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Abstract: The Moderate Resolution Imaging Spectroradiometer (MODIS) provides widespread 

Aerosol Optical Depth (AOD) datasets for climatological and environmental health research. Since 

MODIS AOD clearly lacks coverage in orbit-scanning gaps and cloud obscuration, some 

applications will benefit from data recovery using multi-temporal AOD. Aimed at qualitatively 

describing the relationship between multi-temporal AOD, AOD loadings and Normalized 

Difference Vegetation Index (NDVI) have been considered based on the mechanism of satellite 

AOD retrieval. Accordingly, the NDVI-based Weighted Linear Regression (NWLR) has been 

proposed to recover AOD by synthetically weighing AOD similarity, spatial proximity, and NDVI 

similarity. To evaluate the performance of AOD recovery, simulated experiments applying gap and 

window masks were conducted in South Asia and Beijing, respectively. The evaluation results 

demonstrated that the linear regression R2 achieved 0.8 and the absolute relative errors remained 

steady. Further validation was conducted between the recovered and actual AODs using 56 

Aerosol Robotic Network (AERONET) sites in East and South Asia from 2013 to 2015, which 

demonstrated that over 41% of recovered AODs fell within the expected error (EE) envelope. 

Additional validation conducted in South Asia and Beijing showed that recovery by NWLR did not 

expand satellite-derived AOD errors, and the accuracy of recovered AOD was consistent with the 

accuracy of the original Aqua MODIS Deep Blue (DB) AOD. The recovery results illustrated that 

AOD coverage was improved in most regions, especially in North China, Mongolia, and South Asia, 

which could provide better support in aerosol spatio-temporal analysis and aerosol data assimilation. 

Keywords: MODIS; aerosol optical depth; multi-temporal relationship; NDVI-based Weighted 

Linear Regression (NWLR) 

 

1. Introduction 

Aerosols are considered one of the major factors influencing global climate change and human 

health [1–3]. Aerosol optical depth (AOD), which characterizes the integral of aerosol extinction 
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coefficients in the vertical atmospheric column, has been widely acknowledged as a key parameter 

in atmospheric research, such as atmospheric corrections in remote sensing [4]. Although the 

Aerosol Robotic Network (AERONET) can measure relatively accurate AOD values and provides 

regional analysis [5–7], the sparse distribution of AERONET sites hardly characterizes AOD spatial 

variation [8]. Satellite-derived AOD fills this vacancy with spatially continuous observations, 

providing better spatial and temporal coverage for regional assessments on a large scale [9]. AOD 

products from the Moderate Resolution Imaging Spectroradiometer (MODIS) have been widely 

used in aerosol-related studies, such as regional aerosol optical properties [10] and public 

environmental health [11], because of their assured quality [12–14]. Along with the MODIS 

Collection 6 (C6) satellite product released in 2014, the second generation of the Deep Blue AOD 

(AOD DB) retrieved algorithm, which is referred to as enhanced DB, was expanded to cover vegetated 

land surfaces, urban areas, and brighter deserts by dynamic surface reflectance determination [15,16]. 

However, it still has obvious limitations when coverage is obscured by clouds [16]. In addition, there 

exists a spindly scanning gap around the equator between two contiguous satellite orbits, because the 

scanning swath (approximate 2330 km) is not wide enough to completely cover low-latitude regions [17]. 

Since satellite AOD products from different sensors have different uncertainties [18] and cannot 

provide consistent measurements [19], it is reasonable to take advantage of multi-temporal recovery 

by using MODIS AOD from the morning satellite Terra and afternoon satellite Aqua.  

A common approach to recover missing pixels is based on spatial information using the original 

datasets themselves, such as inverse distance weighting and Kriging methods, which have 

drawbacks when areas of missing pixels widen [20], because of the degradation of pixel correlation 

with increasing distance. Apart from simply averaging AOD products with valid observations, 

many merging approaches recover the AOD at missing pixels where auxiliary AOD products have 

valid values, consisting of the empirical orthogonal functions [21], linear or second-order 

polynomial functions [22], optimum interpolation [23], least squares estimation [24], Bayesian 

maximum entropy based methods [18], and so forth. To incorporate spatial AOD correlations, 

geostatistical fusion approaches have been developed, such as the spatial statistical data fusion 

method [25]. In addition, using temporal correlation of AOD could also improve the coverage of 

AOD observations [18]. 

In order to investigate the relationship between multi-temporal AOD products, previous 

studies have roughly made linear regressions between Aqua-MODIS AOD and Terra-MODIS AOD, 

and the results indicated that the correlation coefficient R2 between them was over 0.7 within the 

Continental United States [26]. However, it should be noted that this relationship exhibited regional 

variations, and the AOD loading is another key factor influencing the error in the satellite AOD 

retrieving process [27]. Another major uncertainty in satellite AOD retrieval is the surface 

reflectance, which is a significant parameter in the atmosphere radiative transfer model [28]. The 

surface reflectance effects are included by using NDVI specific fitting curves in the AOD retrieval 

process implemented by the DB enhanced algorithm [17]. Synthetically considering these three 

factors, in this study, the NDVI-based weighted linear regression (NWLR) recovery method was 

proposed based on our previous weighted linear regression (WLR) methods [29]. The NWLR 

method deliberates the geographical weight, AOD similarity, and NDVI similarity, in order to 

recover AOD by considering the characteristics of the AOD retrieval algorithm rather than by 

mathematical merging. The recovered AOD values could therefore provide the characteristics of 

aerosol variation from morning to afternoon, based on the necessity and significance of obtaining 

two AOD values in one day. 

This study focused on recovering Aqua MODIS AOD using multi-temporal Terra MODIS AOD 

using the proposed NDVI-based WLR method. In applying this method, we improved the Aqua 

MODIS AOD spatial coverage in the situation of MODIS scanning gap and cloud obscuration. 

Simulated experiments were conducted on South Asia and Beijing over three years, using simulated 

masks as the scanning gap and flexible window, respectively. The simulated recovered AODs were 

first validated using the original AODs. In addition, the improved spatial coverage effect from the 

recovered Aqua MODIS AOD has been demonstrated and analysed. Moreover, a discussion of error 
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expansion in the recovery algorithm was conducted by validating against AERONET AODs. The 

AOD products with better recovery accuracy and spatial coverage in this study can provide better 

support in aerosol spatio-temporal analysis and assessment in atmospheric environments. 

Moreover, as aerosol data assimilation (DA) has become more popular and has achieved some 

advancements in recent years [30,31], the assimilation system would perform better when 

assimilating recovered AOD observations as well. 

2. Data 

2.1. MODIS AOD Data and NDVI Data 

The MODIS instrument aboard the NASA Earth Observing System (EOS) solar synchronous 

polar-orbit satellites, Terra and Aqua, respectively, cross the equator at approximately 10:30 a.m. 

and 1:30 p.m. local time. The MODIS Collection 6 (C6) datasets were released in 2014, and the 

original DB AOD products were replaced by the enhanced DB AOD products, which provide better 

coverage on vegetated land surfaces, urban areas, and brighter deserts. It has been proven that the 

deep blue (DB) and dark target (DT) retrievals exhibited very poor consistency even on clear days 

and that DB AOD products possess better spatial coverage than DT, especially in winter [32]. Thus, 

the MODIS DB AOD, with all quality assurance flags, was utilized in this study for the maximum 

spatial coverage, where MOD04_L2 (Terra) and MYD04_L2 (Aqua) with 10 km spatial resolution 

were distributed in Hierarchical Data Format (HDF) available on the NASA Level 1 and Atmosphere 

Archive and Distribution System (LAADS) website [33]. The research areas contain the whole of 

China, and include parts of East Asia and South Asia, with longitudes ranging from 73°E to 135°E 

and latitudes ranging from 4°N to 54°N.  

The NDVI, which is calculated using the spectral reflectance measurements in the red and 

near-infrared bands, indicates the vegetation cover and related phenological state [34,35]. The 

16-day averaged NDVI datasets with 1 km spatial resolution (MYD13A3) were also collected from 

NASA LAADS in the regions defined above. The seasonal averaged AOD in summer and winter are 

demonstrated in Figure 1a,b, respectively, and the seasonal averaged NDVI in summer and winter 

are presented in Figure 1d,e, respectively. 

 

Figure 1. Maps of seasonal averaged Aerosol Optical Depth (AOD) in summer (a) and in winter (b), 

respectively; illustration of 56 Aerosol Robotic Network (AERONET) sites (red solid triangles) in 

research areas (c); and maps of seasonal averaged Normalized Difference Vegetation Index (NDVI) 

in summer (d) and in winter (e), respectively. 
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2.2. Ground-Based AOD Data 

AERONET, which provides continuous, cloud-screened, and quality assured observations of 

spectral AOD, is a global network of calibrated sun photometers [36,37]. The AERONET AOD level 

2.0 datasets, obtained from [38], are provided from spectral bands centred on 0.34, 0.38, 0.44, 0.50, 

0.675, 0.87, and 1.02 µm, at 15 minute temporal resolution and assured low uncertainty [39]. For 

validating the recovered results, this study used 56 AERONET sites in the geographical areas 

defined above from 2013 to 2015, which is illustrated in Figure 1c. Moreover, AERONET does not 

acquire AOD at 0.55 µm, so AOD values at 0.55 µm were interpolated by the AOD values at 0.44 and 

0.87 µm based on the Å ngström exponent for the 0.44–0.87 µm wavelength pair [40]. 

3. Methodology 

For convenience in the experiments, the Aqua MODIS DB AOD to be recovered is referred to as 

the primary dataset, while the Terra MODIS DB AOD is defined as the auxiliary dataset. A missing 

pixel in the gap of the primary dataset is referred as a gap-filled pixel, while the referred pixels in the 

auxiliary dataset are referred to as auxiliary pixels, with its corresponding location defined as the 

target location.  

In this study, a linear relationship calculated from locally similar pixels was used to recover 

each missing pixel from the corresponding auxiliary pixel, where the similar pixels here mean the 

pixel both having similar AOD and NDVI values. This linear relationship can be expressed as: 

Gi i i ia A b     (1) 

where Gi and Ai represent gap-filled pixels in the primary dataset and reference pixels in the 

auxiliary dataset, respectively, on the target position i, and a and b are the regression coefficients. 

Accordingly, an adaptive determination procedure is adopted to search for similarity pixels, where 

the j-th similar pixel must satisfy the following inequality: 

_j i iA A A th    (2) 

_j i iNDVI NDVI N th    (3) 

where Aj and Ai are the AOD values of the similar pixel and target pixel in the auxiliary AOD 

datasets, while NDVIj and NDVIi are the NDVI values of position j and target position i in the 

corresponding NDVI datasets. It is appropriate to determine the AOD similarity and NDVI 

similarity based on a flexible qualification. Therefore, A_thi and N_thi are set as adaptive thresholds, 

determined by the local standard variation of AOD and NDVI, respectively: 
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where μ and μ‘ are averages calculated by local 5-pixel by 5-pixel windows in the auxiliary dataset 

and corresponding NDVI dataset, respectively. The n is the number of pixels in the local 5-pixel by 

5-pixel window, which is included in the calculation for threshold. Based on the assumption above, 

A_thi and N_thi, which respectively represent the AOD threshold in position  and NDVI threshold 

in positioni, indicate the extent of variation in a local area. The requirements of Equations (2)–(5) 

ensure that the selection of similar pixels is reasonable in different regions. 

After determining the similarity qualification, the selection process was conducted in an initial 

window centred on the target position. The minimum requirement of the number of selected similar 

pixels was set as N, in order to guarantee the effectiveness of the following WLR algorithm. If the 

number of selected similar pixels cannot reach the minimum value, N, the size of the selection 



Remote Sens. 2017, 9, 340 5 of 16 

 

window will be enlarged by two pixels. Considering that an oversized selection window will not 

only consume computing time, but also cause the loss of geospatial relevance, a maximum window 

size was set. The initial window size and maximum window size were set as 7 and 99, respectively, 

and the minimum sample points, N, was empirically set to 10 based on the condition of AOD 

coverage, according to our previous study in WLR [29]. 

Generally, the least-square approach was employed to estimate the coefficients in Equation (1) 

from selected similar pixels. However, it is reasonable that each pixel had different contributions 

according to the similarity of the AOD value, spatial proximity by target position, and the similarity 

of NDVI. Other than the original WLR algorithm, the NDVI differences were also included in the 

weight calculation. In this study, at lower NDVI differences, lower differences in AOD values in 

reference datasets, and a closer distance between the similar and reference pixels, led to a larger 

weight. These differences were expressed from the following equation: 

    2 2

ij j i j i j i j iD NDVI NDVI A A x x y y             (6) 

where NDVIj and Aj represent the NDVI value and AOD value of the reference dataset, respectively, 

on the j-th similar pixel’s position. NDVIi and Ai represent the NDVI value and AOD value of the 

auxiliary dataset, respectively, on the target position i. The xj, yj, and xi, yi represent the grid 

coordinates of the similar and target pixels, and α, β are small values preventing Dij from equaling 

zero. These small values are set to be the exact half of the minimum scale division, with the alpha 

chosen to be 0.00005 and the beta chosen to be 0.0005. Therefore, the term j iA A  
  

characterizes the AOD difference between the corresponding similar pixel and the target pixel in the 

auxiliary AOD dataset, j iNDVI NDVI  
  characterizes the NDVI difference, and 

    2 2

j i j ix x y y  
  describes spatial proximity. Accordingly, the weight of each similar 

pixel could be normalized using the inversed differences Dij in Equation (7), where the value of Wij 

ranges from 0 to 1, and the sum of all similar pixels’ weights equals 1. 
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The calculation of coefficients  ai and bi was then performed by adopting the expanded 

weighted least-squares method [41]: 

  

 
1

2

1

n

ij j jj

i n

ij jj

W G G R R
a

W R R





 






   

(8) 

and 

i ib G a A    (9) 

where G  and R  are the average of all similar pixels in the selection window in the primary and 

auxiliary AOD datasets, respectively. The complete flowchart of the NDVI-based WLR AOD 

recovery method is illustrated in Figure 2. 
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Figure 2. NDVI-Based Weighted Linear Regression (WLR) algorithm flowchart. 

4. Experimental Results and Analysis 

4.1. Simulated Experiment 

The objective of this study was to recover the missing pixels in Aqua AOD datasets caused by 

clouds and typical gaps between MODIS orbit-scanning swaths [17,42].  

4.1.1. Recovery Experiment from Orbit Gaps 

Simulated masks of the scanning gap were created to conduct simulated experiments on 

normal Aqua AOD from 2013 to 2015, evaluating the performances of recovery directly. 

The scanning gaps on the same location appear exactly every 16 days, consistent with the Aqua 

satellite orbital period. This study utilized one of these gaps over South Asia as a simulated mask 

and then applied it to the selected Aqua AOD datasets in the other fifteen days with good coverage 

to obtain the simulated degraded data. Figure 3 illustrates an example of the simulated process. In 

this simulated condition, 127 groups of degraded Aqua AOD were created from 2013 to 2015. The 

NWLR was sequentially employed to recover these degraded Aqua AODs using the corresponding 

Terra AODs on the same day, combined with the corresponding NDVI information. The NWLR 

performances on the recovery of the gap in South Asia could be evaluated by comparison between 

the original Aqua AOD and gap-filled AOD, as shown in Figure 4. The scatterplot and linear 

regression between the original AOD and recovered AOD could directly prove the effectiveness of 

recovery. 

Figure 4 shows the scatterplot of the relationships between the original Aqua AOD (actual 

value) and the gap-filled AOD (recovered value), where the colour bar represents the density of 

points. The total fitting pixel pairs reached 172,529, while it should be noted that only the simulated 

missing pixels participated in the calculation. The fitting results demonstrated that the fitted line 



Remote Sens. 2017, 9, 340 7 of 16 

 

was close to the 1:1 line with the decision coefficient, R2, reaching 0.82 and the root mean square 

error (RMSE) was as low as 0.12. In general, the gap-filled AOD tended to overestimate when the 

original AOD was lower than 0.3 and tended to underestimate when the original AOD was higher 

than 0.4, according to the linear fitting equation. In order to avoid the influence of high AOD pairs to 

the slope and intercept of the linear fit, the dashed line is linearly fitted under the condition that the 

AOD is smaller than 0.7. As a result, the slope increases from 0.88 to 0.94 which is closer to 1, while 

the intercept decreases from 0.04 to 0.02 which is closer to 0. Therefore, it is proven that the 

performance of recovery will be affected by large AOD, which tends to be underestimated. 

 

Figure 3. Simulated mask of Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) scanning 

gap applied to Aqua MODIS AOD products without the same gap (diagram example on 2 March 2014). 

 

Figure 4. Scatterplot of the original Aqua MODIS Deep Blue (DB) AOD against the gap-filled AOD 

values of all simulated mask pixels in South Asia from 2013 to 2015. The solid black line illustrates 

the fitting line, the dotted black line represents the 1:1 line, and the dashed black line represents the 

linear fitting equation by limiting AOD smaller than 0.7. 
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Moreover, a quantitative assessment was conducted to accurately evaluate the errors 

introduced by the NWLR process along with the variation in the original Aqua AOD. The first 

metric adopted was the mean absolute error (MAE), which had advantages over RMSE in assessing 

average model performance, such as measuring the degree of bias [43]. It is defined in Equation (10):  

1

N

i ii
G O

MAE
N







 
(10) 

where N is the total number of gap-filled pixels, and Gi and Oi are the ith gap-filled AOD and 

corresponding original AOD values, respectively. The second index adopted was the average 

relative error (ARE), which could measure the error range based on the original AOD. It is defined in 

Equation (11): 
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The lower MAE and ARE indicate a better performance of AOD recovery. As shown in Figure 5, 

although the MAE increased with the increase of the original AOD, the ARE maintained a value of 

approximately 20% when the original AOD was beyond 0.4. This result is in agreement with the 

hypothesis of a linear relationship between the multi-temporal AOD, because the absolute error 

would proportionately increase along with the growth of the original AOD. 

 

Figure 5. Trend of mean absolute error (MAE) and average relative error (ARE) based on the division 

of original AOD values from the simulated gap-filled process in South Asia. 

4.1.2. Recovery Experiment from Cloud Obscuration 

Similar simulated experiments have been conducted in the mega city of Beijing. This simulated 

experiment aimed at simulating missing pixels caused by cloud obscuration. Because the size and 

appearance of a cloud cannot be determined in advance, window masks of different sizes, centred 

on the AERONET station of Beijing (116.381°E, 39.977°N), were created. The size of the window 

mask was designed ranging from 3 to 41 pixels, with the interval set as 2 pixels, and the half width 

ranged from 1 to 20 pixels. Similar to the gap-filled experiments above, window masks of different 

sizes were applied to the selected Aqua AOD datasets with good coverage in Beijing to obtain 

simulated degraded data. In this premise, 181 groups of degraded Aqua AOD were created from 

2013 to 2015, and each group performed a simulated window mask exactly twenty times. The 

corresponding Terra AOD was then utilized to recover the simulated missing pixels in Aqua AOD 
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using NWLR, combined with the corresponding NDVI dataset. The performance on the recovery of 

AOD in Beijing was evaluated by comparison between the original Aqua AOD and recovered AOD, 

which is shown in Figure 6, as well as the sensitivity test for window mask size. 

 

Figure 6. Scatterplots of the original Aqua MODIS DB AOD against the recovered AOD values of all 

simulated window mask pixels in Beijing, combined with a sensitivity test on mask window half 

width, from 2013 to 2015. The black solid lines represent the linear regression results in each figure, 

and the black dashed lines represent linear fitting by limiting AOD smaller than 0.7. The colour bar 

in this figure indicates the density of points. 

Scatterplots between the original Aqua AOD and recovered AOD are illustrated in Figure 6, 

where these twenty scatterplots sequentially correspond to the window mask half width ranging 

from 1 to 20. The colour bar displays the density of points and the lines represent the results of linear 

fitting. Along with the increase in the simulated window mask, the slope of the linear fitting 

equation decreased from 0.92 to 0.83, the intercept of the linear fitting equation increased from 0.01 

to 0.05, and the linear regression R2 declined from 0.92 to 0.80. It can be concluded that when the 

window mask was smallest, the optimal recovery performances were achieved, and the effectiveness 

of recovery decreased as the window mask became larger. When the half width of the window mask 

was 1, the fitting line was closest to the 1:1 actual line, with the decision coefficient of the linear 

regression R2 reaching 0.92. While the half width of the window mask was 20, the decision 

coefficient R2 of linear fitting was still over 0.8. In addition, it should not be ignored that there was an 
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obvious underestimation when original AOD value was relatively high, no matter the size of the 

window designed. In order to eliminate the effect of high AOD pairs to the slope and intercept of the 

linear fit, the linear fitting under the condition that the AOD is smaller than 0.7 has been conducted 

in each sub-figure via dashed line. As a result, the slope increases to be closer to 1 and the intercept 

decreases to be closer to 0, which indicates that the performance of recovery will be affected by a 

large AOD in each size of the cloud mask. It indicated that the extent of underestimation was 

aggravated as the window mask and AOD range became larger. From a practical perspective, this 

type of underestimation in Beijing might cause a negative bias in overall aerosol assessments. 

Nevertheless, it was meaningful that if there had been approximately 400 kilometres   400 

kilometers missing data from the Aqua AOD caused by a mono-temporal cloud obscuration, over 

80% of the recovered AOD by NWLR using Terra AOD was consistent with the real AOD. 

The MAE and ARE metrics were similarly adopted to evaluate errors introduced by the NWLR 

process along with a variation in the original Aqua AOD in Beijing. As demonstrated in Figure 7, the 

MAE increased with the growth of original AOD, and the ARE remained around 20% when the 

original AOD was above 0.6. This result was similar with those obtained in gap-filled simulated 

experiments, even in the condition that the AOD values in Beijing were quite different from the 

AOD values in South Asia, which indicated that the ARE from the recovered AOD using the 

proposed NWLR tended toward stability (~20%) when the original AOD value was no longer 

relatively small. 

 

Figure 7. Trend of mean absolute error (MAE) and average relative error (ARE) based on the division 

of the original AOD values in the simulated window sensitivity test in Beijing. 

4.2. Overall Recovering Performances 

The NWRL algorithm were applied to the whole domain and this section discusses the 

combined effect of gap and cloud obscuration recovery as a whole. Similar to the simulated 

experiments above, the gaps would not present above 28°N, while cloud obscuration might appear 

at every possible position in the whole domain. 

The averaged ratio of valid AOD coverage over land for Aqua MODIS DB and recovered AOD 

from 2013 to 2015 is shown in Figure 8, which demonstrates an improvement in coverage all year 

around. In general, the mean improvement from Aqua AOD to recovered AOD was approximately 

an additional 10% of land AOD coverage. The primary trend illustrated that the coverage in spring 

and autumn was higher than the coverage in summer and winter, which was caused by the summer 

monsoon and snow-cover in winter, respectively. Furthermore, the spatial distribution of the total 

coverage-days from 2013 to 2015 was compared between the Aqua AOD and recovered AOD in Figure 
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9, and different improvement occurred in different regions. The coverage was improved in 

Southwest Asia (approximately from 10°N to 25°N), the Southeast coast (cantered at ~25°N, 115°E), 

and central China (cantered at ~30°N, 110°E) to a certain extent, while it apparently improved in 

North China (cantered at ~40°N, 115°E) and Mongolia (cantered at ~45°N, 100°E). In addition, 

obvious improvement was made in regions of South Asia, where the MODIS orbit scanning gaps 

were effectively recovered. 

 

Figure 8. The averaged ratio of pixels with valid AOD on land for the original Aqua MODIS DB AOD 

datasets and the recovered AOD products from 2013 to 2015. 

 

Figure 9. Coverage-days comparison between original Aqua MODIS DB AOD (a) and recovered 

Aqua AOD (b). The colour bar represents the count of days that have valid AOD values. 

5. Accuracy Evaluation and Discussion 

It is widely acknowledged that there are errors between satellite-derived AOD values and 

actual AOD values. Meanwhile, recovered AOD using NWLR would inevitably introduce 

differences compared to the original satellite-derived AOD. Thus, it is necessary to discuss whether 

the errors between recovered AOD and actual AOD expand from the satellite-derived AOD errors. 

As stated above, the AOD measured by AERONET is generally considered as an actual value for the 

(a) 
(b) 
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validation of AOD products. The 56 AERONET sites were included in the validation with only level 

2.0 AOD products used. 

Figure 10 shows the scatterplot between the recovered AOD and corresponding AERONET 

AOD in the conditions that the Aqua MODIS DB AOD failed to retrieve a valid value on one specific 

pixel, where this pixel could have been recovered by Terra MODIS DB AOD, and the AERONET site 

on this pixel obtained a valid level 2.0 AOD around 1:30 p.m. local time. In Figure 10a, the AOD 

gridded pixel with its centre closest to the ground AERONET site was extracted, while the ground 

AERONET site that corresponds to the aggregation of 3 × 3 pixels is illustrated in Figure 10b. Under 

this screening condition, 1,017 pairs and 1,012 pairs of AOD were extracted from 2013 to 2015, 

respectively, in single pixel and aggregated pixel. The linear regression between AERONET AOD 

and recovered AOD achieved an R2 of approximately 0.60 and a correlation coefficient over 0.77, 

which performed similarly to previous approaches, the R2 reaching 0.59 in the United States and 

achieving 0.56 in parts of East Asia, respectively [18,26]. It showed that the NWLR method had an 

advantage in AOD recovery in the whole East and South Asia regions to a certain extent. Over 41% 

of AODs fell within the reference expected error (EE) envelope (the scope equations are defined as 

0.05 20% AOD    [17]), which met the requirement for application. Furthermore, in a previous 

evaluation of the whole China region, it has been shown that there are great differences in validation 

between AERONET AOD and MODIS DB AOD, with all quality assurances, due to their different 

locations, with the slope of the linear regression equation varying from 0.67 to 1.21 and R2 ranging 

from 0.20 to 0.85 [32]. Therefore, the overall accuracy of the validation between AERONET AOD and 

recovered AOD would significantly decline, since it neglected the different accuracies in original 

MODIS DB AOD retrievals from different regions. A further experiment was accordingly performed 

on the simulated experiments above, which discussed the validation between the retrieved AOD 

and AERONET AOD in South Asia and Beijing, respectively. 

 

Figure 10. Scatterplot of the recovered AOD against AERONET AOD in the situation that missing 

AOD in Aqua MODIS DB datasets were recovered by Terra MODIS DB AOD datasets while the 

corresponding AERONET site acquired validated AOD in whole South and East Asia from 2013 to 

2015. (a) The ground AERONET site corresponds to the nearest AOD gridded pixel; (b) the ground 

AERONET site corresponds to the aggregation of 3 × 3 pixels. The purple solid line represents the 1:1 

reference line; the blue dotted lines represent the expected error (EE) lines; the red line is the linear 

regression result. 

There were two selected AERONET stations in the simulated gap mask in South Asia, namely 

Nong_Khai and Luang_Namtha, and the centre of the simulated window mask was the Beijing 

AERONET site. The validation was conducted between the AERONET AOD against the gap-filled 

AOD/recovered AOD, original Aqua MODIS DB AOD, and referenced Terra MODIS DB AOD. As 

shown in Figure 11a–c, although only around 39.7% of recovered AODs fell within the EE envelope, 
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with the slope of the linear regression at just 0.64, both the original AOD and referenced AOD had 

similar validated accuracy against the AERONET AOD, with 41.0% and 41.6% of AODs falling 

within the EE envelope, respectively. The similar phenomenon appeared in the validation in Beijing 

where the accuracy of the recovered AOD was close to the original and referenced AOD in Figure 

11d–f. The behaviour was quite different between Southeast Asia and the Beijing area, which could 

be explained by the different accuracy between the satellite-derived AOD and AERONET AOD, 

because the recovered AOD was completely determined by the original Aqua and Terra AOD 

datasets. Therefore, NWLR AOD recovered errors do not expand from the satellite-derived AOD 

errors, and the accuracy of recovered AOD had an ideal consistency with the accuracy of the original 

Aqua MODIS DB AOD when validating against the AERONET AOD. 

 

Figure 11. Scatterplots of AERONET AOD against recovered AOD, original Aqua MODIS AOD, and 

referenced Terra MODIS AOD, in South Asia (a–c) and Beijing (d–f), respectively. Particularly in (d), 

one AERONET AOD corresponds to a set of cloud filled AOD in different cloud dimensions. The 

purple solid line represents the 1:1 reference line; the blue dotted lines represent the expected error 

(EE) lines; the red line is the linear regression result. 

6. Conclusions 

As MODIS AOD clearly lacks coverage from the orbit-scanning gap and cloud obscuration, the 

NWLR method is proposed to synthetically describe the factors influencing the relationship between 

Terra MODIS AOD and Aqua MODIS AOD, with the goal of AOD recovery rather than 

mathematical AOD fusion. The similarity of AOD, the Euclidean distance, and the similarity of 

NDVI are defined as influencing factors on the temporal relationship, which will further affect the 

weight in regression. 

Simulated experiments were conducted from 2013 to 2015 in South Asia and Beijing, to evaluate 

the performances of recovery on the orbit-scanning gap and cloud obscuration conditions, 

respectively. Both experiments applied simulated masks to the Aqua AOD datasets, and the NWLR 

was sequentially employed to recover these degraded Aqua AOD using the corresponding Terra 

AOD on the same day, combining the corresponding NDVI information. The evaluation of 

recovered AOD against original Aqua AOD demonstrated that the decision coefficient R2 between 
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them reached up to 0.8 with an absolute relative error staying at approximately 20% with the 

increase of original AOD values, which suggested that the NWLR method performed well in 

recovery. Moreover, the AERONET AOD from 56 sites in East and South Asia was utilized to 

validate the accuracy of the recovered AOD, where over 41% of the recovered AODs fell within the 

EE envelope, meeting the requirements for application. Additional validation conducted in South 

Asia and Beijing showed that the recovery by NWLR did not expand the satellite-derived AOD 

errors, and the accuracy of the recovered AOD was consistent with the accuracy of the original Aqua 

MODIS DB AOD when validating against the AERONET AOD.  

Furthermore, the recovery results illustrated that approximately a 10% improvement in 

coverage was brought by NWLR, and there were obvious improvements in coverage over North 

China, Mongolia, and South Asia. This approach could be generalized for use by other satellites in 

similar multi-temporal recovery, which could further include AOD retrieval errors by different 

satellites, and could apply nonlinear multi-temporal regression. This study had limitations from 

snow cover or daylong cloud obscuration, and our future studies will focus on the quantitative 

description of the multi-temporal relationship, and will consider assigning different weights to AOD 

differences and NDVI differences based on their quantitative effect on the AOD retrieval, for 

instance, combined with the inconsistency of different AOD products. The Aqua MODIS DB AOD 

with better spatial coverage and recovery accuracy could provide better support in aerosol 

spatio-temporal analysis, assessment of the atmospheric environment, and aerosol data assimilation. 
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