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Abstract: This paper presents an automated and effective framework for classifying airborne laser 
scanning (ALS) point clouds. The framework is composed of four stages: (i) step-wise point cloud 
segmentation, (ii) feature extraction, (iii) Random Forests (RF) based feature selection and 
classification, and (iv) post-processing. First, a step-wise point cloud segmentation method is 
proposed to extract three kinds of segments, including planar, smooth and rough surfaces. Second, 
a segment, rather than an individual point, is taken as the basic processing unit to extract features. 
Third, RF is employed to select features and classify these segments. Finally, semantic rules are 
employed to optimize the classification result. Three datasets provided by Open Topography are 
utilized to test the proposed method. Experiments show that our method achieves a superior 
classification result with an overall classification accuracy larger than 91.17%, and kappa coefficient 
larger than 83.79%. 

Keywords: airborne laser scanning; point cloud segmentation; random forests; feature extraction; 
feature selection; semantic 

 

1. Introduction 

Commercial Airborne Laser Scanning (ALS) systems emerged in the mid-1990s for bathymetric 
and topographic applications. With the aid of direct geo-referencing technique, laser scanning 
equipment installed in the aircraft collect a cloud of laser range measurements for calculating the 3D 
coordinates (xyz) of the survey area [1]. In contrast to the 2D remote sensing imagery, an ALS point 
cloud is a swarm of points with XYZ coordinates [2], and thus describes the 3D topographic profiles 
of natural surfaces. Moreover, ALS point clouds have other benefits such as no effects of relief 
displacement, penetration of vegetation, and insensitivity to lighting conditions [1]. Therefore, ALS 
technique has been effectively used for ground point detection [3–7], topographic mapping [8], 3D 
city modelling [9–13], object recognition [14–16], solar energy estimation [17], etc. 

Over the last two decades, significant contributions to the consolidation and extension of ALS 
data processing methods have been witnessed [1]. Among these processing methods, classifying the 
ALS data into categorical object instances is the first and most critical step for further data processing 
and model reconstruction [18]. Based on the granularity of basic processing units, these existing 
classification strategies can be categorized into three groups, i.e., point-based classification [18–20], 
segment-based classification [21–24], and multiple-entity-based classification [25]. A brief description 
of these existing methods is provided as follows. 
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1.1. Strategies for ALS Data Classification 

1.1.1. Point-Based Classification 

This kind of classification has attracted the most majority of research works in contrast to the 
other two kinds of classification strategies. In the process of point-based classification, ALS features 
of individual points [19] are firstly extracted. Then a classifier such as JointBoost [18] is trained using 
a number of selected training samples. Finally, the input ALS point cloud is classified via the trained 
classifier and the extracted features. 

Additionally, to compute the features of individual points, a respective neighborhood definition 
is required to describe the local 3D structure around each individual point. Generally, there are three 
kinds of neighborhoods, i.e., spherical neighborhood [26], cylindrical neighborhood [27], and -
closest neighborhood [28]. Among the three neighborhoods, the scale parameter, either a fixed radius 
or a constant value , is required. Due to the variation of local 3D structures and point densities, the 
constant scale parameter often fails to describe the local structural configurations. Thus, more and 
more studies such as [18,29–34] focus on seeking an optimal neighborhood size for each individual 
point. Unfortunately, these neighborhood optimization methods require repetitive calculations of 
eigenvectors and eigenvalues for each point, therefore they are rather time-consuming [35], which is 
the main disadvantage of this kind of classification. 

1.1.2. Segment-Based Classification 

Point cloud segmentation has been involved in ALS point cloud classification since its 
emergence. Generally, segment-based classification methods first perform segmentation on the point 
cloud after removing the ground points [21]. Then, the non-ground points are segmented into a 
number of segments, and features are extracted for each segment. Finally, a fuzzy model classifier 
[21,36] or several classification rules [22,24] are utilized to classify the segments. However, most of 
these studies are for non-ground points, and none of them uses Random Forests (RF) for feature 
selection and classification. 

In addition, segment-based classification relies heavily on its employed segmentation method. 
A variety of point cloud segmentation methods have been proposed, which can be roughly classified 
as model-fitting-based methods, region-growing-based (RG-based) methods, and clustering-feature-
based methods [37]. However, these existing methods segment input 3D point clouds into only one 
type of geometric structure. Actually, point clouds consist of a variety of geometric structures, such 
as planes, smooth surfaces and rough surfaces. In a complex 3D scene, there may exist regular and 
irregular man-made objects, and natural objects. Regular man-made objects such as buildings are 
composed of planar surfaces and smooth surfaces, while irregular man-made objects such as cars and 
natural objects like trees are composed of rough surfaces. 

Therefore, segmenting point clouds into only one type of geometric structure is unreasonable. 
For example, existing planar segmentation methods segment all the points in an input point cloud 
into planes. If points are on building roofs, these methods are logical and perform well, however, if 
the points are on trees or cars, these methods which roughly segment these points into false planes 
are illogical. To obtain a superior classification result, we should consider a query point’s geometric 
structure, and then segment it into a planar surface, smooth surface, or rough surface. 

Although the aforementioned limitations exist, segment-based methods still have two main 
benefits in contrast to point-based classification methods, i.e., (i) segments are helpful to compute 
geometric features which relieve the dependence on neighborhood optimization [18,34] methods, 
and (ii) segments give several new attributes which are helpful to employ semantic rules. 

1.1.3. Multiple-Entity-Based Classification 

Multiple-entity-based classification [25] is considered as a combination of the segment-based 
and point-based classification. To solve the problem that a complex 3D scene is difficult to be 
characterized by only individual points or one kind of segments, this method utilizes three kinds of 
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entities, i.e., points, planar segments, mean shift segments. In the process of classification, the input 
ALS point cloud is first divided into ground points and non-ground points. Next, planar segments 
are extracted from the non-ground points, and the scattered points are remained. Then, the planar 
segments are classified into several classes. The remained points are point-wise classified based on 
the contextual information offered by the classified planar segments. Finally, in complex areas where 
vegetation covers building roofs, mean shift segments are extracted to classify these areas. 

However, the process of this method is a hierarchical classification procedure, which involves 
many steps. Besides, the mean shift segments and planar segments are derived from different 
segmentation methods, which adds additional classification steps. To simplify the classification process, 
a point cloud segmentation method that is able to extract more than one kind of segments is required. 

These above three strategies have two common elements, including feature extraction and 
classifiers. Therefore, we present a brief description of both them as follows. 

1.2. Feature Extraction 

There are three main groups of features for ALS point cloud classification, i.e., reflectance-based 
features, descriptor-based features, and geometric features. 

 The reflectance-based features are often related to the intensity [38] and echo [18] recorded by 
scanner systems. Therefore, the distinctiveness of this kind of features relies heavily on the 
quality of the scanner’s signal. 

 The descriptor-based features often employ spin images [39], shape distributions [40], 
histograms [41–43] to characterize a local 3D neighborhood. For all these descriptor-based 
features, a single object of the resulting feature vector is hardly interpretable [20]. 

 Common geometric features are height-based features [19], eigenvalue-based features [19,36], 
projection-area-based features [18,39], surface-based features [18], etc. Specifically, the 
eigenvalue-based features derived from the 3D structure tensor which is represented by the 3D 
covariance matrix derived from the 3D coordinates of all points within a local neighborhood, are 
discriminative in a variety of classification approaches. In contrast, the geometric features are 
deeply studied and widely used by state-of-the-art methods. 

Most existing studies often compute as many features as possible to obtain a superior 
classification result. When a large number of features are extracted, some of them may be redundant. 
These redundant features not only increase the computational burden, but also waste the memory 
space. Therefore, recent studies introduce a feature selection procedure [19,20,38,44] as an additional 
step between feature extraction and classification steps. 

1.3. Classifiers for ALS Data Classification 

In the classification stage, many studies have tried locally independent classifiers, such as 
Support Vector Machine (SVM) [45], Adaptive Boosting (AdaBoost) [46], Expectation Maximum (EM) 
[47], RF [48,49], JointBoost [18], etc. The fundamental idea is to train a classifier by using given 
training samples which is used for prediction later [20]. Specifically, due to the excellent performance, 
the RF classifier [50] has received increasing attention [51]. Some studies [19,20,34,38] have looked 
into the potential of the RF classifier to improve urban objects classification and select uncorrelated 
features for ALS point clouds. 

However, the integration of RF and the segment-based classification is rarely studied, as well as 
the importance analysis of segment features. In addition, the robustness of the classification methods 
is rarely analyzed when noises exist in the extracted features. 

In this paper, we focus on the segment-based classification due to its advantages over the point-
based classification. To address the aforementioned problems, we design a segment-based 
classification framework. This framework has three improvements compared to the existing 
methods: 
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(1) A novel point cloud segmentation method is proposed. This method clusters the points with 
regular neighborhoods into planar and smooth surfaces, and the points with scattered 
neighborhoods into rough surfaces. 

(2) RF is integrated with the segment-based classification to select features and perform 
classification. The integration of RF and the segment-based classification improves the 
robustness of ALS point cloud classification. 

(3) Semantic rules are employed to optimize the classification result. The semantic rules are more 
convenient to be detected when we process segments. 

The outline of this paper is shown as follows. Section 2 presents the methodology of our 
proposed classification framework which contains a novel point cloud segmentation method, feature 
extraction based on segments, the integration of RF and segment-based classification, and post-
processing based on semantic rules. The experiments and discussions are presented in Section 3, 
followed by Section 4 which summarizes the uncertainties, errors and accuracies of the proposed 
classification framework. The research conclusions are presented in Section 5. 

2. Methodology 

The proposed classification framework is composed of four stages as shown in Figure 1. First of 
all, a step-wise point cloud segmentation method which is able to cluster points with different 
neighborhoods into different geometric structures is proposed (see Section 2.1). Next, a segment rather 
than an individual point is considered as the basic processing unit for feature extraction (see Section 
2.2). Then, we employ RF to select uncorrelated features based on a backward elimination method [52], 
and improve the robustness of ALS point clouds classification (see Section 2.3). Finally, we utilize 
semantic rules to optimize the classification result in the post-processing stage (see Section 2.4). 

 
Figure 1. The proposed framework for airborne laser scanning (ALS) point cloud classification. 

2.1. Step-Wise Point Cloud Segmentation 

The proposed point cloud segmentation method is a RG-based one, and it clusters the points 
into planar surfaces, smooth surfaces, or rough surfaces. 

Our segmentation procedure consists of three steps: region growing (RG) with RANdom 
SAmple Consensus (RANSAC), scattered points clustering, and small segments merging (see 
Figure 2). The first step extracts planar and smooth surfaces, and recognizes scattered points from the 
input point cloud. Then, the scattered points clustering step extracts rough surfaces from the scattered 
points. At last, an optional step is performed to merge small segments. 
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It is notable that rough surfaces are separated from the other types of segments by the 
aforementioned steps. However, planar surfaces and smooth surfaces are not distinguished when we 
extract them in RG with RANSAC step. For the application of semantic recognition, planar surfaces 
and smooth surfaces are easily to be distinguished by their curvatures. In this study, the feature 
extraction, and the RF-based feature selection and classification stages perform without 
distinguishing these three types of segments. 

 
Figure 2. The flowchart of the step-wise point cloud segmentation. 

2.1.1. RG with RANSAC 

The plane-based RANSAC algorithm is widely used in point cloud segmentation tasks [53]. 
However, there is rare study employing RANSAC to improve RG-based segmentation methods. 

To extract planar surfaces, two difficulties should be overcome for a RG-based method, i.e., non-
optimal segmentations around edges where two surfaces meet [54], and the detection of small or 
narrow planes [55]. The integration of RANSAC and RG is able to solve both problems. In addition, 
we utilize a smooth RG procedure, which is able to extract smooth surfaces simultaneously. 

There are three substeps in the RG with RANSAC step, i.e., normal estimation, RG with 
redefined constraints, and small segment elimination. 

(1) Normal estimation 

We employ RANSAC-Normal [56] to the RG-based method. Our previous approach [56] 
has validated that the RANSAC-Normal is efficient to extract a suitable plane from a complex 
neighborhood with intersecting surfaces. This procedure first determines the  neighbors of 
the -th query point , then fits a local plane based on the RANSAC algorithm, and finally, 
defines the normal of the fitted plane as the RANSAC-Normal. 

In addition, during the normal estimation procedure, a number of scattered points are 
detected, and they are stored in a scattered point set . The pseudo code which shows details 
of this procedure, is presented in Algorithm 1. The parameter  is utilized to determine how 
many neighbors of a query point will be detected in Row 4. The parameter  is the threshold 
of the plane-based RANSAC algorithm, which is utilized in Row 5. 
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Algorithm 1. Normal estimation. 

Input: Point cloud={ }. Parameters:	 ,  

1: Regular point set { } ← ∅, Scattered point set { } ← ∅, Inlier Set { } ← ∅, Proportion Set { } ← ∅, 

Normal Set { } ← ∅ 

2: For = 0 to size ({ }) do 

3:   Select -th point  as the query point 

4:   Find  neighbors for   ← ( , , ) 
5:   Determine the inliers using plane-based RANSAC algorithm  { } ← ℬ( , ) 
6:   If ∈ { } then 

7:     Compute proportion of  to  neighbors  ← ( , ) 
8:     Normal estimation  ← ( ) 
9:     { } ← { } ∪ , { } ← { } ∪  

10:   Else then 

11:     { } ← { } ∪  

12:   End If 

13:   { } ← { } ∪ , { } ← { } ∪  

14: End For 

Output: { }, { }, { }, { }, { } 
Specifically, when plane-based RANSAC algorithm fits a local plane, it divides  

neighbors into inliers  and outliers (Row 5). The points in  are on the fitted plane. If the 
query point  is in , we compute a proportion  of the inliers  to the  neighbors 
(Row 7). 

Five sets ( , , , , ) are generated in Algorithm 1, and they are useful for the 
RG with redefined constraints. 

(2) RG with redefined constraints 

This procedure is similar to the RG method presented in [57]. However, two constraints 
(local connectivity and surface smoothness [57]) are redefined based on the plane-based 
RANSAC algorithm. 

 Constraint 1: local connectivity 

The points in a segment should be locally connected. In contrast to literature [57], we utilize 
the inliers  to optimize this constraint. If  is in , the points in  are local connective 
to it. Otherwise, there is no point local connective to . 

 Constraint 2: surface smoothness 

The points in a segment should locally make a smooth surface, whose RANSAC-Normals 
do not vary “too much” from each other. This constraint is expressed through dot product 
between normals: ‖ ∙ ‖ < ℎ , (1) 

where ℎ  is the threshold of the constraint,  is the normal of current seed, and  is the 
normal of a point which is local connective to the current seed. 

The pseudo code which shows details of the RG with redefined constraints procedure, is 
presented in Algorithm 2. The parameter ℎ  is utilized to restrict the dot product between 
normals in the Row 12 and its usage is presented in Formula (1). 
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Algorithm 2. RG with redefined constraints. 

Input: { }, { }, { }, { }. Parameters: ℎ  

1: Available point list { } ← {1,… , size( )} 
2: While { } is not empty do 

3:   Current segment (planar or smooth face) { } ← ∅, Current seeds { } ← ∅ 

4:   Find a point in { } with maximum   ← ℰ( , , ) 
5:   { } ← { } ∪ , { } ← { } ∪ , { } ← { }\  

6:   For j=0 to size({ }) do 

7:     Set j-th point in { } as current seed  

8:     Find Current inliers of   { } ← { }    (constraint 1) 

9:     For k=0 to size( ) do 

10:       Neighbor point index  ← ( ) 
11:      Compute cos ← Λ( { }, { }) 
12:      if { } contains  and cos < ℎ  then    (constraint 2) 

13:        { } ← { } ∪ , { } ← { }\ , { } ←	{ }∪  

14:      End If 

15:    End For 

16:  End For 

17:  { } ← { } ∪ { } 
18: End While 

Output: Planar and smooth surfaces { } 
Specifically, the constraint 1 is utilized in Row 8, and the constraint 2 is utilized in Row 12 

of Algorithm 2. 

(3) Small segment elimination 

If the point density of trees is dense, there may be some small segments (planar and smooth 
surfaces) in the tree areas. Therefore, we should remove these small segments from , and add 
the points in these small segments to . There is a parameter in this procedure, i.e., the 
minimum size threshold .  is expressed via the number of points in a segment. 

Specifically, The RG with RANSAC step divides the input 3D point cloud into two point sets. 
The first set is the regular point set , and the second set is the scattered point set . Points in  
are clustered into planar and smooth surfaces, and points in  are clustered into rough surfaces in 
the subsequent step. In the RG with RANSAC step, there are two procedures for dividing regular 
points and scattered points, which are shown as follows: 

 For a query point  in Algorithm 1, we first find  neighbors of it, and then plane-based 
RANSAC is performed to determine inliers  which is on the local fitted plane. If  is 
not in , it will be recognized as a scattered point. 

 When the Algorithm 2 is performed, regular points are recognized and clustered into a 
number of segments containing planar and smooth surfaces. There may be misjudgment if 
a planar or smooth surface is small enough. Therefore, the small segment should be 
removed and points in it will be recognized as scattered points. 

The result of the RG with RANSAC step is presented in Figure 3a. Points rendered in black are 
scattered points and other points are regular points. 
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(a)

(b)

(c)

Figure 3. Results of internal steps in the step-wise point cloud segmentation: (a) Intermediate result 
after the process of the region growing (RG) with RANdom SAmple Consensus (RANSAC) step. The 
scattered points are rendered in black; (b) Intermediate result after the process of the initial patch 
construction; (c) The result of the step-wise point cloud segmentation. 

2.1.2. Scattered Points Clustering 

In this step, the scattered points in  are first clustered into a number of initial patches, and 
then rough surfaces are extracted by growing these initial patches. The two substeps are detailed as 
follows: 

(1) Initial patch construction 

This substep is an iterative procedure. An initial patch is iteratively extracted from the 
scattered point set , until all the points in  have been traversed. There are two parameters 
in this procedure, i.e., the maximum size threshold  and the maximum distance threshold 

. The number of points in an initial patch has to be smaller than . Moreover, an initial 
patch has to satisfy the follow constraint: 
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max[( − ) + ( − ) + ( − ) ] < for = 1,… , 	. (2) 

where ( , , ) is a point in an initial patch, and ( , , ) is the centroid point of the initial 
patch. The details of this procedure is shown in Algorithm 3. To stabilize this procedure, the 
curvature of each point in { } is estimated. These points in { } are sorted according to their 
curvatures from minimum to maximum, and then are traversed in order. 

Algorithm 3. Initial patch construction. 

Input: Scattered point set { }. Parameters: ,  

1: Initial patch set { } ← ∅, Dirty indicator { } ← false, Covariance matrix set { } ← ∅ 

2: Estimate curvatures of the points in { } { } ← ( ) 
3: Sort { } from minimum to maximum, and obtain the sorted ID { } of each scattered point 

4: For = 0 to size ({ }) do 

5:   Select i-th point  as the query point 

6:   Find  nearest neighbors for  based on a kd-tree  { } ← ( , , { }) 
7:   Extract a subset of the  nearest neighbors based on the threshold   { } ← ℭ({ }, ) 
8:   For = 0 to size({ }) do 

9:     If { }( ) == true 

10:       Go to Row 4 

11:    End If 

12:  End For 

13:  { } ← { } ∪ { } 
14:  Update { } for all the points in { }  { } ← ({ }, { }) 
15: End For 

16: Merge non-dirty points to their nearest patch  { } ← ({ }, { }, ) 
17: Compute covariance matrix for each { } in { }  { } ← ({ }) 
18: Sort initial patches based on their determinants with descending order { } ← ( , ) 
19: Normalize covariance matrices { } ← ℌ( ) 
Output: { }, { }

As shown in Algorithm 3, the parameter  is utilized in Row 2 and 6 to determine how 
many neighbors of a query point will be detected for kd_tree search. The parameter  is 
utilized in Row 7 to restrict the distance between a neighbor and the query point. Only neighbors 
with the distance smaller than  are extracted to construct an initial patch. After all the 
initial patches are extracted, their covariance matrices are computed (Row 17). Let = ( , , ) 
for = 1,2, … , , be the points in an initial patch, the covariance matrix  is defined as: = ∑ ( − )( − ) , (3) 

where  is the mean vector of all the points in the patch. 
After all the covariance matrices are determined, these initial patches in  are sorted by 

the determinants of their covariance matrices. Finally, each covariance matrix is normalized by 
its determinant. The result of the initial patch construction is shown in Figure 3b. 

(2) Patch growing 

The patch growing is similar to the RG with redefined constraints procedure. Therefore, we 
do not present the pseudo code in the following. In this procedure, the growing unit is an initial 
patch rather than an individual point. Each initial patch is considered as a seed and grew in the 
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order obtained in the initial patch construction procedure (Row 18 of Algorithm 3). Two 
constraints for patch growing are defined as follows: 

 Constraint 1: local connectivity 

Only adjacent patches of the seed patch can be added into the current segment. 

 Constraint 2: geometrical similarity 

The geometrical difference  of two patches in a segment has to be smaller than a 
threshold ℎ .  is defined by using log Euclidean Riemannian metric [58] which measures 
how close two covariance matrices are. Given two covariance matrices  and ,  is 
computed as follows: = ‖log − log ‖ , (4) 

where log	(∙) is the matrix logarithm operator and ‖∙‖  is the Frobenius norm. 

After these two steps have been performed, points are clustered into three kinds of segments, 
i.e., planar, smooth, and rough surfaces. If small segments with a size smaller than the minimum size 
threshold  still exist, we merge them with their nearest neighbor segments. This step, which is 
an optimizing procedure, will iterate until all the segments are traversed. The result of the step-wise 
point cloud segmentation method is shown in Figure 3c. 

2.2. Employed Features and Their Calculation 

The difference of our method from the others is that we extract features of segments rather than 
individual points. Herein, we focus on four groups of geometric features, namely projection-area-
based ones [18], eigenvalue-based ones [19], elevation-based ones [18], and other ones. 

2.2.1. Projection-Area-Based Features 

Projection-area-based features are first proposed in [39], and then are applied to 3D point cloud 
classification [18]. In this paper, we borrow the idea from literature [18] which is shown in Figure 4. 
However, the difference of our method is that the basic processing unit is a segment rather than an 
individual point. A segment has no fixed size compared to the neighborhood of an individual point. 
Therefore, a larger segment has larger projection area than a smaller segment. This problem affects the 
distinctiveness of this kind of features. We define two ratios to overcome this problem. The first one is 
the tangent plane projection ratio , and the second one is the horizontal projection ratio . 

 
Figure 4. The calculation method of projection area [18]. 

 Tangent plane projection ratio  

First of all, a covariance matrix is computed from all points in a segment. The normal vector 
is determined via the eigenvector corresponding to the lowest eigenvalue and a new 2D 
coordinate system with two coordinate axis corresponding to the largest and middle 
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eigenvectors is constructed. Next, we project all the points in the segment along the normal 
direction into the coordinate system. The maximum and minimum coordinates in the coordinate 
system are determined, and a 2D grid is constructed by a given gird bin size. Then, we determine 
the number of non-bare bins that have projection points as the tangent plane projection area 

. Finally, the ratio  is defined as: = , (5) 

where  is the number of all bins in the 2D grid. 

 Horizontal projection ratio  

This feature extraction procedure is similar to that of the tangent plane projection ratio, but 
we select the direction parallel to the Z-axis as the normal direction. Next, we construct 2D grid 
in XY-plane, and then accumulate the number of non-bare bins as the horizontal projection area 

. Finally, the ratio  is defined as = / , where  is the number of all 
bins. Figure 5a depicts this feature. In this paper, the bin size is set to 0.2 m for both the two 
projection-area-based features. 

(a)

(b) 

Figure 5. Cont. 
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(c)

(d)

Figure 5. Segment-based features for 3D-point clouds classification, (a) horizontal projection area ratio 
; (b) eigenentropy ; (c) relative elevation ; (d) slope . 

2.2.2. Eigenvalue-Based Features 

Herein, the covariance matrix is first determined by a segment, and then a set of positive 
eigenvalues , , 	( 	 )  [19] and normalized eigenvalues = /∑  with ∈ {1,2,3} 
are computed. We employ ten eigenvalue-based features: highest eigenvalue , medium eigenvalue 

, lowest eigenvalue , linearity , planarity , scattering , anisotropy , omnivariance , 
eigenentropy  (see Figure 5b) and change of curvature . The latter seven features are computed 
as: 

= − , (6) 

= − , (7) 

= , (8) 

= − , (9) =  (10) 
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= − ln( ), (11) 

= + + . (12) 

2.2.3. Elevation-Based Features 

In this part, we define four elevation-based features, the latter three borrow the idea from the 
height-based features for individual points presented in [18]. 

 Relative elevation  

We first determine the adjacent segments for a query segment  in the XY-plane. 
Neighbors of all the points in  are searched in XY-plane by a kd_tree with a given distance 
threshold. The segments  for = 1,… ,  which contain the searched neighbors are the 
adjacent segments of . Next, a point  which is closest to  is determined in . Then, a 
point  which is closest to  is determined in , and  and  construct a neighboring 
point pair which represents the relationship between  and . Finally, the relative elevation 

 is defined as: = max − ( ) for = 1,… ,  (13) 

where  is the z-coordinate of , and ( ) is the z-coordinate of .  is shown in 
Figure 5c. 

 Elevation variance  

This feature  is the variance of elevation values of all points in each segment.  is 
computed as: 

= 1 ( − ) , = 1,… , , (14) 

where  is the total number of points in the segment,  is the average elevation of all points 
in the segment,  is the elevation of the -th point in the segment. 

 Elevation difference  

This feature is the difference between the highest elevation  and the lowest 
elevation  of a segment. In other words, the elevation difference  is computed as = − . 

 Normalized elevation  

This feature is the elevation difference between the centroid point and the lowest point of a 
segment. The normalized elevation  is defined as: = − , (15) 

where  is the elevation of the centroid point, and the  is elevation of the lowest 
point. 

2.2.4. Other features 

 Area  

The number of points in a segment is defined as area feature , which reflects the area of 
the segment. 

 Slope  



Remote Sens. 2017, 9, 288 14 of 34 

 

This feature  is computed as the included angle between the normal of a segment and a 
vertical vector.  is shown in Figure 5d. 

Overall, the extracted four groups of features are list in Table 1. 

Table 1. The extracted features. 

Features Sign
Projection-area-based features ,  

Eigenvalue-based features , , , , , , , , ,  
Elevation-based features , , , 

Others ,  

2.3. Random Forests Based Feature Selection and Classification 

2.3.1. Random Forests 

The RF classifier [50] is an ensemble of a set of decision trees. These trees in RF are created by 
drawing a subset of training data through a bagging approach. The bagging randomly selects about 
two thirds of the samples from a training data to train these trees. This means that the same sample 
can be selected several times, while others may not be selected at all [51]. Then, the remaining samples 
are used in an internal cross-validation technique for estimating performs of RF. In addition, the 
Weighted Random Forest [59] method is utilized for solving the imbalanced sample problem in RF. 

Two parameters, i.e., the number  of trees and the number  of features, are required 
for using a RF classifier. Then, each tree in RF is independently produced without any pruning. The 
number  of features is used for training each tree. Each node in a tree is split by selecting  
features from the d-dimensional input feature space at random. The splitting function usually uses 
Shannon entropy or Gini index as a measure of impurity. In prediction, each tree votes for a class 
membership for each test sample, the class with maximum votes will be considered as the final class. 

2.3.2. Feature Selection 

The objective of feature selection is to identify a small set of discriminative features that can still 
achieve a good predictive performance [19]. The RF provides a measure  of variable importance 
based on averaging the permutation importance measure of all the trees which is shown to be a 
reliable indicator [60]. The permutation importance measure is based on Out-Of-Bag (OOB) errors, 
and is utilized to select features.  

Herein, we use the variable importance measure in RF and the backward elimination method 
[52] to select features. The backward elimination method removes the most relevant features by 
iteratively fitting RF. In our approach, only one feature with the lowest importance value is 
eliminated at each iteration, and then a new forest is built by the remained  features. At the end 
of each iteration, we compute the mean decrease permutation accuracies [19]   for = 1…  
and rank the remained features by them. To measure the importance of the remained features at each 
iteration, the overall mean decrease permutation accuracy  is computed by averaging all the 
remained features’ importance values.  is computed as follow:  = 1 for = 1…  (16) 

where  corresponds to the iteration times, and  is the total number of iterations. The iterative 
procedure stops and all the RFs are fitted when  is equal to . 

After all the RFs are fitted, we computed the range  between the maximum and the minimum 
overall mean decrease permutation accuracies ( = max( ) 	 	 = 1… , 	 =min( ) 	 	 = 1… ). Then, we select a critical point according to the variation tendency of 

. In this paper, the principle of the selection is that the variation of  caused by the eliminated 
features should be lower than 20%, i.e., the critical point which divides the range  by a ratio of at 
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least 8:2 is selected. At last, we select the most important features according to the critical point and 
the backward elimination results. 

2.3.3. Supervised Classification 

After the feature selection, the training samples with selected feature set are utilized to train a 
RF classifier, and the classifier is used to predict the labels of unlabeled segments. 

2.4. Post-Processing 

There may be some misjudgments in the above initial classification results. Actually, both 
natural and artificial objects generally have been associated with specific semantic information. For 
example, cars occupy small areas and are parked on ground, most of building roofs are composed of 
planar faces and have relatively large area, and wires are elevated over ground. Moreover, semantic 
information is more convenient to be detected via segments than individual points. Therefore, 
semantic information is utilized to define several rules for optimizing the initial results. Note that the 
post-processing stage cannot correct all the misjudgments. 

To define the semantic rules, two types of neighborhoods are determined. The first one  
is determined in 3D space, and the second one  is determined in XY-plane. In the post-
processing stage, if we find a misjudged segment based on these rules, we first detect labels of its 
adjacent segments based on , then we relabel it as the class which arises the most times. Herein, 
we only list the useful rules for our approach. The rules for each class are shown as follows. 

(1) Rule for ground 

 In the neighborhood  of a query ground segment ,  for = 1,2, … ,  is the 
-th adjacent segment. The elevation difference between each segment pair containing  

and  is in a small interval . 
 In the neighborhood  of a query ground segment , there is no adjacent segment , = 1,… ,  whose maximum elevation much lower than the minimum elevation of 

. 
 Considering an extreme case, if we want to obtain a high precision DTM from a complex 

mountainous region, we can combine the initial ground segments with the segment-based 
PTD (progressive TIN densification) filtering method [61] or a progressive graph cut 
method [62]. First, the ground segments in the initial classification result are considered as 
latent ground segments. Next, a 2D grid is constructed with a bin size equal to the 
maximum building size. Then, a latent ground segment which contains the lowest point in 
each bin is recognized as a ground seed segment. Finally, points in the ground seed 
segments are utilized to construct a TIN as the initial ground surface, and ground points 
will be extracted by a PTD or a progressive graph cut method. 

(2) Rule for building roofs 

In the neighborhood  of a query building roof segment , it has the same 
characteristics as ground. However, in the neighborhood , we can find an adjacent 
segment , = 1,… ,  whose maximum elevation is much lower than the minimum 
elevation of , the elevation difference threshold of this elevation difference is denoted as 

. 

(3) Rule for vehicles 

 A car segment should have a certain range of area: [ , ]. 
 In the neighborhood  of a query car segment , there is at least one adjacent 

segment , = 1,… ,  labeled as ground. 

(4) Rule for wires 
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 In the neighborhood  of a query wire segment , there is no adjacent segment , = 1,… ,  with a label of ground or car. 
 The 3D shape of a wire segment can be linear or planar, however, cannot be volumetric. 

(5) Rule for vegetation 

 Vegetation segments are often confused with vehicle segments. Besides, the misjudged 
segments in the initial classification result tend to arise in high vegetation rather than low 
vegetation. Therefore, the misjudged segments in high vegetation are able to be corrected 
by the rules for vehicles simultaneously. 

 Considering an extreme case, we assume that some vehicle segments are misjudged as low 
vegetation segments. First, a misjudged query segment should have a neighbor labeled as 
ground, then, if the height, width and length of the segment are in certain ranges , , , , , , the segment will be relabeled as 
vehicle. The thresholds of these ranges are cited from the approach in literature [24]. 
Besides, the height, width and length of a segment are computed in a local coordinate 
framework composed of ,  and . The ,  and  are eigenvectors of the 
covariance matrix  constructed by points in the segment as formula (3). 

3. Experiments and Discussions 

We developed a protype framework for the proposed segment-based point cloud classification 
method using C++ language and Point Cloud Library (PCL) [63]. We also implemented segment-
based point cloud classification using SVM and the RG segmentation [57], in which the open source 
libSVM [64] is used for the implementation of SVM and PCL is used for the implementation of RG 
segmentation. 

The experiments are conducted on a workstation running Microsoft Windows 7 (× 64) with two 
16-Core Intel Xeon E5-2650, 64GB Random Access Memory (RAM) and 3TB hard disk. 

There are two parts in the experiments and discussions. The first part is experimental setting 
which includes study areas and evaluation metrics. The second part is results and discussions which 
are presented in Sections 3.2–3.6. 

In the second part, there are three improvements compared with existing classification methods, 
i.e., the step-wise point cloud segmentation, the integration of RF and the segment-based 
classification, and the employment of semantic rules in the post-processing stage. Therefore, we first 
discuss the impact of the three improvements and analyze the advantages of them in Sections 3.2–
3.4. Then, the classification results and accuracies of the protype framework are shown in Sections 
3.5 and 3.6. Note that the classification results should be presented after the discussion of the three 
improvements. Because the classification results are obtained by the parameters which are 
determined by the discussion in Sections 3.2–3.4. 

3.1. Experimental Setting 

3.1.1. Study Areas 

Three study areas are involved in our experiments. The first one is selected from a publicly 
available ALS dataset which is obtained by the University of Iowa in 2008 [65]. The data are collected 
to survey the Iowa River Flood along the Iowa River and Clear Creek Watershed. The data collection 
is funded by NSF Small Grant for Exploratory Research (SGER) program. Area 1 is shown in Figure 
6a and it contains 1,512,092 points with an average point spacing of 0.6 m. In Figure 6a, the point 
cloud of Area 1 is colored by elevation. In this area, the ground is flat and smooth. On the ground, 
there are some parking lots where many vehicles are parked. In addition, some vehicles are parked 
under tree crowns, or close to houses. Buildings in this area are composed of several planar faces with 
different geometric shapes and a number of building elements such as chimneys. Several wires are 
intersected, and cross the trees with high elevation. Most trees and building roofs are overlapped. 
After the step-wise point cloud segmentation performed, 5949 segments are extracted from Area 1. 
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250 segments are selected as training samples for the RF classifier. Details of the training samples in 
Area 1 are shown in Table 2. Specifically, only one sample is selected for the class ground. Ground in 
Area 1 is flat and smooth, and points on the ground are clustered into only one segment by the step-
wise point cloud segmentation. 

 
(a)

(b)

Figure 6. The testing data, (a) shows the point cloud of Area 1, (b) shows the point clouds for Area 2 
and 3. 

The second one is selected from a publicly available ALS dataset which is collected in Sonoma 
County [66] between September 28 and November 23, 2013 by the Watershed Sciences, Inc. (WSI). 
The dataset is provided by the University of Maryland and the Sonoma Country Vegetation Mapping 
and Lidar Program under grant NNX13AP69G from NASA’s Carbon Monitoring System. Area 2 is 
shown in Figure 6b and it contains 1509228 points with an average point spacing of 1.0 m. In figure 
6b, the point cloud of Area 2 is colored by elevation. In this area, there is a mountain which is full of 
trees and ornamented by several houses. Buildings are overlapped with tree canopies significantly. 
Moreover, building elements such as skylights have complex 3D structure. Wires go across the trees 
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have high elevations and are intersected with each other. A large number of vehicles are parked 
under tree crowns or near low vegetation. After the step-wise point cloud segmentation performed, 
10697 segments are extracted from Area 2. 414 segments are selected as training samples for the RF 
classifier. Details of the training samples in Area 2 are shown in Table 2. Specifically, the number of 
training samples for the class ground is smaller than other classes. Although a mountain exists in Area 
2, a majority of ground regions are flat and smooth. Therefore, points on ground in Area 2 are 
clustered into a smaller number of segments than other classes. 

The third one is selected from the same dataset of Area 2. Area 3 is shown in Figure 6b and it 
contains 685870 points with an average point spacing of 1.0 m. In figure 6b, the point cloud of Area 3 
is colored by elevation. In this area, all the points are on a mountainous ground which is full of trees 
and ornamented by several houses. Area 3 is utilized to test the transplanting of the proposed 
classification framework to mountainous areas. There are only three types of objects, i.e., ground, 
buildings and vegetation. The ground of Area 3 is rugged with step edges. All the buildings are 
surrounded by vegetation. After the step-wise point cloud segmentation performed, 6658 segments 
are extracted from Area 3. 165 segments are selected as the training samples for the RF classifier. 
Details of the training samples in Area 3 are shown in Table 2. Specifically, the number of training 
samples for the class ground in Area 3 is larger than those in Area 1 and 2 because of the complex 
topographies. 

In this paper, we classify Area 1 and 2 into five classes, i.e., ground, building, vegetation, vehicle 
and wire, and Area 3 into three classes, i.e., ground, building and vegetation. Area 1 and 2 are utilized to 
analyze the impact of the step-wise point cloud segmentation, the integration of RF and segment-
based classification method, and the post-processing stage. Area 3 is employed to analyze to the 
classification result of a mountainous area with complex topographies. 

Table 2. Number of training samples (segments) per class for the three study areas. 

Data 
Class

Ground Building Vegetation Vehicle Wire ∑ 
Area 1 1 47 107 65 30 250 
Area 2 4 66 228 94 22 414 
Area 3 19 65 81 - - 165 

To quantitatively analyze the classification accuracy, we obtain ground true for the three study 
areas by manual labelling. The details of the ground true for the three study areas are shown in Table 
3. Note that quantitative analysis is derived by individual points rather than segments, because the 
hypothesis that no error exists in segments is unreasonable. Therefore, we present the ground true 
using individual points rather than segments. 

Table 3. Number of points per class in ground true of the three study areas. 

Data 
Class

Ground Building Vegetation Vehicle Wire ∑ 
Area 1 949,431 218,835 309,889 24,138 9799 1,512,092 
Area 2 589,231 227,442 651,022 36,520 5013 1,509,228 
Area 3 202,755 64,337 418,778 - - 685,870 

3.1.2. Evaluation Metrics 

For evaluation, we employ the confusion matrix and consider five commonly used measures: 
overall accuracy , Kappa coefficient , precision , recall , and -score. They are computed 
according to the confusion matrix as follows: = ∑ , (17) 
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= ∑ ( ) − ∑ (( + ) × ( + ))− ∑ (( + ) × ( + ))  (18) 

= +  (19) 

= +  (20) 

= 2 ∙ ∙+  (21) 

where  is the main diagonal element in -th row,  is computed from the sum of -th column, 
excluding the main diagonal element,  is the sum along -th row, excluding the main diagonal 
element,  is the number of classes, and  is the number of all the points in an input point cloud. 

3.2. Impact of the Step-Wise Point Cloud Segmentation 

Our proposed step-wise point cloud segmentation method can extract three kinds of segments, 
i.e., planar, smooth and rough surfaces. We compare our method with the RG method [57], which 
has been published in PCL. The PCL supplies two kinds of processes based on the RG method. The 
first one is designed for plane extraction (RG-based plane segmentation) and the second one is 
designed for smooth surface extraction (RG-based smoothness segmentation). Six parameters in RG 
method published in PCL are used, i.e., the number  of neighbors for normal estimation, the 
number  of neighbors for growing, the smoothness threshold ℎ , the curvature threshold ℎ , 
the residual threshold ℎ , and the minimum size threshold . 

3.2.1. Qualitative comparison 

To visually compare our segmentation method with the RG methods, we select a small part from 
Area 1 to present the segmentation results. The parameter setting of our segmentation method is 
shown in Table 4 and the parameter setting of the RG method is shown in Table 5. Figure 7 presents 
the comparison of these segmentation results. We can find that our segmentation method not only 
can detects three kinds of segments, but also can clusters the ground points into a small number of 
segments, especially a single segment. Besides, intersecting planes, building roofs covered by 
vegetation, and small or narrow planes can be extracted by our segmentation method (see Figure 7a). 
The plane segmentation has the following shortcomings: (1) The segmentation result of the 
intersection between two planes is insufficient; (2) Small objects such as cars cannot be extracted; (3) 
Most majority of scattered points such as tree points cannot be segmented. The smoothness 
segmentation has the following shortcomings: (1) Intersected planes cannot be divided; (2) Small 
objects such as cars cannot be extracted, although it is implemented to extract smooth surfaces; (3) 
The building points and tree points could be clustered into the same region if they overlap with each 
other. 

Table 4. The parameter setting of our method for a small part in Area 1. 

Parameters     
Our method 50 0.1 0.1 30 15 1.0 1.5 

Table 5. The parameter setting of RG method for a small part in Area 1. 

Parameters   
RG-based plane segmentation 50 50 0.1 0.1 0.3 0 

RG-based smoothness segmentation 50 50 0.1 0.1 0.5 0 
 



Remote Sens. 2017, 9, 288 20 of 34 

 

 
(a)

(b) (c)

Figure 7. Comparison of our segmentation method with the RG methods presented in Point Cloud 
Library (PCL): (a) The result of our method; (b) The result of the RG-based plane segmentation; (c) 
The result of the RG-based smoothness segmentation. 

3.2.2. Quantitative Comparison 

To quantitatively analyze the advantages of our segmentation method, the entire data of Area 1 
and Area 2 are utilized. The time costs of our proposed segmentation method for processing Area 1 
and 2 are 3.7 min and 4.4 min, respectively. We compare our method with the RG methods in terms 
of the classification measure 	score. In order to facilitate an objective comparison, all results based 
on the RG methods are averaged over 20 runs. The parameter setting of the step-wise point cloud 
segmentation method is shown in Table 6. The -score comparison is shown in Figure 8. The red bar 
describes the -score of our segmentation method, while the green bar describes the -score of the 
RG-based smoothness segmentation method, and the blue bar describes the -score of the RG-based 
plane segmentation. All classes’ -score values of our segmentation method are larger than those of 
the RG methods for both Area 1 and 2. Specially, the -score values of the class vehicle derived by 
our method are significantly higher. The reason is that our segmentation method clusters all the 
points in a small-scale object into a few segments. 

Table 6. The parameter setting of our method for Area 1 and 2. 

Parameters    
Area 1 50 0.1 0.1 30 15 1.0 1.5 
Area 2 50 0.1 0.1 30 15 3.0 2.0 
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(a) (b)

Figure 8. All classes’ -score values of different segmentation methods for Area 1 and Area 2: (a) -
score values of Area 1; (b) -score values of Area 2. 

3.3. The Integration of RF and Segment-Based Classification 

3.3.1. Parameter Tuning for Random Forests 

The two parameters in the RF classifier, i.e.,  and  are utilized not only in the 
classification procedure, but also in the feature selection task. In the feature selection task,  is 
set to 4 according to the existing studies [19,38], which is a default setting and turned out to be a good 
choice of OOB rate [19]. However, different studies have different settings of . Therefore, we 
have to unfold a test before feature selection for finding an appropriate value of . Besides, this 
test is also meaningful for supervised classification tasks in which the setting of  is still 
stochastic [23]. 

To find an appropriate value of  for a stable classification, we test the classification 
procedure with  varying from 100 to 1000 and  from 1 to 9. For evaluating the 
classification results, we utilize overall accuracy and Kappa coefficient to analyze the overall 
performance. Figure 9a,b show the variation tendency of overall accuracy and Figure 9c,d show the 
variation tendency of the Kappa coefficient. To make them more concise, we compute the mean and 
the standard deviation of the derived overall accuracy and kappa coefficient values under different 
settings of  (see Figure 10a–d). The stability of the classification result will increase with an 
increasing value of . It is surprising that the overall accuracy and Kappa coefficient increase 
rapidly and the standard deviation decreases markedly with the augment of  until it reaches 
400. This case occurs in both Area 1 and Area 2. It may be the reason that 500 is the default value of 

 in the R package for random forests [51]. Therefore, setting  to 400 is reasonable in our 
approach, especially for decreasing the computational burden. 

(a) (b)
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(c) (d)

Figure 9. The variation tendencies of overall accuracy and Kappa coefficient under different settings 
of : (a,b) are for Area 1 and Area 2 respectively; (c,d) are for Area 1 and Area 2 respectively. 

(a) (b) 

(c) (d) 

Figure 10. The variation tendencies of mean overall accuracy values and standard deviation values of 
overall accuracy and Kappa coefficient under different settings of ; (a,b) are for Area 1 and Area 
2 respectively; (c,d) are for Area 1 and Area 2 respectively. 

3.3.2. RF-Based Feature Selection 

To select features, we utilize the backward elimination method and iteratively fit a RF with the 
aforementioned parameter setting. In each fitted RF, the importance of each feature is estimated. 
Figure 11 shows all the feature importance values of Area 1 and 2 which are estimated in the first 
time fitting. 
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The backward elimination method first fits a RF from the feature set , then the feature with 
the lowest importance value is eliminated from . The two steps are iterated until the number of 
features in  is equal to 4. Subsequently, we select features based on the eliminating order. 

To determine the number of independent features, we present the variation tendency of the 
overall mean decrease permutation accuracy  in Figure 12. For Area 1 (see Figure 12a), the 
maximum overall mean decrease permutation accuracy  is 0.1834, and the minimum overall 
mean decrease permutation accuracy  is 0.03426. When only 11 features are remained, the 
overall mean decrease permutation accuracy  is 0.05864, which divides the range  with a ratio 
no less than 8:2. Besides, the tendency in Figure 12a decreases rapidly until the remained feature 
number reaches 11. For Area 2 (see Figure 12b), the maximum overall mean decrease permutation 
accuracy  is 0.2215, and the minimum overall mean decrease permutation accuracy  is 
0.03991. When only 10 features are remained, the overall mean decrease permutation accuracy  
is 0.07588, which divides the range  with a ratio no less than 8:2. However, the tendency of Figure 
12b decreases rapidly from 10 to 11 remained features, therefore, we select 11 features for Area 2 as a 
compromised solution. According to the aforementioned analysis, the number 11 of independent 
features is reasonable for both Area 1 and 2. 

 
(a) 

 
(b) 

Figure 11. Feature importance values based on the mean decrease permutation accuracy estimated by 
the first time fitted RF: (a) is for Area 1; (b) is for Area 2. 
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(a) (b) 

Figure 12. Feature selection via iterative elimination for Area 1 and 2 based on the overall mean 
decrease permutation accuracy: (a) is for Area 1; (b) is for Area 2. 

According to the aforementioned procedure, the selected features for Area 1 are slope , 
lowest eigenvalue , elevation difference , scattering , change of curvature , eigenentropy 

, omnivariance , anisotropy , highest eigenvalue , normalized elevation  and area . 
The selected features for Area 2 are scattering , area , elevation difference , lowest 

eigenvalue , omnivariance , relative elevation , slope , anisotropy , medium eigenvalue 
, eigenentropy  and normalized elevation . The selected features are listed in elimination 

orders for Area 1 and 2 respectively. 

3.3.3. Robustness of the Integration of RF and the Segment-Based Classification 

To test this robustness and the stability of the integration of RF and the segment-based 
classification, we add some noisy vectors to the computed feature set. It is worth noting that we do 
not record which feature vector is noisy, and therefore, we do not know which one is the noisy vector 
in the feature set when we train a RF and make prediction. Then, we analyze the overall accuracy and 
Kappa coefficient values of the classification results with different numbers of noisy vectors. 

Besides, we implement the integration of SVM and the segment-based classification presented 
in [36] and analyze its robustness. It is worth noting that both the two integration methods have no 
complemental step for dealing with noises. To impartially compare the robustness of the two 
integrations, the feature selection procedure in our method is not performed, due to the fact that 
feature selection is not employed to the integration in [36]. 

As shown in Figure 13, when there is no noisy feature vector, the two integration methods get 
the classification results with similar overall accuracy and kappa coefficient values. When the noisy 
vector number is increasing, the values of the integration presented in the literature [36] decrease. 
Besides, our method obtains a mean standard deviation 0.0014 of overall accuracy values (0.0017 for 
Area 1 and 0.0012 for Area 2), and a mean standard deviation 0.0024 of kappa coefficient values (0.003 
for Area 1 and 0.002 for Area 2), with the noisy feature vector number from 0 to 10. 

In a close-up theoretical inspection, when RF classifier splits a subset of features in a node, it 
finds a feature with the maximum entropy or Gini decrease. In this case, the noisy features can be 
eliminated and the best feature corresponding to the maximum decrease is selected. Therefore, our 
method which integrates RF with the segment-based classification is more stable and robust. 
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(a) (b)

(c) (d)

Figure 13. Comparison between the two integrations under different numbers of noisy feature 
vectors, (a,b) depict the accuracy values of our method for Area 1 and 2 respectively, (c,d) depict the 
accuracy values of the literature [36] for Area 1 and 2 respectively. 

3.4. Impact of the Post-Processing Stage Based on the Semantic Rules 

After the supervised classification, an initial classification result is obtained, in which misjudged 
segments may exist. In the post-processing stage, we first define several semantic rules for each class, 
and then utilize them to optimize the initial classification result. Note that the utilized semantic rules 
may be different for different input data, and the post-processing stage cannot correct all the 
misjudgments, however is an optimizing procedure. The rules for ground and the rule 2 for 
vegetation are not employed when we optimize Area 1 while others are employed. The rule 3 for 
ground and the rule 2 for vegetation are not employed when we optimize Area 2 while others are 
employed. Some thresholds are utilized to constrain the optimization which are list in Table 7. These 
threshold values are determined based on the natural form of an object and the point spacing of the 
input point cloud. 

Table 7. The threshold values for the post-processing stage used for Area 1 and 2. 

 
Area 1 — 10 500 2.5 
Area 2 2.0 10 300 3.0 

To qualitatively analyze the impact of the post-processing stage, we select two small areas in 
Area 1 and 2 respectively. Figure 14 shows the initial and the final results of the small areas. In the 
initial classification results (see Figure 14a,c), a number of segments are mislabeled as the class vehicle 
or wire. For example, building elements such as chimneys are often mislabeled as vehicle, tree 
segments with small size are often mislabeled as the class vehicle or wire. In the post-processing stage, 



Remote Sens. 2017, 9, 288 26 of 34 

 

the second rule for vehicles can deal with the initial false results where other classes of objects are 
mislabeled as vehicle, the rules for wires can deal with the initial false results where tree segments are 
mislabeled as wire. In the final results presented in Figure 14b,d, the initial false results are corrected 
based on these semantic rules. 

For quantitative analysis, we compare each class’s -score for the initial results and the final 
results. Figure 15a,b show the -score comparison for Area 1 and Area 2. We can find that the -
score of the class vehicle is improved obviously both in Area 1 and 2. Besides, the -score values of 
other classes are also improved at different levels. 

(a) (b) (c) (d) 

Figure 14. Analysis of the impact of the post-processing stage based on semantic rules: (a) The initial 
result of the first small area; (b) The final result of the first small area: (c) The initial result of the second 
small area; (d) The final result of the second small area. 

(a) (b)

Figure 15. -score comparison between the initial and final results of Area 1 and 2: (a) The 
comparison of Area 1; (b) The comparison of Area 2. 

3.5. Classification Results and Accuracies 

The final results of Area 1 and 2 are shown in Figure 16. The time costs of our proposed 
classification framework for processing Area 1 and 2 are 21 min and 25 min, respectively. The feature 
extraction procedure is the most time consuming step which costs 9 min and 12 min for Area 1 and 
2, respectively. To quantitatively analyze the accuracies of classification, we compute the confusion 
matrix and the aforementioned five measures in Tables 8 and 9 based on the reference data generated 
by manual labelling. In addition, there may be missing points after the step-wise point cloud 
segmentation performed. These missing points will exist in the finial classification results and but are 
not labeled. In the quantitative evaluation, if some missing points belong to a class according to the 
ground true, they will be considered for evaluation. The revealed missing points are shown in the 
confusion matrices. Note that quantitative analysis is derived by individual points rather than 
segments, because the hypothesis that no error exists in segments is unreasonable. 

As shown in Tables 8 and 9, the proposed method achieves a mean overall accuracy of 0.95255 
(0.9697 and 0.9374 for Area 1 and 2 respectively), and a mean kappa coefficient of 0.9231 (0.9442 and 
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0.9020 for Area 1 and 2 respectively). The accuracy values of classes ground, building and vegetation 
are rather good. The accuracy values of vehicle and wire, are relatively lower than those of the other 
classes. The class vehicle achieves a mean -score of 0.8504 (0.8519 and 0.8488 for Area 1 and 2, 
respectively), and the class wire achieves a mean -score of 0.7531 (0.8155 and 0.6907 for Area 1 and 
2, respectively). 

The classification of small objects such as vehicles is the most challenging task. Generally, 
vegetation points make a 3D urban scene more complex and affect the classification of small objects. 
For example, wires often go across the trees with high elevation and vehicles are often parked near 
low vegetation or under tree canopies. Therefore, in the confusion matrices, vegetation points are 
often confused with another class points, and thus decrease the classification accuracy of other 
classes, especially for the classes of vehicle and wire. However, the accuracy of class vegetation achieves 
a mean -score of 0.9422 (0.9429 and 0.9415 for Area 1 and 2, respectively) which is superior. 

Table 8. The accuracy analysis of Area 1. 

Overall Accuracy: 0.9697, Kappa Coefficient: 0.9442
 Ground Building Vegetation Vehicle Wire Missing Points Recall

Ground 942652 129 5546 463 32 609 0.9929 
Building 2161 199672 13493 435 782 2292 0.9124 

Vegetation 933 6514 296124 1575 1038 3705 0.9556 
Vehicle 1604 569 2053 19771 67 74 0.8191 

Wire 0 547 995 35 8067 155 0.8232 
Precision 0.9950 0.9626 0.9306 0.8874 0.8078   

-score 0.9939 0.9368 0.9429 0.8519 0.8155   

Table 9. The accuracy analysis of Area 2. 

Overall Accuracy: 0.9374, Kappa Coefficient: 0.9020
 Ground Building Vegetation Vehicle Wire Missing Points Recall

Ground 576460 232 9337 201 225 2776 0.9783 
Building 2837 187101 28992 282 306 7924 0.8226 

Vegetation 8495 9737 616655 4636 1042 10457 0.9472 
Vehicle 1467 629 3023 30855 314 232 0.8449 

Wire 0 37 846 206 3640 284 0.7261 
Precision 0.9783 0.9462 0.9360 0.8528 0.6586   

-score 0.9783 0.8801 0.9415 0.8488 0.6907   

 
(a) 

Figure 16. Cont. 
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Figure 16. The results of the proposed classification framework for areas Area 1 and 2, (a) is the 
segmentation result of Area 1; (b) is the classification result of Area 1; (c) is the segmentation result of 
Area 2; (d) is the classification result of Area 2. 

3.6. Transplantation to Mountainous Areas 

To test the transplanting of the proposed method, extracted features and obtained parameters to 
mountainous areas, we classify a different 3D scene represented by Area 3. Area 3 is a mountainous 
area with step edges and rock faces. First, Area 3 is segmented by the proposed step-wise point cloud 
segmentation method with the same parameters as Area 2, and segment features are extracted. Next, 
a small feature set is selected by the obtained parameters of RF, i.e., = 400, and = 4. 9 
features are selected by the backward elimination method presented in Section 3.4.2, and they are 
lowest eigenvalue , scattering , omnivariance , slope , change of curvature , planarity 

, anisotropy , eigenentropy , tangent plane projection area . Then, the ALS point cloud of 
Area 3 is classified by the select feature set. None of the semantic rules are utilized in the  
post-processing stage. 16 min are costed during the whole procedures among which the feature 
extraction procedure is the most time consuming step. The confusion matrix contained recall, 
precision, and -score values is shown in Table 10, and its corresponding segmentation and 
classification results are shown in Figure 17. 
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As shown in Table 10, the proposed classification framework and obtained parameters of RF 
achieve an overall accuracy of 0.9117, and a Kappa coefficient of 0.8379. The class ground achieves a 

-score of 0.9026 which is lower than Area 1 and 2, because the ground of Area 3 is mountainous 
and rugged with step edges. The class building achieves a -score of 0.8760, and the class vegetation 
achieves a -score of 0.9327. 

Table 10. The accuracy analysis of Area 3. 

Overall Accuracy: 0.9117, Kappa Coefficient: 0.8379
 Ground Building Vegetation Missing Points Recall 

Ground 182090 4144 16159 362 0.8981 
Building 495 60045 3485 312 0.9333 

Vegetation 18120 8568 383143 8947 0.9149 
Precision 0.9072 0.8253 0.9512   

-score 0.9026 0.8760 0.9327   
 

(a) (b)

Figure 17. The results of the proposed classification framework for Area 3, (a) is the segmentation 
result of Area 3; (b) is the classification result of Area 3. 

4. Uncertainties, Errors and Accuracies 

The above experiments suggest that our proposed method obtains good results. There are three 
improvements in our proposed classification framework, which improve the accuracies of the 
classification results. However, there are still some errors in the classification results. We will list 
them according to missing points and the five aforementioned classes. 

In the confusion matrices, the missing points appear more likely in the classes building and 
vegetation. For the class vegetation, the laser beam may penetrate the tree surface and collects a point 
in an internal branch. The internal point may be an isolated point, however, belong to the class 
vegetation. For the class building, the missing points often appear on building facades duo to the fact 
that building facades are incomplete and points in them are sparse in large-scale ALS point clouds. 

For the class ground, uncertainties and errors are more likely to arise in the areas with 
mountainous and rugged topography. In Table 8, the class ground achieves a -score of 0.9939 due 
to the fact that the ground in Area 1 is flat and smooth. In Table 9, the -score of ground (0.9783) is 
lower than that of Area 1, because there is a hill that causes the topographical complexity increasing. 
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In Area 3, all the ground points are located at a mountainous region which are rugged and full of 
step edges and rock faces. The -score of class ground in Area 3 is 0.9026 which is much lower than 
those in Area 1 and 2. However, according to the recall and precision values of ground in Area 3, our 
proposed classification framework achieves the average accuracy of existing ALS point cloud filtering 
methods. 

For the class building, the -score (0.9368) in Area 1 is superior to those in Area 2 and 3. A close-
up visual inspection shows that there are more buildings with vegetation confused in Area 2 and 3. 
Especially in Area 3, all the buildings are surrounded by vegetation and most of them are overlapped 
by tall trees. Although the regions where buildings and vegetation are confused are segmented 
correctly by the step-wise point cloud segmentation method, these regions still decrease the 
classification accuracy of the class building. 

For the class vegetation in confusion matrix, vegetation points are often confused with other 
classes points. A close-up visual inspection shows that man-made objects such as buildings, vehicles 
and wires are often near vegetation. For example, buildings tend to be surrounded by trees, wires 
often go across tall trees. Therefore, vegetation makes a 3D scene more complex and affects the 
classification accuracy of other classes. However, the class vegetation achieves a mean -score of 
0.9390 (0.9429, 0.9415 and 0.9327 for Area 1, 2 and 3, respectively) which is superior due to the large 
cardinal number. 

For the class vehicle, the mean -score is 0.8504 (0.8519 and 0.8488 for Area 1 and 2, respectively) 
which is lower than the classes ground, building, and vegetation. Most misjudgments are caused by 
vegetation according to the confusion matrices, though the scene where vehicles are parked close to 
low vegetation is able to be correctly segmented. A close-up visual inspection shows that the 
mislabeled points always distribute randomly and irregularly. In an extreme case, it is inevitable that 
misjudgments exist in low vegetation which is in the same geometric form as a vehicle. However, the 
classification accuracy of the class vehicle is superior to the existing studies according to the analysis 
presented in Section 3.2. 

For the class wire, the mean -score is 0.7531 (0.8155 and 0.6907 for Area 1 and 2, respectively). 
The wire is the class with the lowest accuracy in our experiments. The wires in our study areas are 
rather common low voltage electrical wires than some special parts of overhead electric power 
transmission corridors. The misjudgments arise in the areas where wires go across trees. In these 
areas, wires and trees have similar point densities and cannot be divided by the segmentation 
method. Therefore, there will be a number of mislabeled points in the classification results of these 
areas, which affect the accuracy of the class wire most. 

5. Conclusions 

In this paper, we classify ALS point clouds via a framework with four stages, i.e., (i) step-wise 
point cloud segmentation; (ii) feature extraction; (iii) RF-based feature selection and classification; 
(iv) post-processing. In the first stage, the step-wise point cloud segmentation extracts three kinds of 
segments, i.e., planar, smooth and rough surfaces. Planar and smooth surfaces are more easy to 
characterize piecewise planar objects, and rough surfaces are more easy to characterize objects with 
irregular shapes. In the second stage, we extract geometric features from the input ALS point cloud 
by considering segments as the basic computational units. In the third stage, we integrate RF with 
the segment-based classification method to classify ALS point clouds. Discriminative features are 
selected using the backward elimination method based on OOB errors, and an appropriate value 
(400) for the number of trees used in RF is determined. At last, we employ semantic information to 
define several rules for each class, and utilize them in the post-processing stage to optimize the 
classification results. 

There are two contributions in the framework, i.e., step-wise point cloud segmentation, and the 
integration of RF and the segment-based classification method. In the step-wise point cloud 
segmentation, we utilize a RANSAC method to optimize the normal vector and neighborhood of each 
point, and next grow a region among the optimized neighborhood for each seed point. Then, 
scattered points are detected and initial patches are constructed. Finally, the log Euclidean 
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Riemannian metric is utilized as a constraint to connect the initial patches to rough surfaces. 
Experiments validate that the step-wise segmentation is good at recognizing small-scale objects. To 
analyze the integration of RF and the segment-based classification, we first find a suitable parameter 
setting of RF, then select features based on these parameters, and finally analyze the robustness and 
show the benefits of the integration. 

There is a limit existing in our method, i.e., objects with less geometric distinguishability cannot 
be recognized, such as flat roads which has similar geometric attributes with ground. In future work, 
we will take more features and complemental strategies into consideration to classify these kinds of 
objects. 
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