations

2.2.2. Seasonal GWR Modelling with Proper Auxiliary Variables

Selecting proper auxiliary variables is of great significance to guarantee the performance of the
GWR model as well as to maximize the contribution of each selected auxiliary variable. Previous works
validated the seasonal variability of different auxiliary variables in affecting the AOD-PM2.5 relations
in the GWR model. Therefore, we would like to propose an automatic procedure to select the proper
auxiliary variables and construct specific GWR models for retrieving daily PM2.5 concentrations in the
four different seasons. With main variables of daily PM2.5 and daily AOD product, with preliminary
auxiliary variables of NDVI, Geom, Elev, Temp, RH, WS, Apre, Vpre, and VSB, the main procedure of
constructing seasonal GWR models includes the following steps shown in Figure 2.

1. The datasets of main variables and preliminary auxiliary variables are categorized into four
different seasons, spring, summer, autumn, and winter.

2. Different regular GWR models are constructed with main variables and auxiliary variables in
different seasons. For each model in each season, we take AOD and PM2.5 as main variables
and separately add each element of nine single auxiliary variables one at a time into the GWR
model. The performance of obtained regular GWR models is quantified via the Determination
Coefficient (R2). By comparing with the simple seasonal GWR model without auxiliary variables,
we rank the contributions of each auxiliary variable in the regular GWR modelling of daily PM2.5

in descending order. Dominating auxiliary variables for GWR modelling in different seasons are
then obtained.

3. Spearman correlation coefficient analysis is implemented into each pair of dominating auxiliary
variables in different seasons. The operation is to reduce the collinearity and redundancy
among dominating auxiliary variables. The spearman correlation coefficient is a nonparametric
rank correlation coefficient, and it is a distribution-free version of the classical Pearson’s
product–moment correlation coefficient [40]. A higher coefficient means stronger relationships
among different auxiliary variables and the coefficient at 0.3 is regarded as the threshold of weak
correlations in our study. Once two dominating auxiliary variables have the spearman correlation
coefficient over 0.3, and only one of them is chosen for further GWR modelling. The pruned
auxiliary variables are obtained after the Spearman correlation coefficient analysis.

4. Factor analysis is carried out to verify the representativeness of pruned auxiliary variables.
The idea of factor analysis is to group the variables having high correlations or close connections
into the same class, where each class represents a basic structure called the common factor.
The main common factors are able to reflect the major information of the original variables.
In this study, the average of four season accumulated variance of the first four common factors
is 70.97%. Moreover, the factor rotation in factor analysis provides actual physical meaning to
explain working mechanisms of each pruned auxiliary variables. In the manuscript, we do not
use uniform seasonal load matrix to construct new daily common variables and replace original
variables because of the big probability of exaggerated errors.
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5. The proper auxiliary variables are achieved for four different seasonal GWR models. The seasonal
GWR models for daily PM2.5 are finally obtained in the YRD region.
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2.2.3. Model Evaluation and Verification

In the manuscript, we employ two different schemes to comprehensively testify the performance
of our seasonal GWR models: (1) comparison with other regular GWR models by varying the number
of auxiliary variables; and (2) comparison with observed ground-level PM2.5 concentrations.

We change the number of auxiliary variables to construct different GWR models and compare their
performance with our obtained seasonal GWR models in the same season. To assess the performance
of model fitting and evaluation, four popular measures are adopted, including R2, corrected Akaike
Information Criterion (AICc), Root Mean Squared Prediction Error (RMSE), and Mean Absolute
Percentage Error (MAPE). R2 is a common indicator for model fitting, and AICc is used to make
comparisons between GWR models with different auxiliary variables. RMSE and MAPE describe the
residuals between predicted PM2.5 concentrations and the observed. MAPE weights the residual in
terms of measured PM2.5 concentrations, and smaller MAPE indicates higher PM2.5 concentrations
in the same residual condition. Compared with MAPE, RMSE is more sensitive to higher residual
because it places more punishment on a higher residual than a lower one.

On the other hand, we compare the predicted daily PM2.5 concentrations with the observed PM2.5

measures in the testing sites to further verify the performance of our seasonal GWR models. From the
above mentioned, some grids have no daily AOD from MODIS remote sensing to correspond with
their PM2.5 measures on the same ground-level monitoring sites because of cloud coverage and other
reasons. The PM2.5 concentrations in these grids are chosen to constitute the testing samples and their
corresponding AOD measures are filled with the average AOD values of their nearest neighbors using
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buffer analysis via 0.3 degrees. The reason for filling absent AOD with buffer analysis is that many
experiments from previous works validated that the AOD would not diverge greatly within a small
distance. Moreover, with the proper auxiliary variable combination, the 10-fold cross validation is
implemented to testify the predication performance of our seasonal GWR models.

3. Results

3.1. Descriptive Statistic of Datasets

Table 3 lists the statistic information of two major variables PM2.5 and AOD for model fitting and
evaluation in the experiments. The average PM2.5 is highest in winter (97.76 µg/m3), then followed
by spring (68.02 µg/m3), autumn (57.95 µg/m3), and summer (39.50 µg/m3). The averages of AOD
reach the highest value in spring (0.82), then followed by summer, winter, and autumn. We argue
that the inconsistent seasonal patterns of PM2.5 and AOD are caused by different seasonal impacts of
meteorological or geographical factors, rendering that the PM2.5 concentrations and AOD are scattered
to different extents even in opposite directions. Compared with model fitting in four seasons, the
averages of PM2.5 concentrations implemented in model evaluation are slightly higher. The reason
for this is because some grids with higher PM2.5 concentrations but without AOD caused by cloud
coverage are grouped as testing samples for model evaluation.

Table 3. Description statistics of PM2.5 and Aerosol Optical Depth (AOD) for GWR model fitting
and evaluation.

Whole
Year

Variable
Model Fitting (N = 3482, day = 66) Model Evaluation (N = 715, day = 66)

Mean Min Max SD Mean Min Max SD

PM2.5 (µg/m3) 61.75 3 400 40.43 67 21 267 32.
AOD (Unit less) 0.69 0.03 3.51 0.41 0.62 0.04 2.98 0.35

Spring
Variable

Model Fitting (N = 1237, day = 21) Day-Site Evaluation (N = 198, day = 21)

Mean Min Max SD Mean Min Max SD

PM2.5 (µg/m3) 68.02 3 279 38.43 68.72 12 257 35.89
AOD (Unit less) 0.82 0.08 3.51 0.41 0.69 0.11 3.21 0.39

Summer
Variable

Model Fitting (N = 809, day = 16) Day-Site Evaluation (N = 182, day = 16)

Mean Min Max SD Mean Min Max SD

PM2.5 (µg/m3) 39.50 3 400 23.25 41.50 14 400 26.25
AOD (Unit less) 0.67 0.04 2.33 0.34 0.67 0.06 2.33 0.35

Autumn
Variable

Model Fitting (N = 1014, day = 18) Day-Site Evaluation (N = 181, day = 18)

Mean Min Max SD Mean Min Max SD

PM2.5 (µg/m3) 57.95 5 205 35.62 62.5 9 235 35.62
AOD (Unit less) 0.58 0.035 2.50 0.42 0.59 0.04 2.70 0.51

Winter
Variable

Model Fitting (N = 422, day = 11) Day-Site Evaluation (N = 154, day = 11)

Mean Min Max SD Mean Min Max SD

PM2.5 (µg/m3) 96.76 5 284 50.10 102.3 25 267 45
AOD (Unit less) 0.62 0.037 2.94 0.41 0.59 0.04 3.02 0.41

3.2. Proper Auxiliary Variables Analysis

We first respectively add each of the nine auxiliary variables into the simple GWR model. Figure 3
illustrates the determined coefficients R2 of each auxiliary variable in its seasonal models. In four
seasons, VSB contributes greatly to improving the GWR performance, whereas Georm and NDVI
have little contributions to the GWR model in fitting the AOD-PM2.5 relationships. The contributions
from Vpre, Temp, WS, Elev, and Apre in GWR modelling diverge greatly across different seasons.
In spring, the mean and median of WS, Vpre, VSB, and Temp variables show better contributions than
other variables. The wider variations of R2 from NDVI and Apre indicate more variations of their
contributions in spring GWR modelling. In summer, Vpre, and VSB show remarkable performance,
followed by Elev and Apre, while the WS variable shows less impact compared with its contribution
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in spring GWR modelling. In autumn, WS, Temp, Vpre, and VSB have remarkable contributions
compared to other variables, regardless that Apre is less stable than the four variables above. In winter,
all the variables have relatively unstable contributions in GWR modelling with wider ranges of R2, and
the reason for this might be the relatively smaller fitting samples and the fluctuating meteorological
conditions in winter. From the above contributions of all the single auxiliary variables, we preliminarily
selected the Elev, WS, Apre, Vpre, VSB, and Temp for further analysis.Remote Sens. 2017, 9, 346  10 of 19 
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Figure 3. Contributions from nine auxiliary variables in GWR modelling of four seasons and the whole
year. (a) spring, (b) summer, (c) autumn, (d) winter, (e) whole year, (f) curve line of contributions from
all auxiliary variables in four seasons and the whole year. The box gives the 25%–75% percentile and
the line in the box denotes the median. The whisker is the maximum and minimum of R2, the points
outside the box are outliers, inside the box an average of R2.

With Spearman correlation coefficient analysis, the number of auxiliary variables is pruned to
reduce the collinearity and redundancy among different variables. For the spring model, the Temp is
removed because of its serious collinearly with Vpre. The Apre variable is discarded in the summer
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model because of its clear redundancy with Elev. The Vpre variable is dropped in the autumn model
because of its collinearity with VSB. The variables in the winter model do not show clear collinearity.
Three variables are left for four seasonal models and the yearly model respectively, WS, Vpre, and VSB
for spring, Elev, Vpre, VSB for summer, WS, Temp, VSB for autumn, Apre, RH, VSB for winter and WS,
Vpre and VSB for the whole year.

We implement factor analysis to verify the representatives of pruned auxiliary variables. We use
the factor analysis method to extract the common factor and calculate the factor load matrix. The result
shows the first four factors separately reach their 70.52% accumulated variance in spring, 71.31%
in summer, 74.64% in autumn, and 67.38% in winter. The first common factor includes AOD and
VSB, sometimes with RH in. The second common factor consistently includes Vpre and Temp. The
third common factor usually includes WS and Elev. The last common factor includes NDVI and
Geom. Apre is possible to be involved in both the first and third common factors. We respectively
name these four common factor components comprehensive index, vertical diffusion effect, horizontal
diffusion effect, and geographic effect according to their physical mechanism with the ground-level
PM2.5 concentrations. In this case, we find the pruned auxiliary variables exactly represent three
common meteorology factors, and therefore factor analysis provides theoretical supports for our
selected auxiliary variables. However, the geographic effect does not involve variables in our model,
we will explain the reason latter.

From the above, we finally obtain three proper auxiliary variables for four seasonal GWR models
and the year GWR model (listed in the supplementary file). The proper auxiliary variables are WS,
Vpre, and VSB for spring GWR model, Elev, Vpre, VSB for summer model, WS, Temp, VSB for autumn
model and Apre, RH, VSB for winter model. Integrating the proper auxiliary variables with the main
variable, four seasonal GWR models and the year model for further comparison are finally obtained.

3.3. Evaluation and Verification of Seasonal GWR Models

In order to validate our four seasonal models, we implement two groups of experiments to
validate our four seasonal models. The first experiment in comparison with other GWR models by
changing different auxiliary variable combination is to verify the performance of our proper auxiliary
variable combination in four seasonal models. The second experiment is to evaluate the behaviors of
four seasonal GWR models in predicting daily PM2.5 concentrations.

3.3.1. Comparison of Regular GWR Models with Varied Auxiliary Variables

In order to testify the performance of three variable combinations, we respectively change the
number of auxiliary variables from 0–4 to construct eight comparison GWR models in each season.
Table 4 lists auxiliary variables of 36 GWR models of four seasons in the comparison, and the nine
models can be grouped into five types: “AOD + 0”, “AOD + 1”, “AOD + 2”, “AOD + 3” (our model
with three proper auxiliary variables), and “AOD + 4”. The fourth variable in the comparison compared
against our seasonal models is manually selected according to its contribution of a single variable in
regular GWR modelling.



Remote Sens. 2017, 9, 346 12 of 20

Table 4. The list of all GWR models with different variable combinations.

Model
Groups Models Spring Summer Autumn Winter Year

AOD + 0 1 AOD

AOD + 1
2 AOD, WS AOD, Elev AOD, WS AOD, Apre AOD, WS
3 AOD, Vpre AOD, Vpre AOD, Temp AOD, RH AOD, Vpre
4 AOD, VSB AOD, VSB AOD, VSB AOD, VSB AOD, VSB

AOD + 2
5 AOD, WS, Vpre AOD, Elev, Vpre AOD, WS, Temp AOD, Apre RH AOD, WS, Vpre
6 AOD, WS, VSB AOD, Elev, VSB AOD, WS, VSB AOD, Apre, VSB AOD, WS, VSB
7 AOD, Vpre, VSB AOD, Vpre, VSB AOD, Temp, VSB AOD, RH, VSB AOD, Vpre, VSB

AOD + 3
(Ours) 8 AOD, WS,

Vpre, VSB
AOD, Elev,
Vpre, VSB

AOD, WS,
Temp, VSB

AOD, Apre,
RH, VSB

AOD, WS,
Vpre, VSB

AOD + 4 9 AOD, WS, Vpre,
VSB, Elev

AOD, Elev Temp,
Vpre, VSB,

AOD, WS, Temp,
Vpre, VSB

AOD, WS, Apre,
RH, VSB

AOD, WS , Temp,
Vpre, VSB

Figure 4 demonstrates all the model fitting and evaluation results from all the models in four
seasons. In spring, the R2 of model fitting and model evaluation rises when the auxiliary variables
gradually increase from 1–3, consistent with the decreasing RMSE and MAPE from 14.0 µg/m3 to
12.8 µg/m3 and from 27% to 22% in model fitting respectively. The optimal R2, MAPE, and AICc reach
the optimal result in model 5, although the RMSE has the minimum value in model 8 of “AOD + 3”.
With the variable number varying from 1–4, the overfitting degree of all models decreases from “AOD
+ 0”, achieves the bottom at “AOD + 3” and then increases from “AOD + 3” to “AOD + 4”. Specifically,
our spring GWR model of “AOD + 3” has the slightest overfitting degree whereas its “AOD + 2” model
encounters the most serious overfitting.
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In summer, an overall gradual improvement of model performance exists from “AOD + 0” to
“AOD + 3”, with a slight descending in “AOD + 4”. For the GWR model fitting process, R2 increases
from 0.69 to 0.78, RMSE decreases from 7.25 µg/m3 to 6.18 µg/m3, and MAPE decreases from 22.5%
to 19.0%. The model performance of GWR slightly descends from “AOD + 3” to “AOD + 4”, and the
model 8 of “AOD + 3” behaves best of all the models in summer. From model 1 to model 8, AICc
values vary within a smaller range from 320.1 to 321.7, and the overall tendency of AICc in model
evaluation is consistent with that of model fitting.

Similar to that of summer, the R2, RMSE, and MAPE in autumn models show gradual
improvement in performance from model 1 to model 8, with R2 increasing from 0.72 to 0.75, RMSE
decreasing from 11.35 µg/m3 to 10.17 µg/m3 and MAPE decreasing from 22.5% to 19.0%. Model 8 of
“AOD + 3” has the highest R2, lowest RMSE and MAPE and relatively less overfitting among all the
models and it performs best of all.

In winter, the variation of R2, RMSE, and MAPE diverges more than those of the other three
seasons. The explanation for this is partly because of fewer samples in both model fitting and
evaluation. In terms of R2, Figure 4 shows a more apparent increasing tendency and does not have
descending tendency at “AOD + 4” model. From model 1 to model 8, R2 increases from 0.68 to 0.77,
RMSE decreases from 17.67 µg/m3 to 15.11 µg/m3, MAPE decreases from 18.5% to 15.3%. More
variation and severer overfitting also occur in the winter models, with the decreasing R2 averaged at
0.173 from model fitting to model evaluation.

From the above, the comparison with changing numbers of auxiliary variables explains the best
performance of our “AOD + 3” model, and verifies the effectiveness of our selected proper auxiliary
variables in modelling seasonal GWR models.

Moreover, we listed key coefficients of auxiliary variables involved in nine GWR models from 1–9
on 16 September 2013 to further explain the special performance of our “AOD + 3” GWR model. We
selected the day because of its high AOD coverage rate. Table 5 shows the coefficients of all involved
auxiliary variables in the nine models. The results show that the auxiliary variables have clear effects
in model fitting and evaluation. From model 1 to model 9, the changing combinations of the auxiliary
variables explain their divergent contributions in improving the performance of the GWR model.
Among all the nine models, the “AOD + 3” of model 8 performs best, with lowest overfitting in model
fitting and evaluation. Figure 5 illustrates spatial distributions of PM2.5 retrieved from these nine
models on 16 September 2013.

Table 5. Parameter estimations and Mean Absolute Percentage Errors (MAPEs) for GWR models 1–9
on 16 September 2013.

Model
Parameter Estimate MAPE (%)

βAOD βWS βTemp βVSB βVpre Fitting Evaluation

1 6.87 — — — — 22.17 35.91
2 7.56 1.28 — — — 21.89 35.29
3 6.67 — 4.31 — — 21.85 36.34
4 0.81 — — −6.65 — 22.64 33.18
5 6.38 0.55 2.24 — 22.24 34.34
6 2.77 1.33 — −9.49 — 20.92 33.05
7 3.22 — 6.38 −5.82 — 20.99 34.04
8 3.09 0.61 3.89 −5.00 — 20.81 32.25
9 3.84 0.81 5.98 −4.81 1.45 20.92 32.79
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Figure 5. Spatial distribution maps of retrieved PM2.5 concentrations of all 9 models on 16 September
2013. The radial basis interpolation (RBF) method was utilized to interpolate meteorological variables
and grid them into cells with spatial resolution of 0.1 degree. (a–i) correspond to retrieved maps of
PM2.5 concentrations from models 1–9 in Table 4.

3.3.2. Comparison with the Observed PM2.5 Concentrations

In this section, we validate the behaviors of four seasonal “AOD + 3” GWR models in predicting
daily PM2.5 concentrations, using 10-fold cross validation scheme.

Figure 6 depicts the regression results with zero intercept between our predicted PM2.5 against
observed PM2.5 measures. All the four models behave as slightly overfitting when compared against
their cross-validation results. The result also shows that our seasonal GWR models in summer and
autumn perform better than those in spring and winter. In spring, the slope and R2 for model fitting
are 0.9618 and 0.8328. In summer, the slope and R2 for model fitting are 0.9702 and 0.8503. In autumn,
the slope and R2 for model fitting are 0.9758 and 0.9156. In winter, the slope and R2 for model fitting



Remote Sens. 2017, 9, 346 15 of 20

are 0.9706 and 0.8577. The slopes of four seasons are all less than 1, indicating that the estimated model
generally underestimates the actual observed data. All the four models behave as slightly overfitting
from model fitting to evaluation, with the slightest increase of RMSE in the summer and the most
severe increase in the winter. The main reason for the worse performance in winter is partly because of
the relatively small sample size. We argue that the frequent eruption of heavy pollution episodes in
the winter of 2013 [35] also aggravated the possibility of unexpected situations in PM2.5 estimation,
causing higher RMSE values in the winter GWR model.
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seasonal models. The dashed lines are regression lines.

Moreover, we compare the autumn GWR model with the yearly model to further validate the
specific seasonal variables pattern of our GWR models. The yearly model has the same auxiliary
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variables with our autumn model, and the reason for choosing the autumn model is because of
its relatively larger sample size for GWR modelling. The result shows the autumn GWR model
performs better than the yearly model, with 1.2 µg/m3 lower RMSE and 2.79% lower MAPE in model
fitting (Figure S1 in the supplementary file). The cases are similar in model evaluation. In addition,
the overfitting is more severe in the yearly model, with a bigger gap between fitting and evaluation.
The above also indicates that it is of great necessity to consider the seasonal auxiliary variables
and establish seasonal models rather than the yearly model to guarantee the performance of the
GWR model.

4. Discussion

Satellite images provide a reliable method to retrieve spatial coverages of PM2.5 concentrations.
One key problem is how to construct the GWR relations between satellite based AOD and ground-level
PM2.5 measures, with the help of auxiliary meteorological or geographical factors. The auxiliary
variables arbitrarily adapted in the GWR model might have unclear contributions to the PM2.5

concentration retrievals. Meanwhile, the contribution from single auxiliary variables or their
combinations to the GWR modelling varies across different seasons. Therefore, we proposed an
automatic procedure to select proper meteorological or geographical factors for GWR modelling
in different seasons, rendering their proper auxiliary variable combinations to construct optimal
daily GWR models in the YRD region. We made careful comparisons between our seasonal GWR
models and regular GWR models with different auxiliary variables, between the predicted PM2.5

concentrations from our models and the observed ones, in order to validate our model performance.
The results explain that our seasonal models have better performance for PM2.5 retrievals than the
comparison models.

Theoretically speaking, the relationship between daily AOD and PM2.5 is widely affected by
few auxiliary variables. Also the proper choice of auxiliary variables could then upgrade the model
accuracy as well as reduce the model redundancy. The effects from nine preliminary auxiliary variables
which we adopted in PM2.5 concentrations, can be grouped into four different aspects—comprehensive
effect, vertical diffusion effect, horizontal diffusion effect, and geographical effect. The contribution of
each selected auxiliary variable in our models is not constant, and it varies greatly among different
seasons like that of TSAM [34]. VSB is a comprehensive indicator of air quality showing significant
influences in all four seasons. Vpre is the partial pressure of water vapor in the whole atmosphere
column, and our experimental results indicate that it is a good auxiliary variable for GWR modelling
in spring, summer, and autumn when compared with the widely adopted RH in the current literature.
The reason for this we guessed is because Vpre reflects and corrects the humidity of the whole aerosol
column. Apre shows greater contribution in the winter GWR model than in those of other seasons.
We guess the reason for this is that the high air pressure occurring in winter always comes along
with cold air and sand-dust from the north or northwest of China, and that greatly increases the
PM2.5 concentrations in the YRD. Two geographical variables, Geom and NDVI, were not significant
in the GWR modelling and accordingly were excluded from the auxiliary variable combinations.
The relatively simple geomorphy features of the YRD, with 49% of plain and 7.9% of mountain, render
that the Geom shows insignificant contributions in the GWR modelling. Although NDVI is relatively
weaker with respect to other contemporary meteorology variables, it shows significant contributions
in the spring and winter models. That indicates seasonal contribution patterns of NDVI in the PM2.5

retrieval model. In general, our experimental results illustrate that the daily AOD-PM2.5 relationships
closely correlate with meteorological factors rather than geographical factors. The explanation for this
is that the shifting meteorology conditions highly affect the generation or diffusion of daily PM2.5

concentrations in the short term whereas geographical factors are crucial to long term prediction [30].
The combination of proper auxiliary variables in our seasonal models is carefully investigated in

our study by comparing with regular GWR models via changing the number of auxiliary variables.
The comparison between our seasonal models and the yearly model illustrates the importance of
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proper auxiliary variables. Generally, our seasonal models have the optimal performance with
three auxiliary variables, and less or more variables than three would bring about instability or
redundancy of the GWR models. Adding extra auxiliary variables shows little improvement in the
GWR model but even reduces the model performance and aggravates the overfitting, due to the
increasing risk of intra-correlations among variables [41]. We further analyzed the auxiliary variables
in four seasonal model “AOD + 3” and guessed that they coincided with three meteorological effects
in PM2.5 concentrations. For the spring, WS determines the horizontal diffusion effect of PM2.5, Vpre
correlates closely with the vertical diffusion of PM2.5, and VSB represents the comprehensive effect of
PM2.5 concentrations. For the summer season, Elev replaces WS in spring and has a close relation with
the horizontal diffusion effect. For the autumn model, Temp correlates closely with the air vertical
movement. For winter, Apre shows more correlation with the air vertical movement. The seasonal
average PM2.5 prediction of model evaluation R2 is 0.79, and the result of our seasonal models is
comparable to those of the previous works by Fang [34], but with less variables and computation cost.
We also applied the specific seasonal GWR models to 2014, and the achieved result is satisfying (Figure
S2 in the supplementary file).

Unfortunately, our study simultaneously has the following shortcomings needing improvement
in the future. First, the selection of the seasonal variable largely depends on our numerous empirical
statistical works and the analysis of common factors. Also, theoretical explanations of specific seasonal
variables cannot be fully figured out and need to be further investigated. Second, only natural factors
were involved in our study and which might result in neglecting some potential effects from anthropic
factors especially social geographical factors. Actually, anthropic factors, especially social geographical
variables have great potential in improving the PM2.5 retrieval model [42]. The supplement work of
more anthropic variables into our seasonal GWR models will be completed in a further study. Finally,
the filling problem of absent pixels in the AOD product requires careful investigation in order to
increase the number of validated records for more robust GWR modelling and to promote the utility
of proposed seasonal GWR model in all daily conditions of the YRD region.

5. Conclusions

Auxiliary variables like meteorological or geographical factors show great potential in improving
the GWR model accuracy for retrieving PM2.5 concentrations from satellite AOD. However,
the selection of proper variables and their different contributions in the four seasons have never
been carefully investigated, hampering further applications of the GWR model in the YRD region.
In this study, we put forward an automatic procedure of seasonal proper variable selection considering
the contribution of each single variable and its inner structure in the GWR modelling. Moreover,
we investigated the seasonal pattern of auxiliary variables, and constructed four seasonal GWR
models with properly selected auxiliary variables. Our seasonal GWR models with proper variable
combinations were tested with two groups of experiments. The seasonal GWR models was compared
with regular GWR models by changing auxiliary variables and the predicted PM2.5 concentrations from
the four seasonal models were compared against the observed measures and that of the yearly GWR
model. Our selected proper auxiliary variables in four models of “AOD + 3” reduce the redundancy
of regular GWR models and simultaneously help to obtain better model accuracy than with other
regular GWR models. The prediction performance of the four seasonal models behaves better than
the yearly model and the predicted result coincides well with the observed ones, having high R2 in
model evaluation, averaged as 0.79 in 10-fold cross validation. Therefore, seasonal varied contribution
of variables should be taken into consideration in PM2.5 concentration retrieval and our seasonal GWR
models could be a good alternative in modelling daily PM2.5 concentrations from remote sensing in
the YRD region.
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