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Abstract: Accurate and reliable information about the situation in refugee or internally displaced
person camps is very important for planning any kind of help like health care, infrastructure,
or vaccination campaigns. The number and spatial distribution of single dwellings extracted
semi-automatically from very high-resolution (VHR) satellite imagery as an indicator for population
estimations can provide such important information. The accuracy of the extracted dwellings can
vary quite a lot depending on various factors. To enhance established single dwelling extraction
approaches, we have tested the integration of stratified template matching methods in object-based
image analysis (OBIA) workflows. A template library for various dwelling types (template samples
are taken from ten different sites using 16 satellite images), incorporating the shadow effect of
dwellings, was established. Altogether, 18 template classes were created covering typically occurring
dwellings and their cast shadows. The created template library aims to be generally applicable in
similar conditions. Compared to pre-existing OBIA classifications, the approach could increase the
producer’s accuracy by 11.7 percentage points on average and slightly increase the user’s accuracy.
These results show that the stratified integration of template matching approaches in OBIA workflows
is a possibility to further improve the results of semi-automated dwelling extraction, especially in
complex situations.

Keywords: object-based image analysis (OBIA); template matching; object detection; dwelling library;
refugee and IDP camps; VHR data

1. Introduction

The number of refugees and internally displaced persons (IDPs) hit an all time high in 2015.
By the end of 2015, more than 65 million people were forcibly displaced [1] caused by natural disasters,
changing environmental conditions, and violent conflicts, which overall constitute the main reasons for
displacement. Camps and temporary settlements provide refuge for many of the displaced people [2,3].
Accurate, reliable, and up-to-date information about the population in refugee or IDP camps is
key to health care, infrastructure planning, or vaccination campaigns. Camp management, often
carried out by first-responding humanitarian relief organizations, cannot obtain this information by
field assessments alone, due to security reasons and other immediate duties. Furthermore, incorrect
information is sometimes provided by stakeholders, who may overestimate the number of refugees
for various reasons, or other political interests may lead to reduced numbers of reported IDPs. IDPs
have not crossed a recognized international border and therefore remain under legal protection from
their home governments, which limits assistance, such as regulated camp access and management,
to a large degree. To cope with these challenges, very high-resolution (VHR) satellite imagery is a
critical source for deriving the number and spatial distribution of single camp dwellings [4–12]. Most
of the approaches for automated dwelling extraction from VHR data documented in the literature
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(cf. a comprehensive review by [13]) rely on OBIA [14,15]. Nevertheless, the accuracy of the extracted
dwellings can vary quite a lot depending on various factors, such as the contrast of dwelling types to
surroundings, the seasonal or actual weather situation, but also the dwelling density [16,17].

A specific limitation of existing object-based workflows is related to the initial segmentation
of the image. This process creates segments for image areas based on the similarity of neighboring
pixel values, which can lead to under-segmentation when dwellings and their surroundings have
very similar spectral reflectance, for example under dusty conditions. In such situations, dwellings
and their associated cast shadows can help distinguish them from non-elevated ground. Still, proper
segmentation that separates dwellings and the shadow area is required. The upper left image in
Figure 1 shows an example where the shadow of a dwelling is not as clearly captured by a segment as
compared to the upper right image. Here, the use of shadow as an identifier for a dwelling is limited,
in particular when using automated routines. At the bottom of Figure 1, dark dwellings are shown
with very low contrast to their surroundings, where the cast shadow is, in fact, the only indicator for
the presence of dwellings at all. In this case, segmentation based on internal homogeneity criteria
would fail in extracting relevant candidate objects for the classification process later on.
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Figure 1. Top: QuickBird 2 subsets of the Yida camp area (acquisition date: 12 October 2012, band
combination NIR-R-G (near infrared-red-green)) showing initial image segmentation of two bright
dwellings and the cast shadows. Bottom: dark dwellings with very low contrast to the surroundings,
where segmentation fails in extracting meaningful objects (Yida camp, 4 March 2013, WorldView-2,
R-G-B (red-green-blue)).

To enhance single object detection in such difficult situations, we have tested the integration of
template matching in object-based image analysis workflows. In the template generation process, the
object to be detected and the surroundings can be taken into account, which is in our case different
dwelling types and their cast shadows. Thus, matches include information regarding the orientation,
and can be used in the analyses to reduce false positives and partly overcome the difficulties in the
segmentation process by including the correlation layer in the segmentation steps.

The concept of template matching can be summarized as the process of comparing patterns
with regards to their similarity, enabling single object detection. In signal processing, analyzing the
correlation of signals is a standard approach. The mathematical methods and algorithms are also used
in image processing for the detection of image features [18,19]. A typically applied method in image
analysis is 2D-correlation, based on the correlation calculation using a moving window approach as one
of the simplest template matching techniques. Templates are represented as vectors. The correlation
between the template and the image is calculated by sliding the template over the image. There
are different similarity measurements such as the normalized cross-correlation, the sum of absolute
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differences, the sum of squared differences, and the Euclidean distance. A maximum or a minimum in
the correlation matrix represents a match depending on the calculation of the similarity. There can be
multiple matches with the same value [18,20].

In the specific field of remote sensing, template matching is widely used to address a variety
of problems such as the extraction of road centerlines from high-resolution images [21], and the
monitoring of mass movements and their surface velocity for monitoring glaciers, ice shelves, ice caps,
and also landslides [22–24]. Further examples of object recognition using satellite and aerial images are
aircraft and crater detection [25,26], tree crown detection, oil palm and species detection, and counting
in forestry [27–31] and dwelling extraction [32].

The literature review as well as a recently published review article by [20] reveal that template
matching techniques and OBIA methods for object detection are typically handled separately. There is
little research on combining both methods in one workflow. A study by [33], that combined template
matching with OBIA methods analyzing the effect of tree growth in camps impairing dwelling
detection in a refugee camp, suggested that the overall classification could be improved by applying
template matching within an object-based framework.

The combination of the two approaches aims to tackle typical problems of template matching,
such as the high number of false positives in complex images, by masking relevant parts of the image,
for example focusing on the camp area only or certain spectrally relevant objects, which we term
stratified template matching. We expect that the incorporation of the shadow effect of dwellings can
improve the dwelling detection rate in an OBIA workflow, improving segmentation and the dwelling
detection rate.

In this research, we aim to establish a template library, which is generally applicable under
similar conditions and can be easily integrated into existing workflows for object-based dwelling
extraction. A pre-condition is the presence of shadows cast by the dwelling. A visual investigation
of different refugee camps in Eastern Africa revealed that the same shelter types commonly occur
(bright, blue, and dark/brown dwellings) as well as large and small structures with typical geometrical
properties (Figure 2). The template library was developed based on sixteen single VHR scenes. In order
to check the accuracy of the approach, it was tested on three sites of different image complexities.
The results were compared to a visual image interpretation as well as to pre-existing (independent)
OBIA classifications.
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Figure 2. Examples of typical dwelling types detected in refugee and IDP (internally displaced persons)
camps in Eastern Africa. Source: [2], adapted.

2. Material and Methods

2.1. Study Area and Data

For the creation of the dwelling template library, subsets of sixteen VHR optical image scenes
were used. The spatial resolution ranges between 0.5 m and 0.6 m ground sample distance (GSD) for
pan-sharpened VHR data. For testing purposes, the subsets cover parts of different camps and two
small towns, all located in Eastern Africa. The distribution of the sites is shown in Figure 3. Existing
semi-automated dwelling classifications were provided by the Department of Geoinformatics—Z_GIS,
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University of Salzburg, within an operational service for Médecins Sans Frontières (MSF) for three sites
(El Redis, Sudan 3 December 2015, Yida, South Sudan 10 December 2012, Yida 4 March 2013; Table 1)
in order to compare the outcome of the dwelling template library with existing and verified results.Remote Sens. 2017, 9, 326 4 of 16 
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Figure 3. Spatial distribution of the test sites used for the creation of the dwelling template library and
the dwelling extraction analyses (band combination of images: R-G-B). The smaller scale bar is valid
for the depicted image subsets.

Table 1. Computation time of the template matching implementation for different image sizes and
different numbers of rotation steps (time in seconds on a standard PC).

Image Size (Pixel)
Number of Template Rotations

1 2 4 8 16 32 64

6400 × 6400 3.21 5.98 11.05 99.16 275.14 653.06 1433.05
3200 × 3200 1.16 1.56 2.75 25.80 70.156 154.09 332.72
1600 × 1600 0.22 0.36 0.61 5.14 14.219 32.75 69.69
800 × 800 0.08 0.11 0.19 1.22 3.19 7.16 15.02

2.2. Template Matching Library

One of the objectives of this work was to create a template library for camp dwellings that can be
integrated into existing workflows for dwelling extraction, applicable to different kinds of dwellings.
The library is best suited for satellite images with a non-zenith sun position, where the depicted objects
cast a shadow depending on their height. The samples for the templates are taken from different
camps (Figure 3) to capture the variety of dwelling types at different locations, time slots, and weather
conditions such as rainy and dry season or the effects after a sandstorm and different sun azimuth
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angles. The library is most suitable for resolution levels between 0.5 and 0.6 m GSD, but it also can be
scaled to other image resolutions. The applied workflow for creating a template and integration into
the library is presented in Figure 4.

The template library is structured according to the properties of the templates (color intensity,
dwelling shape, size, and shadow direction) that support several combinations of a dwelling type
and the cast shadow. Moreover, new dwelling templates can be added to the library to customize it
to the dwelling arrangement. The naming convention follows this logic, allowing the right dwelling
templates to be found without screening all available template images. The following subchapters
describe the structure of the template library in detail.
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2.2.1. Dwelling Shape

Small objects in the satellite image, such as camp dwellings, may appear as if the image was
taken from the nadir position, while VHR imagery is usually not. The lean effect is only visible on
taller buildings [34]. Therefore, only the dwelling roofs are visible, and dwelling shapes are reduced to
two-dimensional geometric shapes. Camp dwellings typically have rather simple shapes. The generic
types are quadratic or rectangular cuboids and cones. The template library comprises the following
three dwelling types: square, rectangular, and circular.

2.2.2. Template Size

The template size is defined by the height and width of a rectangle. Templates should cover the
dwelling, the cast shadow, and a reasonable share of the surrounding area.

2.2.3. Dwelling Brightness

Here, the templates were calculated on one image band only, i.e., using grey scale intensities.
The template library is divided into two intensity levels: strong intensity—bright dwellings, and
weak intensity—dark dwellings. Empirical testing was performed to compare the correlation of the
samples of a given template with the pan-sharpened multi-spectral bands (blue, green, red, and NIR).
The contrast of the bright dwellings compared to the surrounding areas proved best using the blue
band. For dark dwellings, the best results were achieved using the near-infrared (NIR) band.

2.2.4. Shadow Direction

The third property is the shadow cast by a dwelling. It determines the rotation angle of the
samples, which is dependent on the shape of the object. Objects in optical VHR satellite images
taken in daylight with the sun as the only relevant source of light cast simple shadows. From the
simplified shapes, cones either cast a shadow or no shadow, while rectangular cuboids have three
options: no shadow, a shadow on one of four sides and shadows on two sides.
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Corresponding to the shadow, objects with a circular layout only require one template, square
dwellings require two templates, and dwellings with a rectangular layout require three templates
because the shadow can be on one side only, on the short and the long side, or on the long and the
short side, which cannot be solved by rotation.

The library is divided into the following main template classes (Figure 5): (a) dwellings with
strong intensity (structures appear bright) and dwellings with low intensity (structures appear dark or
grey); (b) dwellings of different shapes that can be a square, rectangular, or circular; (c) the direction of
the shadow cast by the dwellings, which can be on one side or on two sides.Remote Sens. 2017, 9, 326 6 of 16 
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Figure 5. Examples of different template classes and their structural properties, such as shadow
direction, shape, type, and size of dwellings, in the template library. In this visualization, the shadows
are simulated for the location of the camp Yida, which is located in South Sudan, to illustrate how
different sun angles can influence the direction of the shadow. The aerial view is north-oriented while
the 45◦ view is southwest-oriented. The orange arrow shows the applied rotation angle and the green
rectangle indicates the (relative) size of the samples for a dwelling template. The shadow direction is
encoded within the name of the template (e.g., 1001 shows a shadow on two sides. 1 stands for shadow
and 0 for no shadow. The cast shadow is counted clockwise starting at the top).

2.3. Application of the Template Matching Library

The application of the templates from the library is an interactive but straightforward process
applied within the eCognition (Trimble Geospatial) OBIA software environment. The implemented
template matching algorithm in eCognition is normalized cross-correlation [35]. The choice of the
right templates depends on the occurrence of dwelling types. Rotation steps of the templates can be
adjusted. If, for example, four rotation steps are applied, the rotation angles of the template are 0◦, 90◦,
180◦, and 270◦. A suitable rotation angle is always the prevailing shadow orientation of dwellings in
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the image. A second parameter is the correlation threshold. If the correlation between the template
and the image at a given location is higher than the predefined threshold, a point (local maxima within
a given neighborhood) will be created in addition to the correlation layer to represent a dwelling
match. The resulting point layer contains numerous false positives that can be reduced by adjusting
the correlation thresholds and filtering adequate rotation angles of the templates corresponding to
the current shadow direction. The computation time is dependent on the size of the image and on the
number of rotation steps selected (Table 1).

2.4. Integration of Template Matching in an Object-Based Image Analysis Workflow

In order to overcome some of the inherent limitations of template matching (dual or multiple
matches, ambiguous targets) that inevitably lead to a large number of false positives, we use a
stratification strategy. In other words, we integrate the developed template library in an OBIA workflow
(Figure 6) using the following steps: (1) The area of interest, in this case the camp extent, is derived using
an initial rough OBIA classification of the dwellings and a dwelling density calculation [7] to stratify
the template matching to the camp area only and to save computation time; (2) The template library is
applied, and the templates and rotation of templates are selected according to visual inspection of the
dwelling types and shadow directions; (3) Segmentation of the satellite image is improved by including
the correlation layer of the template matching in the segmentation process; (4) Exclusion (masking) of
areas that are not relevant for the analysis such as vegetation and bare soil (based on spectral properties)
and elongated structures such as fences or walls (based on geometrical properties), see [4,7,17] for a
detailed description of the algorithms. This helps to minimize false positives created in the template
matching process; (5) Classification of the image objects based on two steps: (i) classification of
dwellings using the template point layer and (ii) additional classification of the dwellings by applying
OBIA methods (objects that do not match the template, but show other general characteristics of
dwellings regarding spectral, form, and spatial features).
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Figure 6. Integrated workflow combining object-based image analysis (OBIA) and template matching
for dwelling extraction.

3. Results and Discussion

3.1. Results for the Three Test Images

The template library was applied to three images showing different levels of complexity in terms
of dwelling extraction. The camps under investigation were El Redis in Sudan and Yida in South Sudan
(Table 2). The latter was captured in two slots. The provided images cover parts of the Yida camp
and the complete El Redis site. In the following, the results of three different methods are presented:
(1) template library based on greyscale image template matching (TM); (2) template library for dwelling
extraction within an object-based framework (TMOB); (3) pre-existing OBIA only classifications (OB).
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Applying more than one template sometimes creates several hits on one dwelling. To obtain a
comparable result for the TM method, multiple hits were not counted.

Table 2. Sites to which the template library is applied including information about acquisition date,
size, and complexity regarding dwelling extraction.

Site Acquisition Date Size (Pixel) Sensor Complexity

El Redis 3 December 2015 1657 × 1658 WV-2 Low
Yida 10 December 2012 2698 × 2337 QB Moderate
Yida 4 March 2013 3237 × 2805 WV-2 High

The complexity of the dwelling extraction for the El Redis camp image, acquired 12 March 2015,
can be considered as low (see subset of the camp image in Figure 3). The camp mostly consists of bright
dwellings, which can be clearly distinguished from surrounding areas. Still, some darker dwellings
are harder to distinguish. The structure of the camp is quite clear. There is almost no vegetation such
as trees and bushes that could be mistaken as dwellings within the camp area. Fences, which can look
like a shadow cast by a dwelling, rarely occur.

Without a differentiation between dwelling types, the application of the TM approach resulted
in the highest number of detected dwellings (2159, for details, see Figure 7), which was expected
since TM methods are prone to high numbers of false positives [20]. When integrated into an
object-based framework (TMOB approach) the number of classified dwellings reduced to 1542.
In comparison to these results, the existing OBIA classification (OB approach) detects 1426 dwellings.
When differentiating between dwelling types, the OB and TMOB approaches show similar distributions
(Figure 7). Overall, the new TMOB approach detects 116 dwellings more than the pre-existing results
in the same area.
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A reason for the difference is that the pre-existing OBIA classification lacks the capability of
creating discrete segments for dwellings that are built near each other. Thus, a segment can include
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more than one object. If the area of this segment is greater than the threshold for small structures,
it is classified as a large structure instead of two or more smaller structures. The new approach can
improve this shortcoming by integrating a correlation layer in the segmentation process.

The complexity of the Yida image, acquired on 12 October 2012, is classed as moderate (see Figure 8,
left). It consists mostly of bright and blue dwellings, typically built with local material and covered by
white or blue plastic sheets in the rainy season [36]. Bright structures can be clearly distinguished from
surrounding areas as compared to darker structures that are more difficult to detect. The detection
rate of blue dwellings depends on the intensity and similarity of the surrounding areas. The camp
structure can be described as somewhat chaotic. The reason for this is that the development of the
camp in its initial phase was not managed by a humanitarian relief organization [37]. Most of the
dwellings are located in a dispersed manner. Between these structures, trees and other vegetation such
as grassland and rust-colored earthen patches can be found. All of this increases the complexity of
dwelling extraction. Especially if structures are partially hidden by tree crowns ([33]) or look similar to
surrounding areas, the differentiation of dwellings is hampered. The image was taken at the end of
the rainy season in October. Therefore, the vegetation appears intense, and the dwelling roofs are less
dusty. Overall, that increases the contrast between the dwellings and surrounding areas. Occasionally
fences that appear similar to shadows cast by a dwelling occur. Overall, the TM approach detected
5447 dwellings in this image; the TMOB extracted 4674 dwellings.
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Figure 8. Comparison of the same area of the Yida camp (80 m × 40 m) between October 2012
(left column, QuickBird) and April 2013 (right column, WorldView-2). In the rainy season (left),
dwellings show higher contrast to their surroundings compared to the dry season (right). The top row
shows the true color image (band combination R-G-B) and the bottom row shows the blue band in
grayscale, which was used for the template matching of bright dwellings.

In comparison, the pre-existing OB classification again obtained the lowest detection rate with
a total of 4430 dwellings (Figure 7). The differences in bright and blue dwellings result from
slightly different thresholds that distinguish these structures. Overall, the TMOB approach detects
217 dwellings more than the pre-existing OBIA classification in the same area.

The third image, also covering the Yida camp, was taken six months later in early April 2013.
The different pixel dimensions (Table 2) of the subsets are due to the different GSDs of different sensors
(QuickBird 0.6m GSD vs. WorldView-2 0.5 m). The scene was chosen in order to compare the effects
and impacts of the dry versus rainy seasons. There were only minor changes in terms of the camp
structure, distribution of dwellings, and occurrence of fences. However, the image was taken at the end
of the dry season. The impact of this change is that the complexity for dwelling extraction increases to
high. Dwelling roofs look dusty and are similar to the surroundings, where mainly rust-colored earth
and some trees can be found (Figure 8, right). Overall, there is less contrast between the image objects
to be distinguished.
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Here, the TM approach obtained 4789 dwellings. The pre-existing OB classification detected
4429 dwellings. In comparison, TMOB yielded a total of 5532 dwellings. Broken down by classes, the
OB obtains a considerably lower rate for bright and brown dwellings compared to the TMOB approach
(Figure 7). Overall, 1103 additional dwellings were extracted by TMOB compared to the OB approach.

It needs to be emphasized that this time the TM approach detected fewer dwellings than the
combined TMOB approach. Most likely, the applied templates did not cover the whole variety of
occurring dwellings—especially the dusty conditions caused by the dry season resulted in a limited
distinction between bright and dark structures, hampering template matching using grey level based
templates only.

3.2. Accuracy Assessment

In general, the success of a method coincides with its applicability and accuracy. In order to verify
the latter, the results from the three test sites were compared with a visual interpretation based on the
satellite images. The visual interpretation was performed on randomly selected 200 m × 200 m sample
areas. In the El Redis camp, two sample areas were created because of the small camp size. In the Yida
camp, five sample areas were created (Figure 9). The sample areas in the Yida camp are the same for
both years (2012 and 2013), which allows a detailed comparison of the development in these parts of
the camp. The visual interpretation includes a point file for every occurring dwelling in the sample
areas, including properties of the dwelling type.
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Figure 9. El Redis camp (2015, band combination R-G-B, left) and Yida camp (2012, band
combination R-G-B, right) with 200 m × 200 m squares randomly selected for visual interpretation and
accuracy assessment.

3.2.1. Accuracy Assessment: Not Differentiated between Dwelling Types

For El Redis, the visual interpretation revealed 657 dwellings within the randomly selected sample
areas. Results are shown in Figure 10. TM shows a user’s accuracy (UA) of approximately 74% and a
producer’s accuracy (PA) of 92%. TMOB extracted the same number of correctly extracted dwellings
(same PA), but the user accuracy increased to approximately 98% based on the reduction of false
positives. In comparison, the pre-existing OB already has a very high UA of 96% but a lower PA of
83% compared to the other approaches (Figure 10).

For the image of the Yida camp, captured in October 2012, visual interpretation detected
587 dwellings within the sample areas. Applying the TM approach, a UA of 75% and a PA of 70% was
reached. TMOB increased the correctly detected structures, resulting in a PA of 77%. False positives
are strongly reduced, which is reflected in the enhanced UA of 93%. For comparison, the pre-existing
OB classification extracted 397 dwellings with a high UA of 90% and a PA of 68% (Figure 10).
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For the same area, but based on the image acquired six months later, the visual interpretation
revealed 504 dwellings. TM shows a UA of 65% and a PA of 49%. TMOB increased the extracted
number of dwellings and hence also the PA to 74%. Moreover, the UA rises to 77%. The pre-existing OB
classification correctly extracted 284 dwellings with a UA of 78% and a quite low PA of 56% (Figure 10).

Across all test sites, the TMOB method increases the average PA by 11.7 percentage points
and slightly increases the UA by 0.9 percentage points compared to pre-existing OB classifications
(average over all test sites, not differentiated by dwelling type). This corresponds to the initial problem
description that OB methods are good in classifying objects if the initial segmentation works well
(high contrast of dwellings and surroundings), which leads to the already quite high UA reported.
The increased PA of the TMOB method means that the incorporation of the shadow effect of dwellings
can improve the dwelling detection rate in an OBIA workflow, thereby improving the segmentation
and dwelling detection rate.

3.2.2. Accuracy Assessment: Differentiated between Dwelling Types

Differentiation between dwelling types was conducted for the TMOB and the pre-existing OB
classifications only. The reason is that the implemented template matching method frequently results
in multiple hits per dwelling. A dark dwelling template can create a match on structures appearing
dark and for structures that appear brighter (but with similar contrast), and vice versa for a bright
dwelling template. Consequently, no precise and accurate distinction of dwelling types could be
conducted without intensive post-processing.

Differentiated between dwelling types, TMOB correctly detected 598 dwellings in the El Redis
camp test site (for details see Table 3). The UA and PA decreased less than 1% compared to the result
without the differentiation between dwelling types. Looking at the single classes, the PA is very
high for bright dwellings (95%) and large structures (100%) but only moderate for brown dwellings
(66%). The overall accuracy reduction of the OB classification compared to the result without the
differentiation between the dwelling types is also less than 1%. It is important to mention the high PA
rates for bright dwellings (90%) and large structures (100%) while there is a very low value for brown
dwellings (34%), which are much better detected by the TMOB approach. The low accuracy values for
brown dwellings do not influence the overall accuracy of both classifications because their share is
approximately only 15%.
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Table 3. Accuracy assessment for randomly selected sample areas in the El Redis camp. The dwellings
are differentiated by type. Number (No.) of true positives (TP) and false positives (FP), user’s accuracy
(UA), producer’s accuracy (PA), template library within an object-based framework (TMOB), and
pre-existing OBIA classification (Pre-existing OB).

El Redis 2015 Visual Interpretation TMOB Pre-Existing OB

Bright dwelling

TP (No.) 548 522 491
FP (No.) 0 7 1
UA (%) 100 98.7 99.8
PA (%) 100 95.3 89.6

Brown dwelling

TP (No.) 96 63 33
FP (No.) 0 7 22
UA (%) 100 90 60
PA (%) 100 65.6 34.4

Large structure

TP (No.) 13 13 13
FP (No.) 0 0 3
UA (%) 100 100 81.3
PA (%) 100 100 100

Total

TP (No.) 657 598 537
FP (No.) 0 14 26
UA (%) 100 97.7 95.4
PA (%) 100 91 81.7

For the image of the Yida camp (October 2012), TMOB correctly extracted 452 dwellings, which is
less than that without a dwelling distinction (see Table 4). Hence, this reduces the UA and PA (UA:
91%, PA: 75%). The class-specific UA and PA again highly depend on dwelling types (higher values
for the bright dwelling types). As a comparison, the overall UA is 88%, and the PA is 66% for the OB
classification. The class-specific UA and PA develop in a similar way. Interestingly, the TMOB method
detects blue dwellings much better than the OB classification only.

Table 4. Accuracy assessment for randomly selected sample areas in the Yida camp (2012).
The dwellings are differentiated by type. Number (No.) of true positives (TP) and false positives (FP),
user’s accuracy (UA), producer’s accuracy (PA), template library within an object-based framework
(TMOB), and pre-existing OBIA classification (Pre-existing OB).

Yida 2012 Visual Interpretation TMOB Pre-Existing OB

Bright dwelling

TP (No.) 373 291 287
FP (No.) 0 11 23
UA (%) 100 96.4 92.6
PA (%) 100 78 76.9

Blue dwelling

TP (No.) 211 147 101
FP (No.) 0 34 26
UA (%) 100 81.2 79.5
PA (%) 100 69.7 47.9

Large structure

TP (No.) 3 2 2
FP (No.) 0 1 4
UA (%) 100 66.7 33.3
PA (%) 100 66.7 66.7

Total

TP (No.) 587 452 397
FP (No.) 0 46 53
UA (%) 100 90.5 88
PA (%) 100 74.9 66.4
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For the second image taken of the Yida camp (April 2013), showing the most complex situation
between the three test sites, the TMOB method correctly detects 344 dwellings (differentiated by
type, see Table 5). The PA drops to 68% and the UA to 71%. A detailed look at the class-specific
accuracy again reveals that darker structures, usually with a lower contrast to the surroundings, are
harder to extract. The OB classification extracted 238 dwellings in total, with a UA of 65% and a
PA of 47%. The class-specific accuracy shows that the detection rate for all classes apart from large
structures is low in comparison to the TMOB approach. For both Yida test sites, the accuracy using
the OB method is quite weak for the large structures, which is most likely a problem of the object
generation in the segmentation process. If the spectral difference of dwellings and their surroundings
is weak, or if the dwellings are directly neighboring each other, the segmentation may result in one
segment instead of several and the size of the delineated object is biased towards a detection of larger
dwellings. The integration of the template matching correlation layer in the segmentation step shows
an improvement of the results.

Figure 11 presents the accuracy differentiated by the dwelling type summarized across all test
sites; total accuracy values are slightly lower than for the calculation without a differentiation of
dwelling types (e.g., blue dwellings recognized as dark dwellings are counted as errors). The figure
gives a good impression of how the TMOB approach is especially helpful in improving the detection
of additional dark dwellings and other non-bright structures, resulting in a considerably increased PA
(by 12.4 percentage points).

Table 5. Accuracy assessment for randomly selected sample areas in the Yida camp (2013).
The dwellings are differentiated by type. Number (No.) of true positives (TP) and false positives (FP),
user’s accuracy (UA), producer’s accuracy (PA), template library within an object-based framework
(TMOB), and pre-existing OBIA classification (Pre-existing OB).

Yida 2013 Visual Interpretation TMOB Pre-Existing OB

Bright dwelling

TP (No.) 148 133 90
FP (No.) 0 61 44
UA (%) 100 68.6 67.2
PA (%) 100 89.9 60.8

Brown dwelling

TP (No.) 311 185 123
FP (No.) 0 58 45
UA (%) 100 76.1 73.2
PA (%) 100 59.5 39.6

Blue dwelling

TP (No.) 25 13 11
FP (No.) 0 3 1
UA (%) 100 81.3 91.7
PA (%) 100 52 44

Large structure

TP (No.) 17 10 12
FP (No.) 0 8 23
UA (%) 100 55.6 34.3
PA (%) 100 58.8 70.6

Small structure

TP (No.) 3 3 2
FP (No.) 0 9 11
UA (%) 100 25 15.4
PA (%) 100 100 66.7

Total

TP (No.) 504 344 238
FP (No.) 0 109 78
UA (%) 100 71.2 64.8
PA (%) 100 68.3 47.2
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4. Conclusions

The main finding of this study is that template matching is suitable for dwelling extraction in
refugee and IDP camps using VHR satellite imagery, in particular when stratified by means of OBIA.
Several reasons account for the combination of template matching with object-based image analysis
methods. First, the application of two or more templates may result in dual or multiple hits on the
same object, resulting in double (or more often) counting. Second, the point layers created by template
matching contain many false positives, which results in a low UA, a typical drawback of template
matching methods. Third, the templates in the library do not cover all possible types of dwellings.
These limitations can be overcome by stratifying the template matching with the help of OBIA methods.
Multiple counting of a dwelling can be avoided by segmentation and object resizing using context
information. False alarms caused by, for example, trees and bushes, can be masked as vegetated
area and the template matching can be restricted to the camp area only. This can enhance the UA of
template matching considerably, which was shown in this study.

Incorporating the shadow effect of dwellings into the templates helped to improve the detection
rate in complex camp situations. Furthermore, the orientation of a template caused by the shadow can
be used as a clear identifier for a dwelling. This is an advantage compared to conventional object-based
workflows for dwelling extraction, where it is difficult to take the shadows of dwellings into account.

We could show that the combined approach for dwelling extraction in refugee camps,
stratifying the template matching within an initial object-based analysis, increases the average PA by
11.7 percentage points and slightly increases the UA by 0.9 percentage points compared to pre-existing
conventional OBIA classifications (average over all test sites, not differentiated by dwelling type). This
also holds true if the accuracy assessment is further differentiated into different dwelling types.

These results show that the integration of template matching in OBIA workflows is able to further
improve the results of the current state-of-the-art methods for semi-automated dwelling extraction,
especially in complex situations. In particular, we conclude that:

(i) The extraction rate in difficult (e.g., low contrast, dense dwellings) situations can be improved by
incorporating the shadow effect of a dwelling in a template library;

(ii) It is possible to establish a general template matching library for dwellings to be applied in
similar conditions;

(iii) The combination of template matching with OBIA methods (stratification) can enhance the
accuracy of dwelling extraction compared to template matching solely.
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Limitations of this template matching implementation include the missing support for multiband
images, the fact that templates are not scale invariant, and that the rotation angle could not be set
directly but only the number of rotations, which increases the computation time (redundant usage of
templates) in the process.

The accuracy of the greyscale template matching can also be increased if a multiband template
matching approach is used. First tests in the software Ciratefi (v.1.05) revealed quite promising results,
but the combination with OBIA workflows is still limited due to the lack of geospatial data support
and reduced radiometric depth allowed per image band. For a multiband approach, the template
library also needs to be extended, which could hamper the general applicability along with increasing
computation time.
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