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Abstract: This paper presents a novel technique, namely texture-guided multisensor superresolution
(TGMS), for fusing a pair of multisensor multiresolution images to enhance the spatial resolution of a
lower-resolution data source. TGMS is based on multiresolution analysis, taking object structures
and image textures in the higher-resolution image into consideration. TGMS is designed to be robust
against misregistration and the resolution ratio and applicable to a wide variety of multisensor
superresolution problems in remote sensing. The proposed methodology is applied to six different
types of multisensor superresolution, which fuse the following image pairs: multispectral and
panchromatic images, hyperspectral and panchromatic images, hyperspectral and multispectral
images, optical and synthetic aperture radar images, thermal-hyperspectral and RGB images,
and digital elevation model and multispectral images. The experimental results demonstrate the
effectiveness and high general versatility of TGMS.

Keywords: multisensor superresolution; texture guidance; multiresolution analysis; multiscale
gradient descent

1. Introduction

Multisensor superresolution is a technique for enhancing the spatial resolution of a low-resolution
(LR) image by fusing it with an auxiliary high-resolution (HR) image obtained by a different imaging
sensor. The spatial resolution of remote sensing instruments is often designed at a moderate or large
scale due to the trade-off between sensor specifications, such as spatial resolution, spectral resolution,
swath width, and signal-to-noise ratio. Therefore, there is always demand for enhancing the spatial
resolution of remotely sensed images. Multisensor superresolution has been widely used in the remote
sensing community to address the issue of spatial resolution by using complementary data sources.

Pan-sharpening is the most common multisensor superresolution technique, where an LR
multispectral (MS) image is sharpened by fusing it with an HR panchromatic (PAN) image. Nowadays,
many spaceborne MS sensors are mounted together with PAN sensors, and pan-sharpened products
are distributed as default. Many pan-sharpening algorithms have been developed over the last
three decades [1–3]. Component substitution (CS) methods [4–6] and multiresolution analysis (MRA)
methods [7,8] are representative techniques and widely used as benchmark methods. Geostatistical
methods based on kriging have been successfully applied to pan-sharpening [9] and multiband image
fusion [10–12]. Sparse representation-based methods have recently demonstrated their promising
performance [13–15].
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With the advance of anticipated upcoming spaceborne hyperspectral (HS) missions [16–22], the
resolution enhancement of spaceborne HS imagery has received considerable attention recently [23–26].
HS pan-sharpening [25] is naturally one option for enhancing the resolution of HS data using PAN
imagery possibly obtained from the same platform (e.g., PRISMA [18] and SHALOM [22]). HS and
MS data fusion is one of the most actively addressed tasks for creating HR-HS data with high spectral
quality [26]. Subspace-based methods have been actively developed for HS-MS fusion [27–29], and
pan-sharpening methods have also been adapted to the HS-MS fusion problem [30,31].

Enormous efforts have also been made to design multisensor superresolution techniques for
multimodal data, where two input images are acquired by measuring entirely different characteristics
of the surface via heterogeneous imaging systems. For instance, the fusion of visible near-infrared and
thermal images to create an HR thermal image has been studied using Landsat data sets as early as
1990 [32]. The resolution enhancement of a digital elevation model (DEM) using an HR image was
discussed for urban analysis in [33,34]. In [35], with the advent of HR synthetic aperture radar (SAR),
an attempt has been made to increase the spatial resolution of optical (MS and PAN) images using
SAR images as supporting materials.

Most of the multisensor superresolution methods in the literature have been designed for specific
fusion problems. To develop a general framework for multisensor superresolution, there are challenges
involved in dealing with sensor types and combinations and spatial characteristics, including the
resolution ratio and misregistration. To the best of the author’s knowledge, a versatile multisensor
superresolution methodology has not been fully developed.

This paper presents a novel technique, namely texture-guided multisensor superresolution (TGMS),
for a wide variety of multisensor superresolution tasks. TGMS is based on MRA, considering object
structures and texture information. Multiscale gradient descent is applied to MRA and improve
superresolution performance at object boundaries by considering object structures at a high level
(low resolution). Texture-guided filtering is proposed as a new intensity modulation technique where
texture information is exploited to improve robustness against misregistration. The main contributions
of this work are summarized as follows.

• Versatile methodology: This paper proposes a versatile methodology for multisensor
superresolution in remote sensing.

• Comprehensive evaluation: This paper demonstrates six different types of multisensor
superresolution, which fuse the following image pairs: MS-PAN images (MS pan-sharpening), HS-PAN
images (HS pan-sharpening), HS-MS images, optical-SAR images, long-wavelength infrared
(LWIR) HS and RGB images, and DEM-MS images. The performance of TGMS is evaluated both
quantitatively and qualitatively.

The remainder of the paper is organized as follows. Section 2 describes the proposed technique.
Section 3 is devoted to evaluation methodology. Sections 4 and 5 present experimental results on optical
data fusion and multimodal data fusion, respectively. Section 6 discusses findings and limitations of
this work. Section 7 wraps up the paper by providing the main concluding remarks.

2. Texture-Guided Multisensor Superresolution

Figure 1 illustrates the flowchart describing the fusion process of the proposed technique (TGMS),
using optical-SAR fusion as an example. TGMS is mainly composed of the following four steps: (1) data
transformation of the HR image; (2) description of image textures in the HR image; (3) multiscale
gradient descent; (4) texture-guided filtering. TGMS can be regarded as an MRA-based technique
taking object structures and HR texture information into consideration. The key idea is to add spatial
details to the LR image on the basis of local objects derived from the texture information of the HR
image. The assumption behind this idea is that pixels recognized as belonging to the same object
according to texture descriptors in the HR image have similar pixel features (e.g., spectral features in
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the case that spectral data is used for the LR image) in the output image. The four steps are detailed in
the following subsections.
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Figure 1. Overview of texture-guided multisensor superresolution in case of optical-SAR fusion.

2.1. Data Transformation

The first step of the proposed methodology is data transformation of the HR image to make
its pixel values correlated and consistent with the LR image. This procedure is important because
proportionality of pixel values between the transformed HR and LR images is assumed on each object
in the final step (i.e., texture-guided filtering). Depending on different types of data fusion regarding
numbers of bands in the input LR-HR images, the first step adopts two kinds of data transformation
for the HR image—namely, histogram matching and linear regression (see Table 1).

Table 1. Data transformation of HR images for six types of data fusion under investigation.

Type of Fusion Num. of Bands Data Transform of HR DataLR HR

MS-PAN Multiple One Histogram matching
HS-PAN Multiple One Histogram matching

Optical-SAR Multiple One Histogram matching
HS-MS Multiple Multiple Linear regression

DEM-MS One Multiple Local linear regression
LWIR-HS-RGB Multiple Multiple Linear regression

When the number of bands in the HR image is equal to one and that of the LR image is more
than one, we first create a synthetic (or band-pass filtered) LR image as a linear combination of the
LR bands using coefficients obtained by performing nonnegative least squares regression using the
LR bands as explanatory variables and the downsampled HR image as a response variable. Next,
histogram matching is performed on the HR image with the synthetic LR image being the target. If the
regression error is very small in the first step (e.g., the coefficient of determination is larger than 0.9),
the data transformation procedure is not required for the HR image (e.g., pan-sharpening experiments
in this work).

When the HR image includes multiple bands (e.g., HS-MS fusion and LWIR-HS-RGB fusion),
linear regression is used for data transformation. If the LR-HR images are of the same type, linear
regression is performed for each LR band at the low resolution. By transforming the HR image using
the obtained weighting coefficient, an HR synthetic image corresponding to each band of the LR image
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is obtained. If the input images are completely different types (or multimodal), a more particular
technique is required depending on their data types. For example, in the case of DEM-MS fusion, linear
regression is performed locally using segmentation (e.g., k-means) of the HR image. For LWIR-HS-RGB
fusion, linear regression is performed only once, with the mean image of the LWIR-HS bands being
the target. The transformed HR image is used to enhance the spatial resolution of all bands of the
LWIR-HS image so that the fused image includes only natural spectral signatures (linear combinations
of the measured spectra) but not artifacts.

2.2. Texture Descriptors

Description of texture information in the HR image is a key process in the proposed methodology
to recognize local objects (or structures) based on similarity of texture descriptors. TGMS uses
statistical texture descriptors presented in [36] based on region covariance [37,38] because of its efficient
and compact way of encoding local structure and texture information via first- and second-order
statistics in local regions.

Region covariance captures the underlying spatial characteristic by computing second-order
statistics on d-dimensional image features, including the intensity and the gradient. Let z(p) denote a
d-dimensional feature vector at a pixel p = (x, y). The region covariance Cr ∈ Rd×d is defined by

Cr(p) =
1

W ∑
pi∈Ωr

(z(pi)− z̄r)(z(pi)− z̄r)
Twr(p, pi), (1)

where Ωr is the (2r + 1)× (2r + 1) window centered at p and z̄r is the mean feature vector in the

window. wr is a Gaussian weighting function defined by wr(p, pi) = exp
(
−9‖p−pi‖2

2
2r2

)
to make local

spatial features smoothly defined in the spatial domain and W is its normalization coefficient defined
by W = ∑pi∈Ωr wr(p, pi). The scale r is set to be one half of the ratio between ground sampling
distances (GSDs) of the input LR-HR images. For d-dimensional features of a grayscale image I, we
use six features (d = 6) composed of the original pixel value, and the first and second derivatives as

z(p) =
[

I(x, y)
∣∣∣∣ ∂I
∂x

∣∣∣∣ ∣∣∣∣ ∂I
∂y

∣∣∣∣ ∣∣∣∣ ∂2 I
∂x2

∣∣∣∣ ∣∣∣∣ ∂2 I
∂y2

∣∣∣∣ ∣∣∣∣ ∂2 I
∂x∂y

∣∣∣∣]T

. (2)

Similarity measures between texture descriptors form the basis of texture-guided filtering. Since
similarity measures between covariance matrices are computationally expensive, TGMS adopts the
technique presented in [38] that uses the Cholesky decomposition to transform covariance matrices
into vectors, which can be easily compared and combined with first-order statistics. Finally, the texture

descriptor f ∈ R
d(d+3)

2 is defined as

f =
[
L1

r
T

... Ld
r

T
z̄T

r

]T
, (3)

where Lk
r ∈ Rd−k+1 (k = 1, ..., d) is the kth column of the lower triangular matrix Lr ∈ Rd×d removing

the first k− 1 elements. Lr is obtained by the Cholesky decomposition: Cr = LrLT
r .

2.3. Multiscale Gradient Descent

Multiscale gradient descent [36] is performed on the upsampled-LR, down-up-sampled-HR, and
texture-descriptor images to create their edge-aware versions. Here, “down-up-sampled” means
a process composed of low-pass filtering, downsampling, and upsampling to generate a blurred
version of the HR image, and “edge” refers to boundaries of objects recognizable in the LR image.
The edge-aware LR and down-up-sampled HR images are denoted as IMGD and JMGD, respectively.
The multiscale gradient descent has two important roles: (1) unmixing boundaries of objects; and
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(2) dealing with local misregistration between the input LR-HR images, which is always the case for the
fusion of multimodal images, such as optical-SAR fusion, LWIR-HS-RGB fusion, and DEM-MS fusion.

Let us consider a blurred LR image and an HR guidance image. The multiscale gradient descent
transfers edges in the guidance image into the blurred LR image for objects (or structures) recognizable
in the LR image. Figure 2 illustrates the gradient descent and the multiscale gradient descent using
the color and SAR images for the blurred LR and HR guidance images, respectively. The gradient
descent replaces the pixel values of the LR image around the edges in the HR image with those of more
homogeneous neighboring pixels (see Figure 2b). The gradient is calculated using a blurred version
of the gradient magnitude image of the HR guidance image. A blurring scale can be defined by the
GSD ratio. If the GSD ratio between the LR-HR images is large, some pixel values may not be replaced
by those of correct objects because complex transitions between different objects are smoothed out
(e.g., the water’s edge in the color image of Figure 2b). To overcome this issue, the multiscale gradient
descent is effective by iteratively performing the gradient descent while gradually blurring the HR
guidance image at a larger scale [36]. In Figure 2c, we can see that the complex water’s edge is aware
in the color image. In this work, a Gaussian filter is used for blurring, where its full width at half
maximum (FWHM) is set to two to the GSD ratio between the input LR-HR images for the second- and
higher-scale gradient descent procedures, respectively.

(a) Input (b) Standard descent (c) Multiscale descent

Figure 2. Illustrations of gradient descent methods.

2.4. Texture-Guided Filtering

This paper proposes texture-guided filtering as a new intensity modulation technique to transfer
spatial details in the HR image to the LR image. At each target pixel, its high-frequency component is
obtained via a texture-guided version of MRA where the high-level (low-resolution) components are
calculated by weighted summation of neighborhood pixel values in the edge-aware images (i.e., IMGD
and JMGD) obtained by the previous step. Texture-guided filtering is defined as

Ifiltered(p) =
J(p)∑pi∈ΩR

IMGD(pi)g(f(pi)− f(p))

∑pi∈ΩR
JMGD(pi)g(f(pi)− f(p))

(4)

where Ifiltered is the filtered image and J is the transformed HS image. ΩR is the (2R + 1) × (2R + 1)
window centered at p, g(y) = exp

(
−‖y‖
2σ2

)
is the texture kernel for smoothing differences in texture

descriptors, and σ controls how many of the neighboring pixels having similar textures are considered
when obtaining the pixel values of the high-level image in MRA. R is set to be the GSD ratio.
Similar to smoothing filtered-based intensity modulation (SFIM) [7], the proposed method assumes
that the ratio of pixel values between an image to be estimated (Ifiltered) and its high-level image
is proportional to that between the transformed HS image (J) and the corresponding high-level
image. The edge-aware LR image (IMGD) and the edge-aware down-up-sampled HR image (JMGD)
are used to calculate the high-level components in MRA with weighting factors for neighboring
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pixels based on texture similarity. Neighboring pixels (pi ∈ Ω) are taken into account for obtaining
the high-level components to cope with misregistration between the two input images. If the two
input images can be co-registered accurately (e.g., pan-sharpening and HS-MS fusion), TGMS directly
uses IMGD and JMGD for the high-level components, and therefore, Equation (4) can be simplified as
Ifiltered(p) = J(p)IMGD(p)/JMGD(p).

3. Evaluation Methodology

3.1. Three Evaluation Scenarios

The experimental part (Sections 4 and 5) presents six different types of multisensor superresolution
problems under three different evaluation scenarios, namely, synthetic, semi-real, and real data
evaluation depending on the availability of data sets (see Table 2). The characteristics of the three
evaluation scenarios are summarized in the following subsections.

Table 2. Evaluation scenarios and quality indices used for six specific fusion problems under
investigation.

Coarse Category Optical Data Fusion Multimodal Data Fusion

Fusion problem MS-PAN HS-PAN HS-MS Optical-SAR LWIR-HS-RGB DEM-MS
Evaluation scenario Semi-real Synthetic Synthetic Real Real Semi-real

Quality indices PSNR, SAM, ERGAS, Q2n — — Q index

3.1.1. Synthetic Data Evaluation

Two input images are synthesized from the same data source by degrading it via simulated
observations. The reference image is available and, therefore, the synthetic data evaluation is suitable
for assessing the performance of spatial resolution enhancement quantitatively. This evaluation
procedure is known as Wald’s protocol in the community [39]. The input images are very ideal.
For example, in the case of HS-MS fusion, simplified data acquisition simulations that take into account
sensor functions and noise are often used in the literature [25], and there is no mismatch between
the input images due to errors in the data processing chain, including radiometric, geometric, and
atmospheric correction. As a result, the performance of spatial resolution enhancement is likely to be
overvalued compared with that for semi-real or real data. Realistic simulations are required to evaluate
the robustness of fusion algorithms against various residuals contained in the input images [40]. In this
paper, versions of Wald’s protocol presented in [25,41] are adopted for the quantitative assessment of
HS pan-sharpening and HS-MS fusion, respectively.

3.1.2. Semi-Real Data Evaluation

Two input images are synthesized from the different data sources using degradation simulations.
The HR image is degraded spatially to the same (or lower) resolution as the original LR image. If the
original images have the same spatial resolution, only the one for the LR image is degraded spatially.
The original LR image is used as the reference image, and the quantitative assessment is feasible at
the target spatial resolution. The semi-real data evaluation is widely used in the pan-sharpening
community [3]. Since the original data sources are acquired by different imaging sensors, they
potentially include real mismatches between the input images. Therefore, the performance of spatial
resolution enhancement can be evaluated in more realistic situations than the synthetic data evaluation.

3.1.3. Real Data Evaluation

Two images are acquired from different sensors and directly used as the input of data fusion.
Since there is no HR reference image, the quantitative assessment of fused data at the target spatial
resolution is not possible. In the pan-sharpening community, the standard technique for quantitative
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quality assessment of real data is to investigate consistency between the input images and degraded
versions of the fused image using quality indices [42]. The quality with no reference index [43] has been
widely used as another alternative. If there is any mismatch between the input images, which is always
the case in multimodal data fusion, the fused image is either biased to one of them or intermediate.
Therefore, an objective numerical comparison is very challenging and visual assessment takes on an
important role.

3.2. Quality Indices

Four well-established quality indices are used for the quantitative assessment of multisensor
superresolution with synthetic and semi-real data: (1) peak signal-to-noise ratio (PSNR); (2) spectral
angle mapper (SAM); (3) erreur relative globale adimensionnelle de synthèse (ERGAS); (4) Q2n. This section
briefly describes these indices.

Let X ∈ RB×P denote the reference image with B bands and P pixels. X = [x1, ..., xB]
T = [x1, ..., xP],

where xi ∈ RP×1 is the ith band (i = 1, ..., B) and xj ∈ RB×1 is the feature vector of the jth pixel
(j = 1, ..., P). X̂ denotes the estimated image.

3.2.1. PSNR

PSNR qualifies the spatial reconstruction quality of reconstructed images. PSNR is defined as the
ratio between the maximum power of a signal and the power of residual errors. The PSNR of the ith
band is defined as

PSNR(xi, x̂i) = 10 · log10

(
max(xi)

2

‖xi − x̂i‖2
2/P

)
, (5)

where max(xi) is the maximum pixel value in the ith reference band image. A larger PSNR value
indicates a higher quality of spatial reconstruction (for identical data, the PSNR is infinite). If B > 1,
the average PSNR over all bands represents the quality index of the entire image.

3.2.2. SAM

The SAM index [44] is widely used to assess the spectral information preservation at each pixel.
SAM determines the spectral distortion by calculating the angle between two vectors of the estimated
and reference spectra. The SAM index at the jth pixel is defined as

SAM(xj, x̂j) = arccos

(
xT

j x̂j

‖xj‖2‖x̂j‖2

)
. (6)

The best value is zero. The average SAM value over all pixels represents the quality index of the
entire image.

3.2.3. ERGAS

ERGAS is a global statistical measure of the quality of the resolution-enhanced image [45] with
the best value at 0. ERGAS is defined as

ERGAS(X, X̂) = 100d

√√√√√ 1
B

B

∑
i=1

‖xi − x̂i‖2
2(

1
P 1T

Pxi

)2 , (7)

where d is the GSD ratio defined as d =
√

Pl
P , Pl is the number of pixels of the LR image, and

1P = [1, ..., 1]T ∈ RP×1. ERGAS is the band-wise normalized root-mean-square error multiplied by the
GSD ratio to take the difficulty of the fusion problem into consideration.
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3.2.4. Q2n

The Q2n index [46] is a generalization of the universal image quality index (UIQI) [47] and an
extension of the Q4 index [35] to spectral images based on hypercomplex numbers. Wang and Bovik
proposed the UIQI (or the Q index) [47] to measure any image distortion as the product of three factors:
loss of correlation, luminance distortion, and contrast distortion. The UIQI between the reference
image (x) and the target image (y) is defined as

Q(x, y) =
σxy

σxσy

2x̄ȳ
x̄2 + ȳ2

2σxσy

σ2
x + σ2

y
(8)

where x̄ = 1
P ∑P

j=1 xj, ȳ = 1
P ∑P

j=1 yj, σx =
√

1
P ∑P

j=1(xj − x̄)2, σy =
√

1
P ∑P

j=1(yj − ȳ)2, and

σxy = 1
P ∑P

j=1(xj − x̄)(yj − ȳ). The three components in Equation (8) correspond to correlation,
luminance distortion, and contrast distortion, respectively. UIQI has been designed for monochromatic
images. To take into account spectral distortion additionally, the Q4 index has been developed for
four-band images based on modeling each pixel spectrum as a quaternion [35]. Q2n further extends
the Q4 index by modeling each pixel spectrum (xj) as a hypercomplex number, namely a 2n-ons
represented as

xj = xj,0 + xj,1i1 + xj,2i2 + ... + xj,2n−1i2n−1. (9)

Q2n can be computed by using the hypercomplex correlation coefficient, which jointly quantifies
spectral and spatial distortions [46].

4. Experiments on Optical Data Fusion

The proposed methodology is applied to the following three optical data fusion problems, namely,
MS pan-sharpening, HS pan-sharpening, and HS-MS fusion. The fusion results are evaluated both
visually and quantitatively using quality indices.

4.1. Data Sets

4.1.1. MS Pan-Sharpening

Two semi-real MS-PAN data sets were simulated from WorldView-3 images. Brief descriptions of
the two data sets are given below.

• WorldView-3 Sydney: This data set was acquired by the visible and near-infrared (VNIR)
and PAN sensors of WorldView-3 over Sydney, Australia, on 15 October 2014. (Available
Online: https://www.digitalglobe.com/resources/imagery-product-samples/standard-satellite-
imagery). The MS image has eight spectral bands in the VNIR range. The GSDs of the MS-PAN
images are 1.6 m and 0.4 m, respectively. The study area is a 1000 × 1000 pixel size image at the
resolution of the MS image, which includes parks and urban areas.

• WorldView-3 Fukushima: This data set was acquired by the VNIR and PAN sensors of
WorldView-3 over Fukushima, Japan, on 10 August 2015. The MS image has eight spectral
bands in the VNIR range. The GSDs of the MS-PAN images are 1.2 m and 0.3 m, respectively.
The study area is a 1000×1000 pixel size image at the resolution of the MS image taken over a
town named Futaba.

MS-PAN data sets are simulated based on the semi-real data evaluation in Section 3.1.2. Spatial
simulation is performed to generate the LR versions of the two images using an isotropic Gaussian
point spread function (PSF) with an FWHM of the Gaussian function equal to the downscaling factor.
For each data set, two synthetic data sets with different GSD ratios (four and eight) were simulated.
A GSD of eight was considered for two reasons: (1) to investigate the robustness of the proposed
method against the GSD ratio; (2) to conduct parameter sensitivity analysis with different GSD ratios
in Section 4.2.4.

https://www.digitalglobe.com/resources/imagery-product-samples/standard-satellite-imagery
https://www.digitalglobe.com/resources/imagery-product-samples/standard-satellite-imagery
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4.1.2. HS Pan-Sharpening

Two synthetic HS-PAN data sets were simulated from airborne HS images. Brief descriptions of
the two data sets are given below.

• ROSIS-3 University of Pavia: This data was acquired by the reflective optics spectrographic
imaging system (ROSIS-3) optical airborne sensor over the University of Pavia, Italy, in 2003.
A total of 103 bands covering the spectral range from 0.430 to 0.838 µm are used in the experiment
after removing 12 noisy bands. The study scene is a 560 × 320 pixel size image with a GSD of
1.3 m.

• Hyperspec-VNIR Chikusei: The airborne HS data set was taken by Headwall’s Hyperspec-
VNIR-C imaging sensor over agricultural and urban areas in Chikusei, Ibaraki, Japan, on 19 July
2014. The data set comprises 128 bands in the spectral range from 0.363 to 1.018 µm. The study
scene is a 540 × 420 pixel size image with a GSD of 2.5 m. More detailed descriptions regarding
the data acquisition and processing are given in [48].

HS-PAN data sets are simulated using a version of Wald’s protocol presented in [25]. The PAN
image is created by averaging all bands of the original HS image, assuming a uniform spectral response
function for simplicity. Spatial simulation is performed to generate the LR-HS image using an isotropic
Gaussian PSF with an FWHM of the Gaussian function equal to the GSD ratio between the input
HS-PAN images. A GSD ratio of five is used for both data sets.

4.1.3. HS-MS Data Fusion

Two synthetic HS-MS data sets are simulated from HS images taken by the airborne
visible/infrared imaging spectrometer (AVIRIS). Brief descriptions of the two HS images are
given below.

• AVIRIS Indian Pines: This HS image was acquired by the AVIRIS sensor over the Indian Pines
test site in northwestern Indiana, USA, in 1992 [49]. The AVIRIS sensor acquired 224 spectral
bands in the wavelength range from 0.4 to 2.5 µm with an FWHM of 10 nm. The image consists of
512 × 614 pixels at a GSD of 20 m. The study area is a 360 × 360 pixel size image with 192 bands
after removing bands of strong water vapor absorption and low SNRs.

• AVIRIS Cuprite: This data set was acquired by the AVIRIS sensor over the Cuprite mining district
in Nevada, USA, in 1995. (Available Online: http://aviris.jpl.nasa.gov/data/free_data.html). The
entire data set comprises five reflectance images and this study used one of them saved in the file
named f970619t01p02_r02_sc03.a.rfl. The full image consists of 512 × 614 pixels at a GSD of 20 m.
The study area is a 420 × 360 pixel size image with 185 bands after removing noisy bands.

HS-MS data sets are simulated using a version of Wald’s protocol presented in [41]. Spectral
simulation is performed to generate the MS image by degrading the reference image in the spectral
domain, using the spectral response functions of WorldView-3 as filters. Spatial simulation is carried
out to generate the LR-HS image using an isotropic Gaussian PSF with an FWHM of the Gaussian
function equal to the GSD ratio between the input HS-MS images. GSD ratios of six and five are
used for the Indian Pines and Cuprite data sets, respectively. After spectral and spatial simulations,
band-dependent Gaussian noise was added to the simulated HS-MS images. For realistic noise
conditions, an SNR of 35 dB was simulated in all bands.

4.2. Results

4.2.1. MS Pan-Sharpening

The proposed method is compared with three benchmark pan-sharpening methods—namely,
Gram-Schmidt adaptive (GSA) [6], SFIM [7], and generalized Laplacian pyramid (GLP) [8]. GSA is based on

http://aviris.jpl.nasa.gov/data/free_data.html
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component substitution, and SFIM and GLP are MRA-based methods. GSA and GLP showed great
and stable performance for various data sets in a recent comparative study in [3].

The upper images in Figure 3 show the color composite images of the reference and pan-sharpened
images for the Fukushima data set with a GSD ratio of four. The lower images in Figure 3 present
the error images of color-composites relative to the reference after contrast stretching, where gray
pixels mean no error and colored pixels indicate local spectral distortion. From the enlarged images,
we observe that TGMS mitigates errors in boundaries of objects. For instance, blurring and mixing
effects are visible around bright buildings in the results of GLP, whereas the proposed method reduces
such artifacts. In the third enlarged images of the WorldView-3 Fukushima data set for GSA, SFIM,
and GLP, artifacts can be seen in the stream: the center of the stream is bright while its boundaries
with grass regions are dark. TGMS overcomes these artifacts and shows visual results similar to the
reference image.

Reference GSA SFIM GLP TGMS
N

0
10

0 
m

Figure 3. (Upper) Color composites of reference, GSA, SFIM, GLP, and TGMS images with two
enlarged regions from left to right columns, respectively, for 300× 300 pixels sub-areas of WorldView-3
Fukushima data ( c©DigitalGlobe). (Lower) Error images relative to the reference data visualized by
differences of color composites.

Table 3 summarizes the quality indices obtained by all methods under comparison for both
data sets with the two cases of the GSD ratio. TGMS shows the best or second-best indices for all
pan-sharpening problems. In particular, the proposed method demonstrates the advantage in the
spectral quality measured by SAM. Although the differences of SAM values between TGMS and the
other methods are small, they are statistically significant as the p-values of the two-sided Wilcoxon rank
sum test for SAM values are all much less than 0.05. Furthermore, TGMS shows robust performance
against the GSD ratio. In general, the quality of pan-sharpened images decreases as the GSD ratio
increases, as shown in Table 3. The performance degradation of TGMS is smaller than those of the
other methods for most of the indices. Note that all data sets include misregistration between the MS
and PAN images due to the different imaging systems. GSA shows the best results in some indices
because of its higher robustness against misregistration than MRA-based algorithms [2].



Remote Sens. 2017, 9, 316 11 of 19

Table 3. Quality indices for WorldView-3 Sydney and Fukushima Data Sets.

Data Set WorldView-3 Sydney

GSD Ratio 4 8

Method PSNR SAM ERGAS Q8 PSNR SAM ERGAS Q8

GSA 30.5889 7.0639 4.8816 0.84731 29.5442 8.9376 2.7818 0.80189
SFIM 30.284 7.4459 4.9078 0.80717 29.0397 9.3161 2.8346 0.75794
GLP 30.0165 7.5339 5.0067 0.819 28.634 9.7685 2.9399 0.76188

TGMS 30.5383 7.061 4.8447 0.84063 29.3084 8.8521 2.7895 0.79366

Data Set WorldView-3 Fukushima

GSD Ratio 4 8

Method PSNR SAM ERGAS Q8 PSNR SAM ERGAS Q8

GSA 35.2828 3.5409 2.1947 0.86497 32.6051 5.3814 1.5341 0.7814
SFIM 34.4099 3.5878 2.2865 0.82623 31.9744 5.1626 1.5426 0.7534
GLP 34.9059 3.4938 2.162 0.84492 32.1053 5.2448 1.5273 0.76752

TGMS 35.2873 3.2785 2.0986 0.86442 32.5916 4.9253 1.4623 0.78618

4.2.2. HS Pan-Sharpening

Like the pan-sharpening experiments, the proposed method is compared with GSA, SFIM, and
GLP. GLP was one of the high-performance methods in a recent review paper on HS pan-sharpening,
followed by SFIM and GSA [25].

Figure 4 shows the visual results for the Hyperspec-VNIR Chikusei data set: the color composite
images of the reference and pan-sharpened images in the upper and the color-composite error images
in the lower. Similar to the results of pan-sharpening, errors in boundaries of objects obtained by
TGMS are smaller than those of the other methods, as can be seen in the enlarged color-composite
error images. For instance, the advantage of TGMS is observed in the boundaries of the stream and the
white buildings in the first and second enlarged images, respectively.

Reference GSA SFIM GLP TGMS
N

0
20

0 
m

Figure 4. (Upper) Color composites of reference, GSA, SFIM, GLP, and TGMS images with two enlarged
regions from left to right columns, respectively, for 300 × 300 pixels sub-areas of Hyperspec-VNIR
Chikusei data. (Lower) Error images relative to the reference data visualized by differences of
color composites.

Table 4 summarizes the quality indices obtained by all methods under comparison for both data
sets. TGMS clearly outperforms the other methods for both problems, showing the best results in all
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indices. The advantage of TGMS over the comparison methods in the quantitative assessment is larger
than that observed in the MS pan-sharpening experiments.

Table 4. Quality indices for ROSIS-3 University of Pavia and Hyperspec-VNIR Chikusei Data Sets.

ROSIS University of Pavia Hyperspec-VNIR Chikusei

Method PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

GSA 31.085 6.8886 3.6877 0.63454 33.8284 6.9878 4.7225 0.81024
SFIM 31.0686 6.7181 3.6715 0.60115 34.5728 6.409 4.3559 0.84793
GLP 31.6378 6.5862 3.4586 0.6462 33.9539 7.201 4.6249 0.81834

TGMS 31.8983 6.2592 3.3583 0.6541 35.3262 6.1197 4.0381 0.86051

4.2.3. HS-MS Fusion

The proposed method is compared with three HS-MS fusion methods based on GSA, SFIM,
and GLP, respectively. GSA is applied to HS-MS fusion by constructing multiple image sets for
pan-sharpening subproblems where each set is composed of one MS band and corresponding HS bands
grouped by correlation-based analysis. SFIM and GLP are adapted to HS-MS fusion by hypersharpening,
which synthesizes an HR image for each HS band using a linear regression of MS bands via least
squares methods [31]. Here, these two methods are referred to as SFIM-HS and GLP-HS.

Figure 5 presents visual results for the two data sets. All methods considered in this paper show
good visual results, and it is hard to visually discern the differences between the reference and fused
images from the color composites. The errors of the fusion results are visualized by differences of
color composites (where gray pixels mean no fusion error and colored pixels indicate local spectral
distortion) and SAM images. The results of TGMS are very similar to those of SFIM-HS and GLP-HS.

Table 5 shows the quality indices obtained by all methods under comparison for both data sets.
TGMS demonstrates comparable or better results for both data sets compared to those of the other
methods. More specifically, PSNR, SAM, and ERGAS values obtained by the proposed method are the
second-best for the Indian Pines data set, while these values are the best for the Cuprite data set.

Table 5. Quality indices for AVIRIS Indian Pines and Cuprite Data Sets.

AVIRIS Indian Pines AVIRIS Cuprite

Method PSNR SAM ERGAS Q2n PSNR SAM ERGAS Q2n

GSA 40.0997 0.96775 0.44781 0.95950 39.2154 0.98265 0.37458 0.98254
SFIM-HS 40.7415 0.84069 0.40043 0.91297 40.8674 0.79776 0.31375 0.97017
GLP-HS 41.2962 0.82635 0.37533 0.95236 40.8240 0.80250 0.31570 0.97838
TGMS 40.8867 0.83001 0.39279 0.9187 40.9704 0.78922 0.30984 0.97852

4.2.4. Parameter Sensitivity Analysis

In Sections 4.2.1 and 4.2.2, since the input MS-PAN images are co-registered well, the simplified
version of texture-guided filtering was used as mentioned in Section 2.4. If there is any misregistration
between the input images, the parameter σ is the most important parameter for the proposed method.
Here, we analyze the sensitivity of TGMS to the change of σ in case the input images are not accurately
co-registered, using pan-sharpening problems as examples. Two cases of global misregistration,
namely, 0.25 and 0.5 pixels in the lower resolution, are simulated for both data sets with the two
scenarios of the GSD ratio.

Figure 6a,b plots the PSNR and SAM performance as a function of σ under four different scenarios
for the WorldView-3 Sydney and Fukushima data sets, respectively. We can observe the optimal range
of σ for the maximum SAM value of each pan-sharpening problem. When σ increases, there is a
trade-off between the spatial and spectral quality: both PSNR and SAM increase. Considering the
optimal range of σ for SAM and the trade-off between PSNR and SAM regarding σ, we found that the
range of 0.1 ≤ σ ≤ 1 is effective for dealing with misregistration.
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Figure 5. HS-MS fusion results for AVIRIS (a) Indian Pines and (b) Cuprite data sets. (1st row) Color
composites of reference, GSA, SFIM-HS, GLP-HS, and TGMS images are displayed for a 240× 240 pixels
sub-area. Bands used for red, green, and blue are 2.20, 0.80, and 0.46 µm for Indian Pines data and 2.20,
1.6, and 0.57 µm for Cuprite data. Error images relative to the reference data visualized by differences
of color composites (2nd row) and SAM images (3rd row).
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Figure 6. Sensitivity to the parameter σ measured by PSNR (upper row) and SAM (lower row) for
WorldView-3 (a) Sydney and (b) Fukushima data sets. Different columns indicate the results with
various combinations of the GSD ratio and the degree (pixel) of misregistration at low resolution.
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5. Experiments on Multimodal Data Fusion

This section demonstrates applications of the proposed methodology to three multimodal data
fusion problems: optical-SAR fusion, LWIR-HS-RGB fusion, and DEM-MS fusion. The parameter σ

was set to be 0.3 according to the parameter sensitivity analysis in Section 4.2.3. The fusion results are
qualitatively validated.

5.1. Data Sets

• Optical-SAR fusion: This data set is composed of Landsat-8 and TerraSAR-X images taken over
the Panama Canal, Panama. The Landsat-8 image was acquired on 5 March 2015. Bands 1–7
at a GSD of 30 m are used for the LR image of multisensor superresolution. The TerraSAR-X
image was acquired with the sparing spotlight mode on 12 December 2013, and distributed
as the enhanced ellipsoid corrected product at a pixel spacing of 0.24 m. (Available Online:
http://www.intelligence-airbusds.com/en/23-sample-imagery). To reduce the speckle noise,
the TerraSAR-X image was downsampled using a Gaussian filter for low-pass filtering so that
the pixel spacing is equal to 3 m. The study area is a 1000 × 1000 pixel size image at the higher
resolution. The backscattering coefficient is used for the experiment.

• LWIR-HS-RGB fusion: This data set comprises LWIR-HS and RGB images taken over an urban
area near Thetford Mines in Québec, Canada, simultaneously on 21 May 2013. The data set was
provided for the IEEE 2014 Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest
by Telops Inc. (Québec, QC, Canada) [50]. The LWIR-HS image was acquired by the Hyper-Cam,
which is an airborne LWIR-HS imaging sensor based on a Fourier-transform spectrometer, with
84 bands covering the wavelengths from 7.8 to 11.5 µm at a GSD of 1 m. The RGB image was
acquired by a digital color camera at a GSD of 0.2 m. The study area is a 600 × 600 pixel size
image at the higher resolution. There is a large degree of local misregistration (more than one
pixel in the lower resolution) between the two images. The LWIR-HS image was registered to the
RGB image by a projective transformation with manually selected control points.

• DEM-MS fusion: The DEM-MS data set was simulated using LiDAR-derived DEM and HS data
taken over the University of Houston and its surrounding urban areas. The original data set
was provided for the IEEE 2013 GRSS Data Fusion Contest [51]. The HS image has 144 spectral
bands in the wavelength range from 0.4 to 1.0 µm with an FWHM of 5 nm. Both images consist
of 349 × 1905 pixels at a GSD of 2.5 m. The study area is a 344 × 500 pixel size image mainly
over the campus of the University of Houston. To set a realistic problem, only four bands in
the wavelengths of 0.46, 0.56, 0.66, and 0.82 µm of the HS image are used as the HR-MS image.
The DEM is degraded spatially using filtering and downsampling. Filtering was performed using
an isotropic Gaussian PSF with an FWHM of the Gaussian function equal to the GSD ratio, which
was set to four.

5.2. Results

In Figure 7a, the SAR image and the color composite images of interpolated MS and fused data are
shown from left to right. Spatial details obtained from the SAR image are added to the MS data while
keeping natural colors (spectral information). The fused image inherits mismatches between the two
input images (e.g., clouds and their shadows in the MS image and the ship in the SAR image). Note
that speckle noise will be problematic if a lower-resolution SAR image (e.g., TerraSAR-X StripMap
data) is used for the HR data source; thus, despeckling plays a critical role [35].

Figure 7b presents the RGB image, the interpolated 10.4 µm band of the input LWIR-HS data, and
that of the resolution-enhanced LWIR-HS data from left to right. The resolution-enhancement effect
can be clearly observed particularly from the enlarged images. Small objects that cannot be recognized
in the RGB image are smoothed out (e.g., black spots in the input LWIR-HS image).

http://www.intelligence-airbusds.com/en/23-sample-imagery
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(a) Optical-SAR fusion: TerraSAR-X (left), bicubic interpolation of Landsat-8 (middle), and the fusion result (right).
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(b) LWIR-HS-RGB fusion: RGB (left), bicubic interpolation of 10.4 µm band (middle), and the fusion result (right).
N

0
10

0 
m

(c) DEM-MS fusion: RGB (left), bicubic interpolation of DEM (middle), and the fusion result (right).

Figure 7. Multisensor superresolution results. (a) Fusion of MS-SAR images: TerraSAR-X with the
staring stoplight mode downsampled at 3-m GSD, bicubic interpolation of Landsat-8 originally at 30-m
GSD, and resolution-enhanced Landsat-8 from left to right. (b) Fusion of LWIR-HS-RGB images: RGB
at 0.2-m GSD, bicubic interpolation of 10.4 µm band originally at 1-m GSD, and resolution-enhanced
10.4 µm band from left to right. (c) Fusion of DEM-MS images: RGB at 2.5-m GSD, bicubic interpolation
of DEM originally at 10-m GSD, and resolution-enhanced DEM from left to right.

In Figure 7c, the color composite of the MS image, the interpolated DEM, and the
resolution-enhanced DEM are shown from left to right. It can be seen that the edges of buildings are
sharpened. Some artifacts can also be observed. For instance, the elevation of pixels corresponding
to cars in the parking lot located south of the triangular building (shown in the second enlarged
image) is overestimated. The Q index of the resolution-enhanced DEM is 0.9011, whereas those of
interpolated DEMs using nearest neighbor and bicubic interpolation are 0.8787 and 0.9009, respectively.



Remote Sens. 2017, 9, 316 16 of 19

The difference in the Q index between the result of TGMS and the interpolated ones is not large, even
though the result of TGMS clearly demonstrates the resolution-enhancement effect. This result is due
to local misregistration between the original DEM and HS images. The interpolated DEMs are spatially
consistent with the reference DEM, whereas the fused DEM is spatially biased to the input MS image.

6. Discussion

This paper proposed a new methodology for multisensor superresolution. The author’s
attention was concentrated on establishing a methodology that is applicable to various multisensor
superresolution problems, rather than focusing on a specific fusion problem to improve reconstruction
accuracy. The originality of the proposed technique lies in its high general versatility.

The experiments on six different types of fusion problems showed the potential of the proposed
methodology for various multisensor superresolution tasks. The high general versatility of TGMS is
achieved based on two concepts.

The first concept is, if the LR image has multiple bands, to preserve the shapes of the
original feature vectors for the resolution-enhanced image by creating new feature vectors as linear
combinations of those at local regions in the input LR image, while spatial details are modulated
by scaling factors. This concept was inspired by intensity modulation techniques (e.g., SFIM [7])
and bilateral filtering [52]. The effectiveness of the first concept was evidenced by the high spectral
performance of TGMS in the experiments on optical data fusion. TGMS does not generate artifacts
having unrealistic shapes of feature vectors even in the case of multimodal data fusion owing to
this concept.

The second concept is to improve the robustness against spatial mismatches (e.g., local
misregistration and GSD ratio) between input images by exploiting spatial structures and image
textures in the HR image via MGD and texture-guided filtering. In the case of multimodal data
fusion, local misregistration is very troublesome as discussed in the context of image registration [53].
The experimental results on multimodal data fusion implied that this problem could be handled by
TGMS owing to the second concept.

In the experiments on optical data fusion, TGMS showed comparable or superior results in both
quantitative evaluation and visual evaluation compared with the benchmark techniques. In particular,
the proposed method clearly outperformed the other algorithms in HS pan-sharpening. This finding
suggests that the concepts mentioned above are suited to the problem setting of HS pan-sharpening,
where we need to minimize spectral distortions and avoid spatial over- or under-enhancement. These
results are in good agreement with other studies which have shown that a vector modulation-based
technique is useful for HS pan-sharpening [54].

The proposed method was assessed mainly by visual analysis for multimodal data fusion because
there is no benchmark method and also no evaluation methodology has been established. The visual
results of multimodal data fusion suggested a possible beneficial effect of TGMS sharpening boundaries
of objects recognizable in the LR image using spatial structures and image textures. Note that the
results of multimodal data fusion are not conclusive and its evaluation methodology remains an
open issue. TGMS assumes proportionality of pixel values between the two input images after data
transformation of the HR image. The main limitation of the proposed method is that spatial details at
each object level can include artifacts in pixel-wise scaling factors if this assumption does not hold at
local regions or objects. For instance, water regions of the optical-SAR fusion result are noisy as shown
in the enlarged images on the right of Figure 7a. If one region is spatially homogeneous or flat, scaling
factors for vector modulation can be defined by SNRs. Since water regions in the SAR image have low
SNRs, the noise effect was added to the fusion result.

7. Conclusions and Future Lines

This paper proposed a novel technique, namely texture-guided multisensor superresolution (TGMS),
for enhancing the spatial resolution of an LR image by fusing it with an auxiliary HR image. TGMS is
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based on MRA, where the high-level component is obtained taking object structures and HR texture
information into consideration. This work presented experiments on six types of multiresolution
superresolution problems in remote sensing: MS pan-sharpening, HS pan-sharpening, HS-MS fusion,
optical-SAR fusion, LWIR-HS-RGB fusion, and DEM-MS fusion. The quality of the resolution-enhanced
images was assessed quantitatively for optical data fusion compared with benchmark methods and
also evaluated qualitatively for all problems. The experimental results demonstrated the effectiveness
and high versatility of the proposed methodology. In particular, TGMS presented high performance in
spectral quality and robustness against misregistration and the resolution ratio, which make it suitable
for the resolution enhancement of upcoming spaceborne HS data.

Future work will involve investigating efficient and fast texture descriptors suited to remotely
sensed images. Clearly, research on quantitative evaluation methodology for multimodal data fusion
is still required.
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