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Abstract: Eutrophication is an increasing problem in coastal waters of the Baltic Sea. Moreover,
algal blooms, which occur every summer in the Gulf of Gdansk can deleteriously impact human
health, the aquatic environment, and economically important fisheries, tourism, and recreation
industries. Traditional laboratory-based techniques for water monitoring are expensive and time
consuming, which usually results in limited numbers of observations and discontinuity in space
and time. The use of hyperspectral radiometers for coastal water observation provides the potential
for more detailed remote optical monitoring. A statistical approach to develop local models for the
estimation of optically significant components from in situ measured hyperspectral remote sensing
reflectance in case 2 waters is presented in this study. The models, which are based on empirical
orthogonal function (EOF) analysis and stepwise multilinear regression, allow for the estimation of
parameters strongly correlated with phytoplankton (pigment concentration, absorption coefficient)
and coloured detrital matter abundance (absorption coefficient) directly from reflectance spectra
measured in situ. Chlorophyll a concentration, which is commonly used as a proxy for phytoplankton
biomass, was retrieved with low error (median percent difference, MPD = 17%, root mean square
error RMSE = 0.14 in log10 space) and showed a high correlation with chlorophyll a measured in
situ (R = 0.84). Furthermore, phycocyanin and phycoerythrin, both characteristic pigments for
cyanobacteria species, were also retrieved reliably from reflectance with MPD = 23%, RMSE = 0.23,
R2 = 0.77 and MPD = 24%, RMSE = 0.15, R2 = 0.74, respectively. The EOF technique proved to be
accurate in the derivation of the absorption spectra of phytoplankton and coloured detrital matter
(CDM), with R2 (λ) above 0.83 and RMSE around 0.10. The approach was also applied to satellite
multispectral remote sensing reflectance data, thus allowing for improved temporal and spatial
resolution compared with the in situ measurements. The EOF method tested on simulated Medium
Resolution Imaging Spectrometer (MERIS) or Ocean and Land Colour Instrument (OLCI) data
resulted in RMSE = 0.16 for chl-a and RMSE = 0.29 for phycocyanin. The presented methods, applied
to both in situ and satellite data, provide a powerful tool for coastal monitoring and management.
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1. Introduction

Phytoplankton and coloured detrital matter (CDM), which includes yellow substances (CDOM)
and detritus, play an important role in global carbon cycling and climate, e.g., [1–4]. Phytoplankton
are primary producers, which regulate the photosynthetic efficiency of carbon fixation [5–7], transfer
primary production to higher trophic levels, e.g., [8], and export carbon to the deep oceans, e.g., [3,9,10].
CDM is an optically significant component that strongly absorbs light in the blue and ultraviolet range
of the spectrum. It impacts photochemical processes [1,11] and influences phytoplankton and bacterial
productivity [12]. Moreover, CDM characterises an accumulation of dissolved organic carbon [1,13].
Reliable information about the dynamics of phytoplankton and CDM in ocean waters gives a better
understanding of the role of the ocean in the global carbon cycles.

Optically significant components of the water column can be derived from ocean colour and
can be used as indicators of water quality (e.g., level of eutrophication, presence of phytoplankton
blooms). Absorption spectra and pigment composition can be used as proxies to characterise the
abundance and composition of phytoplankton and CDM. Large blooms of filamentous cyanobacteria
form every summer in the waters of the Baltic Sea, and consist mainly of the species Nodularia spumigena,
Aphanizomenon flos-aquae, and Dolichospermum sp. These organisms may contain hepato- and/or
neurotoxins and can seriously impact human and ecosystem health, the fisheries, and tourism and
recreation economies. For these reasons, remote monitoring of optical properties in the Baltic Sea has
become increasingly used tool [14,15]. For example, the user-friendly monitoring system of the Baltic
environment developed by a Polish research team within the ‘SatBaltic’ project [16,17] that provides
maps of hydrodynamic and bio-optical properties in the Baltic Sea.

Phytoplankton pigments act as indicators of phytoplankton composition and biomass in ocean
waters [18]. Laboratory methods used to quantify pigments, such as high-performance liquid
chromatography (HPLC) or spectroscopy of solvent extracts are accurate but time and labour
consuming. Therefore, there is a need for remote sensing algorithms to rapidly estimate phytoplankton
pigments over large geographic areas. Indeed, algorithms for estimating chlorophyll a, a primary
photosynthetic pigment have been studied for decades [19–23]. Some pigments that occur in particular
phytoplankton groups or taxa have been recognised as signatures for those groups or taxa, and their
concentrations are used as indicators for the presence of these organisms in the water column [2,24–26].
The summertime blooms of filamentous cyanobacteria in the Baltic Sea are known to contain large
quantities of phycocyanin that may provide a more specific indicator of cyanobacterial biomass
than chlorophyll a, which is present in all phytoplankton species [27,28]. Phycocyanin absorbs light
strongly around 620 nm [29], allowing for its quantification from remotely sensed data [28,30,31].
Additionally, Baltic Sea waters are characterised by the high abundance of picoplankton Synechococcus
sp. This species may contribute up to 50% of the total phytoplankton biomass during summer and
is rich in phycoerythrin [32]. Moreover, the pigment system of cyanobacteria produces a relatively
weak chlorophyll a fluorescence signal, whereas the fluorescence yield of phycobilin pigments is
comparatively high, carrying a significant amount of spectral information that can be used to assess
the abundance of cyanobacteria by means of remote sensing [33,34]. The optical properties of the
Baltic Sea are very strongly influenced by high concentrations of coloured dissolved organic material
(CDOM) [35] and detrital material [36], which is known to confound existing ocean colour algorithms,
especially band ratio approaches for estimating chlorophyll a concentration (chl-a) [21,22,37–39].
As the above points suggest, developing ocean colour algorithms to accurately estimate pigment
concentrations in the optically-complex waters of the Baltic Sea is not a trivial task. Moreover,
the optical properties of different Baltic Sea basins vary widely, so local algorithms are needed.
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In this study we use an empirical orthogonal function (EOF) approach that has previously
demonstrated its efficacy [3,40–42] as an alternative to known ‘band ratio’ algorithms. EOF analysis
(also known as a principal component analysis) is a powerful technique for data dimension
reduction [43]. EOFs are ordered by decreasing eigenvalue so that, among the EOFs, the first mode,
having the largest eigenvalue, accounts for most of the variance of the data [44]. New variables can be
constructed by projecting the original dataset onto individual EOFs. Elements of these new variables
(scores) result from linear combinations of the variables in each original dataset record weighted
according to the EOF elements (loadings). By using the EOFs that account for the most variance,
the dimensionality of the original dataset can be reduced while retaining its primary information.
Thus, very few empirical modes can generally be used to describe the variability in a very large data
set. EOF analysis has been used in many physical and optical research studies, e.g., [44,45], to show
temporal and spatial patterns.

Craig et al. [41] showed that EOF analysis of remote sensing reflectance (Rrs) spectra could be
used to derive accurate models for estimating water constituents. They showed that EOF analysis of
Rrs (λ) spectra revealed information on the factors driving Rrs (λ) variability, and that these could be
used as a predictor of variables in multiple linear regressions. Studying the optical properties of the
Gulf of Gdansk, we hypothesised that the EOF approach would allow us to derive accurate metrics of
pigment concentration and absorption spectra. The EOF method has been shown to accurately estimate
the abundance of phycoerythrin in several different water types [46,47]. Additionally, the method
performs very well in optically complex waters even when CDOM dominates the absorption signal [41],
further suggesting its suitability for our purposes.

The aim of this paper is to use in situ hyperspectral reflectance Rrs (λ) combined with field
data collected from the Gulf of Gdansk to quantify parameters that are water quality indicators.
Local remote sensing algorithms were developed to derive CDM and phytoplankton absorption
coefficients as well as the phytoplankton pigment concentration in the optically complex water of
the Gulf of Gdansk. Additionally, the method was adapted for multispectral satellite radiometers
to retrieve the concentration of chlorophyll a and the cyanobacteria marker pigment (phycocyanin),
typical for the region. This allows for improved spatial and temporal resolution in the monitoring of
cyanobacteria blooms. Table 1 lists all optical properties and variables used in this study.

Table 1. List of symbols, definitions, and units.

Symbol Description Unit

CDOM Coloured Dissolved Organic Matter
CDM Coloured Detrital Matter

aCDOM CDOM absorption coefficient m−1

aCDM CDM absorption coefficient m−1

aph Phytoplankton absorption coefficient m−1

adet Nonalgal particles absorption coefficient m−1

chl-a Chlorophyll a concentration mg·m−3

Ed Downwelling irradiance W·m−2·nm−1

Lu Upwelling radiance W·m−2·nm−1·sr−1

PC Phycocyanin concentration mg·m−3

PE Phycoerythrin concentration mg·m−3

Rrs Remote sensing reflectance sr−1

<Rrs> Integral-normalised remote sensing reflectance dimensionless

2. Material and Methods

2.1. In Situ Measurements

All measurements were performed as part of the Satellite Monitoring of the Baltic Sea environment
Project No. POIG.01.01.02-22-011/09, ‘SatBaltic’ [16,17]. Data were collected during field campaigns in
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late spring and summer in 2012 and 2013 in the Gulf of Gdansk (Baltic Sea). Measurements were taken
at 6 locations in the area between 18.4–20◦E and 54.2–54.8◦N (Figure 1). Cruises took place twice per
month in May and September, and 4 times per month in June, July, and August, when the likelihood
of phytoplankton blooms is the highest. In total, more than 80 data sets were gathered. The Gulf
of Gdansk, in the southern Baltic Sea, belongs to optical case 2 waters [48] dominated by coloured
dissolved organic matter (CDOM) [14,35], and by suspended particulate matter in coastal areas [14].
The Gulf of Gdansk is a wide and relatively shallow water body, connected to the open sea and strongly
influenced by riverine waters. It has many different hydro-geomorphological regimes including
lagoons, river mouths, sheltered and open coastal areas, and is subject to strong anthropogenic
pressure [49].
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Figure 1. Location of the sample stations in the Gulf of Gdansk, Baltic Sea.

2.1.1. Water Sample Acquisition and Analyses

Particulate and phytoplankton absorption spectra were determined from water samples filtered
under low pressure immediately after sampling using 25 mm Whatman GF/F glass-fibre filters. The
spectra of the particulate material collected on the filters were measured between 400–800 nm using a
Perkin Elmer Lambda 850 dual-beam spectrophotometer equipped with a 15 cm Labsphere integrating
sphere. Total particulate absorption (ap; m−1) was measured by placing the filter in the centre of the
integrating sphere using a special filter holder (c.f. Röttgers and Gehnke [50], and a 25 mm GF/F
filter saturated with 0.2 µm filtered sea water was used as a blank). The particulate matter was then
de-pigmented using a solution of NaClO [51], and the non-algal particle absorption (adet; m−1) was
measured in the same way as described above. The phytoplankton absorption spectra were then
calculated as the difference between the particle and nonalgal particle absorption. The obtained values
in the near-infrared part of the spectrum (>750 nm) oscillated around zero, and therefore no zero-point
correction was needed. The values of the absorption coefficient were calculated using the formula
proposed by Wojtasiewicz et al. [52] for samples containing cyanobacteria species.

Absorption by coloured dissolved organic matter (aCDOM; m−1) was determined by first filtering
seawater samples through Millipore 0.2 µm membrane filters. The filtrate was kept refrigerated in
amber glass bottles until analysis. The absorption spectra of the samples were then measured using a
Perkin Elmer Lambda 850 dual-beam spectrophotometer, with milliQ water used as a blank. The path
length of the cuvette (10, 5, or 1 cm) was chosen based on the CDOM concentration.

Chlorophyll a concentration (chl-a; mg·m−3) was determined according to Baltic Monitoring
Protocol [53]. The samples were filtered through Whatman GF/F filters which were kept frozen at
−80 ◦C until analysis. Using 96% ethanol, the phytoplankton pigments were then extracted for 24 h
in the dark from the material retained on the filters. The samples were then centrifuged for 15 min
at 4000 rpm and the supernatant pipetted into a 1 cm cuvette. The absorbance spectra of the extracts
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were measured in the spectrophotometer against 96% ethanol as a blank. The chl-a was calculated
using the following formula:

chl − a =
103(OD665 − OD750) · Vextr

83 · Vf · l
(1)

where OD665 is the optical density at 665 nm, OD750 is the optical density at 750 nm, Vextr is the volume
of ethanol used for the extraction (cm3), Vf is the volume of filtered sample (dm3), al is the length of
the cuvette (cm), and the number 83 is optical density of chlorophyll a in the 96% ethanol.

The samples for determination of phycobilin concentrations were collected and stored in the same
way as the chlorophyll samples. Phycobilins were extracted from the cells using the extraction medium
consisting of 0.25 M Trizma Base, hydrated 10 mM disodium EDTA (2 H2O), and 2 mg·cm−3 lysozyme,
with initial pH 9 adjusted to a final pH 5.5 (HCl) according to Steward and Farmer [54] in darkened
room conditions. In order to improve the extraction efficiency the cells were disintegrated by combining
gentle mechanical grinding and enzymatic reaction. Then the optical densities of the extracts at 620 nm
were used to calculate the PC concentration according to Sobiechowska-Sasim et al. [34].

Additionally, the taxonomic composition of the phytoplankton community was determined in
the Regional Centre of Cyanobacteria (University of Gdansk) using microscopic examination [53].

2.1.2. Radiometry Measurements and Analysis

Downwelling irradiance above the water (Ed (0+,λ); W·m−2·nm−1) and upwelling radiance
just below the water surface (Lu (0−,λ); W·m−2·nm−1·sr−1) were measured using a RAMSES TriOS
hyperspectral RAMSES−ACC−VIS irradiance and RAMSES−MRC radiance sensors. The sensors
measured the signal in 190 channels within the range of 320 nm to 950 nm with a spectral sampling
of 3.3 nm and a spectral accuracy of 0.3 nm. The radiance radiometer is characterised by a narrow
detector and a nominal full-angle field of view of 20◦ in air which helps to minimise self-shading
during measurements. The radiometer was mounted on a float to obtain measurements just below
the water surface (around 3 cm depth). In order to calculate the remote sensing reflectance (Rrs; sr−1),
the upwelling radiance measured below the water surface Lu (0−,λ) was propagated through the
air-sea interface by applying the immersion factor If [55,56]. Rrs (0+,λ) was then calculated with the
following equation:

Rrs(0+, λ) =
Lu(0+, λ)

Ed(0+, λ)
(2)

2.1.3. Synthetic Satellite Remote Sensing Reflectance

While hyperspectral radiometers are becoming increasingly popular for field measurements,
many satellite missions utilise multispectral radiometers (e.g., MODIS–Aqua (NASA), MERIS (Envisat),
OLCI (Sentinel-3)). To explore the feasibility of implementing our models for multispectral satellite
data, a synthetic satellite dataset (Rrs

sat) was created following [41]. The synthetic data were created
from the in situ measurements of hyperspectral Rrs by averaging the data around the waveband centres
used on the MERIS and OLCI radiometer between 400 and 800 nm: 412.5, 442.5, 490, 510, 560, 620, 665,
681.25, 708.75, 753.75, 761.25, and 778.75 [57]. A Gaussian curve was defined with a full width half
maximum (FWHM) of the corresponding bandwidths and this was used to weight Rrs values on either
side of the band centre during averaging.

2.2. Statistical Methods

2.2.1. Empirical Orthogonal Function Approach and Stepwise Fitting Procedure

Following the method described in Craig et al. [41], empirical orthogonal function (EOF) analysis
was performed on the Rrs spectra. The EOF method utilises variability in spectral shape rather than in
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magnitude of the Rrs spectra to make predictions. Measured spectra were therefore integral normalised
using the following equation:

< Rrs >=
Rrs∫ 800

400 Rrs dλ
(3)

Normalised spectra are decomposed into EOF or modes that can be used as variables in a
multilinear regression (4). The regression has the following form:

log10(Y) = k +
M

∑
m=1

lm · log10(Xm) (4)

where Y is the dependent variable, M is the number of EOFs selected (see next paragraph), Xm are the
scores of the selected EOF modes, and k and lm are regression coefficients.

Our methodology differed from that described by Craig et al. [41] in one important aspect; instead
of using the first few modes as regression variables, we employed stepwise regression to objectively
chosen set of modes for inclusion in the model [42,47]. Stepwise regression is a systematic method for
adding and removing independent variables (i.e., the modes in our analysis) in a multilinear model
based on their statistical significance. The method begins with an initial model and then compares
the explanatory power of incrementally larger and smaller models. At each step, the p-value of an
F-statistic is computed to test models with and without a potential mode. Although a mode may
explain only a minute portion of the total variance in Rrs, it may still be a statistically significant
predictor of the dependent variable.

The modes produced by the EOF analysis capture systematic variations in spectral shape. It is
possible that some of these modes represent instrument noise with no relation to a biological process.
To eliminate such modes, a signal-to-noise criterion was applied. First, each mode was smoothed using
a Savitzky-Golay filter. The resulting spectral shapes were considered the signal, and the difference
between the original and filtered mode was considered noise. The signal to noise ratio (SNR) was
calculated for each mode by dividing the standard deviation of the signal by the standard deviation of
the noise. There is no objective way to set the SNR threshold using only EOF analysis. Therefore based
on prior knowledge about the optical properties of the Baltic Sea, an SNR threshold was determined
by visual inspection and analysis of the EOF modes and by choosing the SNR value that separated the
modes that appeared to be a genuine signal from modes that looked more like systematic noise. Hence,
only modes with a SNR higher than 4 were used in the stepwise regression. SNR filtering of EOFs
was not required for multispectral data as the noise present in the hyperspectral data was not evident,
presumably as a result of the spectral averaging and decreased spectral resolution (Section 2.1.3).
Therefore the above method was applied only to hyperspectral data.

EOF models were derived for 5 dependent variables that provided metrics of either total
phytoplankton or cyanobacteria biomass. These were: (1) chlorophyll-a concentration (chl-a; mg·m−3),
(2) phycoerythrin concentration (PE; mg·m−3), (3) phycocyanin concentration (PC; mg·m−3), (4) spectra
of phytoplankton absorption coefficient (aph (λ); m−1), and (5) coloured detrital matter absorption
coefficient at 400 nm and 412 nm (aCDM (λ); m−1) which is given by the sum of the CDOM (aCDOM

(λ); m−1) and detritus (adet (λ); m−1) absorption coefficients. These parameters serve as metrics of the
biomass or give insight into phytoplankton dynamics.

2.2.2. Model Assessment

Since our models were developed in log10 space, all statistics reported are based on the logarithm
of physical variables [19,58]. The statistical metrics were the coefficient of determination R2 (unitless),
the bias (log10 (mg·m−3)), the root mean square error RMSE (log10 (mg·m−3)), and the regression slope
and its standard error, SE (Type II linear regression). Bias and RMSE were calculated from:
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where yobs
i is the ith observation and ymod

i is ith modelled value. Such statistics can provide a
good measure of data scatter for log-normally distributed variables, which is often observed for
environmental data sets such as pigment concentration or phytoplankton numerical abundance.
We also calculated the Ratio and median percent difference (MPD) for untransformed observations
and modelled values:

Ratio = median

(
ymod

i

yobs
i

)
(7)

MPD = median

(
100% ·

∣∣∣∣∣ymod
i − yobs

i

yobs
i

∣∣∣∣∣
)

(8)

The collected dataset showed a variety of pigment concentrations as well as other optically
significant components (see Section 3.1). The dataset covers many common situations in Baltic Sea
coastal waters but it is not big enough to split it into fixed training and validation subsets. To confirm the
robustness of the approach, cross-validation was performed for each model. The data were randomly
divided into training and testing in the ratio of 70 and 30 percent. For each random partition of the data,
the model was trained using the larger data set (70%) to obtain model coefficients. The coefficients
were then applied to the smaller data set (30%) to make predictions. Each data point was selected with
equal probability without replacement. It is therefore expected that the test data typically included
points spread uniformly in time. This makes it unlikely that the training dataset consisted entirely of
points from one season. Cross-validation errors are the difference between predictions and the true
observed values. The procedure of randomly selecting training and validation subsets was repeated
5000 times to capture the distribution of the prediction errors, both in terms of the mean and standard
deviation. If the model is not over-trained and generalizable to other datasets, the cross-validation
model skill should be changed only slightly compared with the model derived from the full data set.

3. Results and Discussion

3.1. Field Measurements

During the study period in the summers of 2012 and 2013, a total of more than 80 data sets were
gathered. The phytoplankton absorption spectra varied both in spectral shape and in magnitude
(Figure 2).
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For example, aph (443) varied from 0.036 to 0.954 m−1 (Table 2). The highest variability, spanning
over two orders of magnitude, was noted in the case of chl-a and aCDOM (443) (Table 2). The highest
values of aph (λ), as well as chl-a, were observed in June 2013. These parameters showed also the
strongest correlation (Table 3). However, the correlation between chl-a and aph (665) was slightly
stronger (R = 0.90) than with aph (443) (R = 0.88). A strong correlation was also observed between
aCDOM (443) and chl-a, aph (443), and aph (665) (R = 0.80, 0.98, and 0.62, respectively). The weakest,
statistically not significant, dependence was observed between adet (443) and aph (443) (R = 0.19) and
adet (443) and aCDOM (443) (R = −0.08) (Table 3).

Table 2. Descriptive statistics for chosen water parameters.

Min Median Max N

chl-a 0.69 4.11 31.56 82
PE 0.06 0.56 1.65 82
PC 0.05 2.14 18.94 82

Cell no. of phytoplankton 1.19 × 105 58.03 × 105 19.2 × 106 82
Cell no. of cyanobacteria 100 19.25 × 105 16.6 × 106 82

aph(443) 0.04 0.12 0.95 81
aph(665) 0.02 0.08 0.44 81
adet(400) 0.05 0.14 0.54 81
adet(412) 0.04 0.12 0.48 81
adet(443) 0.03 0.12 0.52 81

aCDOM(400) 0.36 1.12 7.73 63
aCDOM(412) 0.30 0.90 3.90 63
aCDOM(443) 0.20 0.51 2.29 63

Table 3. Correlation matrix depicting the relationships amongst the water parameters (N = 62).
The correlation coefficients that were not statistically significant (p < 0.05) are marked in grey.

chl-a aph(443) aph(665) adet(443) aCDOM(443)

chl-a 1.00
aph(443) 0.88 1.00
aph(665) 0.90 0.89 1.00
adet(443) 0.37 0.1 0.58 1.00

aCDOM(443) 0.80 0.80 0.62 −0.084 1.00

Figure 3 shows the absorption budget for the non-water optically significant seawater constituents,
i.e., CDOM, detritus, and phytoplankton pigments at different wavelengths. In all analysed samples,
the light absorption at shorter wavelengths (443 nm and 560 nm) was clearly dominated by CDOM
which was responsible for roughly 70% of the total absorption. At longer wavelengths, the absorption of
light by phytoplankton pigments became more significant. At all analysed wavelengths, the absorption
by detritus had the lowest contribution to total absorption.
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Figure 3. Ternary plot showing the relative contributions of CDOM, detritus, and phytoplankton
pigments to the total non-water absorption coefficient at 443 nm, 560 nm, 620 nm, and 665 nm for the
investigated area. Note that in the red part of the spectrum, the phytoplankton absorption shows a
much greater range than in the blue part of the spectrum and its relative importance increases when
compared to CDOM and detrital absorption.

Despite the fact that field measurements were collected only in the Gulf of Gdansk, our dataset
covered a wide range of variability of water parameters (Table 2). The cell counts confirmed that
during summer, the phytoplankton composition in the Gulf of Gdansk is dominated by cyanobacteria
(Figure 4), especially in July, when their contribution to total phytoplankton abundance was >50% in
terms of the number of cells per cubic meter.
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Variability of the optically significant water components influences the shape of the remote
sensing reflectance (Rrs) spectra collected in the field campaigns (Figure 5a). The collected Rrs

spectra represent quite typical spectral features consistent within optically complex waters [36].
The shape of normalised Rrs spectra shows some interesting features related to the phytoplankton
pigment absorption and fluorescence. As expected, the highest reflectance is around 570 nm in the
‘green window’ of minimal chlorophyll absorption and where phycoerythrin absorption is strongest.
The trough around 620–630 nm indicates the effect of phycocyanin absorption [59], whereas the trough
at about 664 nm indicates the effect of chlorophyll a absorption. Another small peak around 650 nm
can be caused by absorption by these two pigments (chlorophyll a and phycocyanin) on either side of
the peak. Additionally, phycocyanin fluorescence, which has a maximum at 650 nm, may contribute
to this spectral feature [9]. It is difficult to discern the spectral characteristics of phycoerythrin in the
Rrs spectral shape. Maximum absorption and fluorescence of phycoerythrin occur around 565 nm
and 576 nm, respectively [34], where the other optically significant components (e.g., carotenoids)
strongly influence the spectra of Rrs. These features, which are clearly visible in the hyperspectral data
(Figure 5a), become less distinct in the Rrs data converted to the multispectral cases (Figure 5b).
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Figure 5. Variability in the spectral shape of remote sensing reflectance Rrs (λ) measured in the Gulf
of Gdansk (a). The synthetic MERIS/OLCI reflectance based on the measured Rrs (λ) spectra with
reduced spectral resolution. Dots show the waveband centres of the MERIS/OLCI radiometer between
400 nm and 800 nm (b).

3.2. EOF Models for Phytoplankton Pigments

The Chl-a model (4) was based on the three EOFs or modes (Table 4) that were chosen by the
stepwise regression. The spectral shapes of these modes, visualised by plotting its loading versus
wavelength (Figure 6), may be interpreted as signatures of changes in the optical properties of the
water over samples due to changes in the in-water components. The first mode, which captures
89% of the variability in spectral shape, was chosen as the first model component by stepwise fitting.
It exhibits a negative correlation between the short and long wavelength regions of the spectrum,
implying shifts between the blue-green and red regions of the spectra. That is, the spectral shapes
vary such that, whenever the peak around 500 nm is less than average, the band between 600 nm and
800 nm is larger than average, and vice versa. These spectral shifts may be due in part to changes in the
concentrations of detritus and CDOM, which are dominating components of the absorption coefficient
in the study area (Figure 3). However, variations in the longer wavelengths can only be due to changes
in the components of the water column that affect these wavelengths (e.g., phytoplankton pigments).
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Table 4. Selected empirical orthogonal function (EOF) modes and regression coefficients (4) of the
chl-a model.

chl-a model

modes — 1st EOF 3rd EOF 12th EOF
coefficients k = 0.71 l1 = 64.6 l2 = 126 l3 = −928

The second mode chosen by stepwise regression was the 3rd EOF. This mode captures variations
in spectral shape centred around 400 nm and 560 nm and in the band from about 714 nm to 800 nm
that are positive correlated.

It is worth noting that mode 12, which contains only 0.04% of the variance (Figure 6), was selected
by both the SNR procedure and stepwise fit. The numerous spectral inflections, which appear to be
coherent signals, are likely related to various phytoplankton absorption and emission (i.e., fluorescence)
processes. This strongly implies that mode 12 is not simply noise, as might be expected from such a
minor mode of variance, and can bring useful predictive power to the model.
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Our model retrieved chl-a from spectral reflectance with an R2 value of 0.81 (bias = −0.07 × 10−15),
a tight distribution around the 1:1 line (Slope = 0.88, SE = 0.05, Ratio = 1.02) and a relative error (RMSE)
of 0.16, even in very optically complex waters (Table 5, Figure 7a). By contrast, the standard OC4
algorithm applied to our dataset resulted in consistent overestimation of chl-a (R2 = 0.73, bias = 0.38,
Ratio = 2.43, MPD = 143%, Slope = 0.78, SE = 0.04) and a rather high relative error (RMSE = 0.43).
It should be noted here that models such as OC4 are global, whereas our chl-a model was developed
using local data. It is therefore not surprising that our model outperformed OC4. However, even with
a regionally-tuned band ratio model (Baltic chlor a 2, Table 4 in [22]), chl-a estimates would still be
seriously compromised (R2 = 0.71, RMSE = 0.23) due to the confounding effect of CDOM absorption at
the blue end of the spectrum. The significance of this result is that EOF provides a method to derive
accurate chl-a estimates in a scenario where standard approaches provide low quality results.
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Table 5. Statistics of the EOF models for pigment concentration. Units are log10(mg·m−3) for pigment
concentration. Ratio and MPD are dimensionless.

Pigment Concentration

PE PC chl-a

N= 70 75 76

R2 All 0.74 0.77 0.84
X-val 0.64 0.72 0.82

RMSE
All 0.15 0.23 0.14
X-val 0.18 0.27 0.15

bias
All (×10−15) 0.02 −0.02 −0.09
X-val (×10−2) −0.01 −0.03 −0.07

Slope All 0.84 0.91 0.92
X-val 0.86 0.88 0.92

SE
All 0.06 0.05 0.04
X-val 0.06 0.06 0.05

Ratio
All 1.02 0.96 1.02
X-val 1.03 0.96 1.03

MPD
All 24.57 22.97 16.59
X-val 26.72 29.73 19.10Remote Sens. 2017, 9, 343  12 of 23 
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In summer, the Baltic Sea phytoplankton assemblage is dominated by filamentous cyanobacteria
species such as A. flos-aquae, N. spumigena, and Dolichospermum sp., and picocyanobacteria species such
as Synechococcus sp. [60,61]. The filamentous species, A. flos-aquae, N. spumigena, and Dolichospermum sp.,
are rich in phycocyanin, while the non-filamentous Synechococcus sp., which significantly contributes
to total phytoplankton biomass, is rich in phycoerythrin. Both models, for PC and PE contained eight
EOFs modes each (Table 6). In both models, the first mode chosen was the first EOF, which captured
89% of the variance in spectral shape. However, the second component was different in both models,
as shown in Figure 8 (for PC-left panels and PE-right panels), compared to the chl-a model. In the
model for PC estimation, the second component was the 6th mode, which captured only 0.4% of the
variance in Rrs spectral shape, while for PE estimation the 2nd mode (7.3% of total variance) was
chosen next. For the PC model, the 6th mode has a characteristic peak around 650 nm, where the
local maximum in the Rrs spectra due to PC fluorescence is located. In the PE model, the 2nd mode
had a peak around 560–570 nm, corresponding to the maximum absorption and fluorescence of PE.
These associations help to explain why stepwise regression identified these modes as statistically
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significant predictors even though they captured only a small proportion of the total variance in Rrs

spectral shape.

Table 6. Selected EOF modes and regression coefficients (4) of phycocyanin (PC) and phycoerythrin
(PE) models.

PC model

modes — 1st EOF 6th EOF 5th EOF 4th EOF 12th EOF 2nd EOF 3rd EOF 7th EOF
coefficients k = 0.15 l1 = 67.4 l2 = −72.2 l3 = 148 l4 = −236 l5 = 318 l6 = 396 l7 = −211 l8 = −1531

PE model

modes — 1st EOF 2nd EOF 5th EOF 4th EOF 9th EOF 6th EOF 3rd EOF 7th EOF
coefficients k = −0.34 l1 = 40.6 l2 = −62.0 l3 = −63.1 l4 = −127 l5 = 207 l6 = 131 l7 = −132 l8 = 464
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Our EOF models give approximations of PC with R2 = 0.73, RMSE = 0.25, MPD = 30% (Figure 9a),
and of PE with R2 = 0.72, RMSE = 0.15, MPD = 19% (Figure 9b). The EOF model presented here for
estimating PC also shows superior results compared to the band ratio model presented by Wozniak et
al. [62] for the same study area with MPD = 39%.
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concentrations measured in situ and derived from the EOF model.
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Overall, our results (Table 5) compare favourably to a study performed by Bracher et al. [46] who
also used the EOF method to retrieve pigment concentrations in Atlantic waters but over a much wider
geographical range (roughly 50◦N–40◦S). They developed models for chl-a, carotenoid pigments, and
PE, but not for PC. Their model for chl-a showed a larger relative error with RMSE = 0.49, compared
with the RMSE value of 0.16 found in our studies, and a MPD of 43%, compared to our MPD of 19%
(Table 5). In the case of PE estimation, our model showed superior results with RMSE = 0.15 and MPD
= 19.5%, compared to Bracher et al. [46] who observed RMSE = 1.16 and MPD = 139%. The superior
performance of the EOF approach in our study can most likely be explained, in large part, by the
fact that the Bracher et al. [46] models were derived over a larger dynamic range, encompassing
several biogeographical provinces. In contrast, our study took place exclusively in the Gulf of Gdansk,
a body of water that spans over less than 1◦ of latitude (Figure 1). In several implementations of the
EOF approach, authors have noted that the models perform best when trained in a region-specific
manner [41,42,47]. However, more recent studies suggest that global implementations may be possible
if a dataset with a dynamic range wide enough in parameter space is used to train the models [63].

3.3. EOF Models for Spectral Absorption of Phytoplankton and Coloured Detrital Matter

EOF models for phytoplankton and coloured detrital matter (CDM) absorption spectrum were
developed separately for each wavelength from the range of 400 nm to 700 nm with a step of
3 nm. Using stepwise regression for each wavelength separately produced spectral discontinuities
(Figure 10). This is in part due to differences in the modes chosen for each wavelength. To remove these
discontinuities, it was necessary to select a common set of modes for all wavelengths (Tables 7 and 8,
Figure 11). The resulting models give accurate predictions for the spectral model products (Table 9).
Nevertheless, the discontinuities are the subject of ongoing investigation and future work will seek to
develop more objective methods to eliminate this problem.
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Figure 10. An example of the aph spectra measured (black), modelled with the fixed number of EOF
modes (green), and modelled with EOF modes selected with a stepwise fit (blue) for one data set.

Table 7. Selected EOF modes and regression coefficients (4) of the aph model.

aph model

modes coefficients

λ= 416 442 489 509 513 560 620 663 680
— k= −0.73 −0.71 −0.89 −1.03 −1.06 −1.36 −1.33 −1.12 −0.98

1st EOF l1= 50.7 50.0 49.9 50.4 50.3 50.1 56.1 56.0 55.9
4th EOF l2= 119.5 143.9 191.3 192.4 195.8 158.7 118.0 85.3 103.3
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Table 8. Selected EOF modes and regression coefficients (4) of the aCDM model.

aCDM model

modes coefficients

λ= 400 412
— k= 0.13 0.05

1st EOF l1= 33.8 33.4
4th EOF l2= −84.5 −80.0
3rd EOF l3= −54.3 −52.5
6th EOF l4= −56.5 −65.5
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Figure 11. EOF loadings versus wavelength for the aph (a) and aCDM (b) models showing the percent
contribution to the total variance in Rrs. Modes are shown in order of being included in the model with
increasing p-value.

Table 9. Statistics of EOF models for phytoplankton and CDM absorption coefficients for chosen
wavelengths. Size N = 62 and N = 38 for aph and aCDM, respectively. Units are log10(m−1). Ratio and
MPD are dimensionless.

aph (λ) aCDM (λ)
λ= 415 442 490 510 560 620 665 680 400 412

R2 All 0.87 0.86 0.84 0.85 0.82 0.85 0.88 0.89 0.91 0.89
X-val 0.86 0.85 0.83 0.84 0.80 0.84 0.87 0.88 0.84 0.83

RMSE
All 0.10 0.10 0.11 0.11 0.12 0.12 0.10 0.10 0.06 0.06
X-val 0.10 0.10 0.12 0.11 0.12 0.12 0.10 0.10 0.07 0.07

bias
All (×10−16) −0.43 −0.47 −0.18 −0.97 −1.52 −4.51 2.77 −1.15 0.30 0.04
X-val (×10−3) −0.08 −0.18 −1.19 −0.63 −0.39 −1.33 −0.88 −1.03 −1.05 0.21

Slope All 0.91 0.90 0.86 0.86 0.86 0.91 0.93 0.93 0.95 0.95
X-val 0.93 0.93 0.92 0.92 0.90 0.92 0.94 0.94 0.95 0.95

SE
All 0.04 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.05
X-val 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.06 0.06

Ratio
All 0.99 0.98 0.98 0.99 0.96 0.97 0.99 0.98 1.03 1.02
X-val 0.99 0.99 0.99 0.98 0.97 0.98 1.00 0.99 1.02 1.02

MPD
All 12.09 10.23 12.22 12.11 17.34 16.47 10.33 11.17 7.72 8.47
X-val 12.42 11.22 13.12 13.26 18.04 18.34 12.95 12.51 10.64 10.55

Knowledge of the shape of the phytoplankton absorption spectra is needed in models that
estimate phytoplankton chlorophyll concentrations [64,65], or as an input into bio-optical models
that predict carbon fixation rates for the global ocean [66–68]. The shape and the magnitude
of the phytoplankton absorption spectra is controlled primarily by the concentration of various
photosynthetic and photoprotective pigments and by the level of the pigment package effect within
the cells. The influence of these two processes varies with depth, phytoplankton species composition,
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and cell size. Quantification of CDM plays an important role in understanding the oceanic carbon
cycle. Moreover, CDM absorbs strongly in the UV and blue range of the spectrum, thus determining
phytoplankton and bacterial productivity [69]. Figure 12a and Table 9 present the results of the EOF
model for aph at selected wavelengths: R2 (λ) ranging from 0.80–0.89, and RMSE (λ) = 0.10–0.12.
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Figure 12. Comparison between phytoplankton (a) and CDM (b) absorption measured in the laboratory
and absorption received from the EOF model for selected wavelengths.

The EOF model for aCDM gave the best results for the wavelengths in the blue spectral range
between 400 and 450 nm; R2 was higher than 0.6 and RMSE was around 0.06. The model skill decreased
with increasing wavelengths (Figure 13), reaching R2 below 0.40 and RMSE of about 0.25 for λ = 700 nm.
The contribution of CDM to the total absorption decreases approximately exponentially with increasing
wavelength, which would explain the model’s decreasing skill towards the red region of the spectrum.
However, aCDM absorption spectra can be derived from the following formula [1]:

aCDM(λ) = aCDM(λ0) · e−S(λ−λ0) (9)

where the slope value S can be retrieved when aCDM is given for at least two wavelengths, for example
400 and 412 nm (Figure 12b) which can be estimated with good agreements (Table 9) by the EOF model.Remote Sens. 2017, 9, 343  17 of 23 
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Figure 13. Spectral dependence of R2 (a) and RMSE (b) for the EOF model of aCDM.

An inverse semi-analytical model for aph and aCDM was presented by Wei and Lee [1] and
Werdell et al. [70], but in both cases our model showed better results. The model of aCDM presented by
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Wei and Lee (2015) also showed similar errors as our model, where model performance was proven to
become worse with increasing wavelengths (Figure 13).

3.4. EOF Models for Synthetic Satellite Data

The EOF method applied to the synthetic satellite data set (Figure 5b) showed accurate results
despite the reduced spectral resolution. The accuracy of chl-a estimates was found to be slightly
reduced compared to estimates from hyperspectral data (R2 = 0.82, RMSE = 0.15 and MPD = 18%,
R2 = 0.84, RMSE = 0.14, and MPD = 17%; Figures 7a and 14a, respectively). Unexpectedly, PC estimates
(Figure 14b) were actually more accurate compared to the values obtained from the hyperspectral
data in terms of R2, RMSE, and bias (R2 = 0.81, RMSE = 0.22, and MPD = 33%, R2 = 0.77, RMSE = 0.23
and MPD = 23%; Figures 9a and 14b, respectively). A possible reason for this may lie in the, as yet,
imperfect approach to thresholding noise in the hyperspectral data, i.e., unfiltered hyperspectral
noise may degrade the PC estimates. Cross validation was again performed and confirmed the
robustness of the models. This demonstrates that a reduction of spectral information from hyper- to the
multispectral potentially has little impact on predictive accuracy, and in the case of the PC estimates,
actually improved the results. Similar results were found by Craig et al. [41] for MERIS data, who
suggested that as long as spectral information pertinent to the parameter of interest was included in the
multispectral waveband set, the EOF models would perform similarly to their hyperspectral versions.
In this case, wavebands that included the spectral characteristics of the absorption of chlorophyll a were
included in the synthetic data, hence retaining the information required for their accurate prediction.
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Figure 14. Comparison between chl-a (a) and PC (b) measured in situ and received from the EOF
model for reduced spectral resolution.

At the time of preparation of the manuscript, summer data from the European Space Agency’s
Sentinel-3 instrument, OLCI (Ocean and Land Colour Instrument) radiometer were not yet available.
Therefore, to demonstrate the potential usage of EOF models to characterise phytoplankton blooms in
the Baltic Sea, MERIS (Envisat) data were used. The Case-2 Regional (C2R) processor [71] was used to
derive remote sensing reflectance from MERIS level 1b data acquired on 5th July 2010 in the Gulf of
Gdansk. The EOF models were then run to calculate PC (marker pigment of cyanobacteria in the Baltic
Sea) and chl-a (proxy of phytoplankton biomass). In the surface water of the RGB image, an algal bloom
is clearly visible in the northern part of the image (Figure 15a). Considering the time of data acquisition,
it likely represents a cyanobacteria bloom. Evaluating the PC dynamics (Figure 15b), a similar pattern
is evident, further supporting the likelihood that the RGB feature is, indeed, a phytoplankton bloom
and most likely dominated by cyanobacteria. In the southern area of the Gulf of Gdansk, where the
Vistula River strongly influences the water properties, chl-a is much higher when compared to the
PC concentration. This may be explained by the fact that the input of freshwater increases nutrient
concentrations, and thus allows other phytoplankton groups which do not contain PC to outcompete
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cyanobacteria. These are preliminary results, which may need further investigation and validation,
but they demonstrate the potential usefulness of the EOF models for satellite data.
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Figure 15. RGB image (a), PC (b), and chl-a (c) retrieved from the EOF model with reflectance spectra 
acquired from the MERIS radiometer for the Gulf of Gdansk area on 5 July 2010. 

4. Conclusions 

We present EOF models based on Rrs spectra collected in the optically-complex waters of the Gulf 
of Gdansk, which are strongly influenced by CDOM absorption to predict the pigment concentration 
and absorption spectra of phytoplankton and coloured detrital matter (with R2 > 0.79 for all models). 
The models presented here show much improved retrieval when compared to OC4 or even local 
band ratio models. For areas that possess similar ranges of optical constituents and ranges of pigment 
concentration (up to 20 mg·m−3 for PC and 35 mg·m−3 for chl-a), the model should work well. 
However, for areas outside the tested range, a new EOF model may have to be developed. The results 
of the EOF models applied to data with reduced spectral resolution also show good agreement with 
the in situ measurements, yielding a prospect of using this method in near real-time satellite systems. 
The estimation of the concentration of pigments from the phycobilin group can be used for 
monitoring and detection of filamentous, and potentially toxic, cyanobacterial blooms.  

In the future, EOF models need to be validated against satellite data. However, the results now 
available already indicate the applicability of the EOF method to multispectral satellite data such as 
OLCI (Sentinel-3), assuming that accurate atmospheric correction can be achieved. 
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Figure 15. RGB image (a), PC (b), and chl-a (c) retrieved from the EOF model with reflectance spectra
acquired from the MERIS radiometer for the Gulf of Gdansk area on 5 July 2010.

4. Conclusions

We present EOF models based on Rrs spectra collected in the optically-complex waters of the Gulf
of Gdansk, which are strongly influenced by CDOM absorption to predict the pigment concentration
and absorption spectra of phytoplankton and coloured detrital matter (with R2 > 0.79 for all models).
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The models presented here show much improved retrieval when compared to OC4 or even local band
ratio models. For areas that possess similar ranges of optical constituents and ranges of pigment
concentration (up to 20 mg·m−3 for PC and 35 mg·m−3 for chl-a), the model should work well.
However, for areas outside the tested range, a new EOF model may have to be developed. The results
of the EOF models applied to data with reduced spectral resolution also show good agreement with
the in situ measurements, yielding a prospect of using this method in near real-time satellite systems.
The estimation of the concentration of pigments from the phycobilin group can be used for monitoring
and detection of filamentous, and potentially toxic, cyanobacterial blooms.

In the future, EOF models need to be validated against satellite data. However, the results now
available already indicate the applicability of the EOF method to multispectral satellite data such as
OLCI (Sentinel-3), assuming that accurate atmospheric correction can be achieved.
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