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Abstract: Maritime target detection from optical remote sensing images plays an important role
in related military and civil applications and its weakness lies in its compromised performance
under complex uncertain conditions. In this paper, a novel hierarchical ship detection method
is proposed to overcome this issue. In the ship detection stage, based on Entropy information,
we construct a combined saliency model with self-adaptive weights to prescreen ship candidates
from across the entire maritime domain. To characterize ship targets and further reduce the false
alarms, we introduce a novel and practical descriptor based on gradient features, and this descriptor
is robust against clutter introduced by heavy clouds, islands, ship wakes as well as variation in target
size. Furthermore, the proposed method is effective for not only color images but also gray images.
The experimental results obtained using real optical remote sensing images have demonstrated that
the locations and the number of ships can be determined accurately and that the false alarm rate is
greatly decreased. A comprehensive comparison is performed between the proposed method and
the state-of-the-art methods, which shows that the proposed method achieves higher accuracy and
outperforms all the competing methods. Furthermore, the proposed method is robust under various
backgrounds of maritime images and has great potential for providing more accurate target detection
in engineering applications.
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1. Introduction

Maritime ship target detection and recognition by Unmanned Airborne Vehicles (UAVs) and
satellites is an active research field and plays a crucial role in a spectrum of related military and
civil applications, such as naval defense and security, traffic surveillance, maritime rescue, protection
against illegal fisheries, anti-smuggling efforts, oil discharge control, and sea pollution monitoring,
for which automatic ship detection and ship recognition are important to the protection of coastlines
and exploration of the vast and rich marine resources.

Ship targets are mainly divided into three categories based on the types of images: synthetic
aperture radar (SAR) images, infrared (IR) images and visible images [1]. SAR images have been the
most widely studied since they can be obtained during both day and night regardless of weather
conditions. Many approaches for SAR images have been proposed, such as constant false-alarm rate
(CFAR) methods based on all kinds of distributions [2–4], the fractal detection algorithm [5] and
wavelet transform [6]. However, accurate detection of targets with these methods remains challenging.
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For example, only target points can be obtained in SAR-based images, which lack color and texture
features. The revisit cycle is relatively long, and wooden boats may be invisible to radar. Recently,
SAR altimetry [7,8] has shown the potential to resolve non-water targets as well as electromagnetic
features connected with the sea state, with the possibility of providing global ship traffic statistics
with a relatively short revisit time and free data. It does not provide images, but can be considered as
a complement to the ship detection based on SAR techniques. IR images are often applied to reveal
the locations of hidden targets and enhance vision under weak light conditions. However, their use
is limited by poor Signal Noise Ratio (SNR) and changeable gray levels, and a number of challenges
remain in the current methods, including target segmentation [9–11] and contour extraction [12].
Compared with the previous two categories of images, images in the visible bands are more intuitive,
easier to understand, and have a higher resolution, more detailed ship information and more obvious
geometric structures. In this study, we focus on detecting ships in the visible bands of optical remote
sensing images. However, there are still plenty of difficulties in this field. For instance, a ship’s
appearance may vary greatly due to uneven illumination, the viewing geometry and the variability of
ship sizes. In addition, the sea surface is complex due to interference from clouds and haze, sea clutters,
ship wakes, small islands, and coastlines, among others, which may be falsely detected as ships,
leading to false alarms and increasing processing time. Therefore, determining how to accurately and
quickly detect ship targets in the marine background is an urgent problem.

Aiming at these problems addressed above, we have made an in-depth investigation into existing
approaches. Some detection methods have been devised for ship wakes [13–15]. However, ship wakes
exhibit relatively large variation, which is related to the navigation speeds. Sometimes, ship wakes
may not even exist. Therefore, our detection method, alternatively, focuses on ship targets themselves
rather than ship wakes. The current approaches for ship targets detection in the literature can be
mainly summarized as follows. Some approaches can be roughly considered as gray statistics and
threshold segmentation. For instance, Burgess [16] proposed a method that includes masking, filtering
and shape analysis techniques to detect ships in optical images. The method in [17] put forward
a complete set of sea surface ship detection processing chains. There, the target region is extracted by
using statistical and morphological filtering, and false alarms are reduced through wavelet analysis
and the Radon transform. Proia [18] estimated the Gaussian distribution of the sea background density
function and applied Bayesian decision theory to discriminate small ships. Yang [19] employed a linear
function combining pixel and region features to select ship candidates after sea surface analysis. Xu [20]
proposed a method of multiscale contour extraction using level sets. These methods are suitable for
sea conditions with uniform texture and low gray level. However, they are sensitive to complex sea
backgrounds, such as heavy clouds, small islands, uneven illumination, and sea clutters. Besides,
the black and white polarity of ships easily causes false alarms. If the intensity level of a ship is similar
to that of its surroundings, it is difficult to extract the ship. Other type of ship detection methods
rely on supervised classification. Great attention has been paid to the different kinds of features as
well as various classifiers. Corbane [21] extracted feature sets after segmentation. The detection was
accomplished with a genetic algorithm and neural networks. The support vector machine (SVM)
classifier based on shape and texture features was used in [22] to reduce the false alarms. Xia [23]
came up with a ship extraction algorithm that fused several geometrical features by using the dynamic
fusion model and detected ships using SVM. Classification algorithms using color, texture and local
shape feature for ship detection were introduced in [24,25]. Each of these methods essentially includes
an improvement in either preprocessing or classification, to achieve better performance. However,
these methods require the production of a large number of templates and rely on prior knowledge.
Furthermore, they face difficulties in practical applications. In addition to the above methods, there are
other categories of detection methods that can resist interference from complex backgrounds and detect
objects with fuzzy appearances effectively. Duan [26] explored several techniques using a contour
matching approach and an improved optimization algorithm. Sun [27] presented an automatic
target detection framework by using a spatial sparse-coding bag-of-words model. Cheng [28–30]
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developed a practical and rotation-invariant framework for multi-class geospatial object detection
and classification based on a collection of part detectors. Han [31] proposed a method of multi-class
geospatial target detection by the integration of visual saliency modeling and the discriminative
learning of sparse coding. Naoto [32] integrated sparse representations for local-feature detection
into generalized-Hough-transform ship detection. Wang [33] proposed a framework for multi-class
object detection based on the discriminative sparse representation. The performances of these methods
are satisfying in terms of detection and recognition. However, their computational complexities are
greatly increased. The computation time increases exponentially when dealing with complex and
drastically varying conditions. Such approaches are obviously time-consuming and unsuitable for
real-time processing. Even worse, some small targets may not be captured.

Recently, it has become well known that the visual saliency model can quickly access to
information associated with current scene and task, even for a highly cluttered scene. This advantage
has made it a hot spot in ship detection. Visual saliency models can be mainly divided into two types:
the goal-driven top-down models and the data-driven bottom-up models. A top-down model is related
to specific tasks and goals, which use cognitive factors such as pre-knowledge, context information,
expectations, and motivations to perform a visual search. Bi [34] proposed a multiscale and hierarchical
model based on contextual information to detect ships. Zhu [35] presented a top-down model in which
the coding-based classification framework and spatial context information is exploited for goal-driven
visual detection. However, the existing top-down models usually carry a high computational cost and
are without a generic model. As another essential source of bottom-up cues, most saliency detection
models are based on this mechanism. They can be divided into spatial domain models and frequency
domain models. The spatial domain models mainly include the ITTI model (devised by Itti et al.) [36],
AIM model (Attention based on Information Maximization) [37], GBVS model (Graph-Based Visual
Saliency) [38], CA model (Context Aware, also known as the Goferman model) [39], LC model (Linear
Contrast) [40], HC model (Histogram Contrast) [41], and FT model (Frequency-Tuned Saliency) [42].
The targets are obtained by integrating multiple features. However, these models are relatively
time-consuming and are easily influenced by sea conditions, and their performance on background
suppression is limited. Compared with spatial domain models, frequency domain models have more
advantages in terms of computation speed and background suppression. Hou [43] proposed the
SR detection model (Spectral Residual), which can process a single channel grayscale image, where
saliency detection is firstly considered as a frequency domain problem. Then, the PQFT model (Phase
Quaternion Fourier Transform) [44] and the PBFT model (Phase Spectrum of Biquaternion Fourier
Transform) [45] were proposed to process multi-channel features of color images. These models have
good performances in target edge detection, whereas low integrity in targets, especially for large targets.
Li [46] presented the HFT model (Hypercomplex Frequency Domain Transform), which can detect
the target and maintain its integrity. However, the background suppression ability is relatively poor,
especially for targets that are too close to each other. Lin [47] proposed an image-block-based approach,
in which saliency detection is carried out in each block, and the saliency maps are subsequently
combined. However, the false alarm rate of this approach is heavily influenced by the sea clutter and
would greatly increase in the presence of thick clouds and small islands. Corbane [17] combined the
statistical methods and a morphology filter to mask out thin clouds. However, thick clouds still cannot
be removed effectively.

Therefore, despite the numerous approaches that have been developed, we are still far from
solving the problems in ship detection from optical remote sensing images. The desired detector should
not only extract ships but also remove false alarms. Focused on these problems, a hierarchical ship
detection scheme is proposed in this paper. Two major ideas including prescreening and discrimination
are composed and emphasized. For the former, a visual saliency model is used. We have improved
the existing models and further constructed a practical combined saliency model, which integrates
multi-frequency information using self-adaptive weights based on Entropy information. It is effective
in identifying both large and small ships and suppressing interference from complex backgrounds.
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In addition to achieving higher accuracy, our model is not sensitive to parameter settings and can
be automatically executed. After extracting candidates, some pseudo-targets are also obtained in
addition to real ships. Therefore, a novel ship descriptor is designed for confirming whether the
targets are real ships, where gradient features are used and some efficient rules are applied. This step
is vital for reducing false alarms. However, in some existing methods, it is simplified or even not
considered [20,45]. Our method is different from the other methods proposed in the literature, and has
achieved necessary improvements in saliency detection, image segmentation, and feature extraction
for discriminating targets. Compared with the previous works, our approach can achieve better
performance in terms of detection accuracy.

The rest of this paper is organized as follows. In Section 2, the framework of visual
saliency detection is given and our ship candidate detection model is introduced. In Section 3,
the gradient-feature descriptor is designed to discriminate real ships. In Section 4, the execution of the
proposed method is illustrated. Also provided in this section are a quantitative comparison and an
evaluation. Finally, the conclusion and possible extensions are discussed in Section 5.

2. Ship Candidates Extraction Based on Visual Saliency

2.1. Overall Framework

In this paper, our study aims at detecting ships in open oceans. The interference from the land area
can be eliminated using prior geographic information, for instance, a GIS database. The overview of our
detection algorithm is given in Figure 1, which covers the whole process from coarse to fine detection.
Images in the visible bands of optical remote sensing data are used to validate the detection accuracy
and robustness of our method. Note that if the input image is a color image, it can be calculated directly.
Otherwise, a conversion into a synthetic color image is needed. In the prescreening stage, the potential
ship targets are extracted using the combined saliency model based on Entropy information. Then,
the residual false alarms are further removed by the descriptor in the discrimination stage.
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Figure 1. Diagram of the proposed ship detection scheme.

2.2. Saliency Detection Model

In the first stage, as described in Figure 2, the saliency detection model based on the frequency
domain is used for quickly finding and extracting candidate target regions. The ship candidates can
be obtained by coarse segmentation and marking. The goal of this stage is to detect ship targets as
accurately as possible and detect false alarms as rarely as possible.
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Figure 2. Saliency estimation of ship target in the first stage.

The following sections describe the major steps of our saliency model in detail. Visual saliency has
been widely used to highlight valuable targets while suppressing the background. For the HFT model,
the targets in a color image can be extracted with the hypercomplex form. Brightness I, red-green CRG
and blue-yellow CBY are used to construct the color features. Since the input image is static, the motion
feature is not considered and its value is set to zero. Given a color image f (x,y), it can be represented
by a quaternion matrix [46] as follows:

q(x, y) = 0.25× CRGu1 + 0.25× CBYu2 + 0.5× Iu3 (1)

where x and y denote the pixel co-ordinates in the spatial domain. u1, u2 and u3 are unit pure
quaternions obeying the following rules: u1

2 = u2
2 = u3

2 = −1, u1⊥u2, u2⊥u3, u3⊥u1, and u1 × u2 = u3.
The feature sequence does not affect the results of the calculation. An image represented by quaternions
is shown in Figure 3.
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When the ship targets are directly detected using the HFT model, the sea background interference
suppression ability is not strong. Some very weak and dim targets may be missed. In addition,
when multiple targets are too close to each other, the model’s distinguishing ability is weak. The PQFT
model has also been used for extracting the multi-channel features of a color image for construction
of a quaternion matrix and detection. However, the integrity of the target region is poor with the
PQFT model, especially for large targets. In addition, it may have inferior performance in some cases
including heavy sea clutter and complex textures. Motivated by these shortcomings, we propose an
effective saliency detection model and set the following requirements:

• Include complete salient objects.
• Uniformly highlight the entire target regions.
• Disregard high frequencies introduced by clouds, islands, ship wakes and sea clutters.
• Efficiently output the saliency maps with full resolution.

To meet these requirements, we improve the HFT model and modify it using the improved PQFT
model with self-adaptive weights. More details are described hereinafter. We improve the HFT model
in terms of color, frequency domain transform and scale selection. We use the CIE Lab color space
in place of RGB color features in this study. CIE Lab color space is a color-opponent space with
dimensions L for lightness and a and b for the color-opponent dimensions. It includes all perceivable
colors, which means that its gamut exceeds those of the RGB color models. When a spatial discrete
color image is input, it is separated into three-channel images. L, a, and b are the three-channel color
features of the input image in the CIE Lab color space. Lm, am, and bm are the arithmetic mean pixel
values of L, a, and b over the entire image. The difference between the value at each pixel location of
each channel and the average value of all pixels of the image in the corresponding channel is calculated
as follows:

Ld(x, y) = (L(x, y)− Lm) (2)

ad(x, y) = (a(x, y)− am) (3)

bd(x, y) = (b(x, y)− bm) (4)

Then, the value of each pixel in an image is represented as a quaternion as follows:

q(x, y) = Ld(x, y)u1 + ad(x, y)u2 + bd(x, y)u3 (5)

The quaternion function representation of the image will be transformed into the frequency
domain. We use the Discrete Cosine Transform (DCT) instead of the Discrete Fourier Transform.
The DCT is similar to the DFT, but uses only real numbers, which are equivalent to the DFT of roughly
twice the length, and operates on real data with even symmetry. In addition to its orthogonal structure,
the DCT has a strong energy compaction property, and most of the signal information tends to be
concentrated in a few low-frequency components of the DCT [48]. After the transform, a Spectrum
Scale-Space is described for handling amplitude spectra at different scales, which is given by:

Q[u, v] = DCT(q(x, y)) (6)

A(u, v) = |Q[u, v]| (7)

G(u, v; k) =
1

2π · 22k−2 e−(u
2+v2)/(22k−3) (8)

Λ(u, v; k) = (G(., .; k) ∗A)(u, v) (9)

where u and v denote the pixel co-ordinates in the frequency domain; DCT(·) denotes the Discrete
Cosine Transform and A(·) represents the amplitude spectra. G(·) denotes a series of Gaussian kernels.
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k is the scale parameter, k = 1, 2, 3. Λ(·) is a family of derived signals defined by the convolution of A(·)
with G(·). * denotes the convolution operator.

The optimal one (S’(x,y)) from a series of saliency maps Sk is obtained based on an Entropy
criterion. Through Gaussian filtering, the saliency map S1(x,y) of the improved HFT is expressed by:

S1(x, y) = g ∗
(
S′(x, y)

)2 (10)

where g is a two-dimensional low-pass Gaussian filter.

2.3. Saliency Map Modification Based on Entropy Information

After improving the HFT model, dim targets are enhanced and missed targets are possibly
highlighted. Furthermore, if the distance between targets is too small, the aggregation phenomenon
may occur. The number of targets cannot be confirmed accurately. Our solution to this issue is to
modify the model using an improved PQFT model.

A similar procedure to the one stated above is applied. The Lab color features are used in place of
RGB features. We use the DCT instead of the DFT. Different from the original PQFT model, which only
uses the phase information, the amplitude information A(·) is also used, and its logarithm value is
calculated from Equation (11) and used in place of A(·).

AL = log(A) = log(|Q[u, v]|) (11)

Then, the saliency map S2(x,y) based on the improved PQFT model is obtained.
Some detection results before and after improvements are displayed in Figure 4. The first two

columns compare the improved HFT with the original HFT models. We find that the dim targets may
be missed using the original HFT model directly. After the improvement, the ship regions are more
highlighted. The latter two columns compare the improved PQFT with the original PQFT models. It is
noted that the suppression of background interference is more effective after improvement.
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Although the results after improving are promising, there are some possible problems to be
resolved such as the aggregation phenomenon in the HFT model and the discontinuities in the PQFT
model. These problems may still occur after the improvement and further improvements are needed,
as follows.
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We merge the saliency maps S1(x,y) and S2(x,y) automatically based on the following formula and
the result takes the advantages of the two models. Before merging, the saliency maps from the two
models are scaled to [0,1]. The final map S(x,y) is calculated as follows:

S(x, y) = w1 × S1(x, y) + w2 × S2(x, y) (12)

where w1 and w2 are self-adaptive weights. In order to process saliency information automatically,
we use the Entropy information to determine the appropriate weights.

For the desired saliency map, the target region should be highlighted and the background clutter
should be suppressed. Thus, the saliency map can be considered as a probability map and the
histogram of the map should cluster around certain values, which will yield a corresponding Entropy
value. When the value reaches minimum, the optimal saliency map would be found. Inspired by this
fact, the weight is given by:

wk = (H(Sk(x, y)))−1 (13)

where k is the subscript, k = 1, 2. w1 and w2 are weights. S1(x,y) and S2(x,y) represent the improved
HFT and PQFT saliency maps, respectively. H(·) is the function for calculating the Entropy of the
saliency map, defined as:

H(p) = −
n

∑
i

pilog2 pi (14)

where pi contains the histogram counts returned from an image. The index i is the grayscale, i = 0, 1,
2, . . . , 255. The saliency detection results of the original HFT model, the original PQFT model, and our
combined saliency map (CSM) model are compared, as shown in Figure 5.
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before and after modification are given. Note that the aggregation phenomenon generated in the 
HFT model is weakened by this improvement. The ability to distinguish different targets in the CSM 
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As shown in Figure 5, the CSM model generates clearer contour and more uniformly highlighted
salient regions as compared to the original HFT and PQFT models. The first two rows compare
the CSM with the original HFT models. The corresponding energy distribution maps before and
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after modification are given. Note that the aggregation phenomenon generated in the HFT model
is weakened by this improvement. The ability to distinguish different targets in the CSM model is
enhanced. The last two rows are the comparisons between the CSM and the PQFT models. We note that
the sea clutter in the maps is obvious and strong before improvement. The background interference
around the ships is well suppressed in the CSM model. Most of the thin clouds, mist and sea clutter
are removed, and the ship targets are effectively extracted. In the third row, the target region is not
complete and not uniform using PQFT. While this problem has been resolved in the CSM model.
In addition, the CSM model runs automatically without requiring parameters adjustment.

2.4. Gray Image Processing

In addition to color images, some images may be gray in certain cases. To address these cases,
a pre-processing step is needed, as shown in Figure 6. A gray image is viewed as a single-channel
special case of a three-channel color image. First, a three-channel image space is constructed and
initialized to zero. The pixel values of the gray image are assigned to this space, and this step is
repeated three times. Then, a synthesized RGB image is obtained, and the following processing is
similar to that for color images.
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2.5. Target Candidate Extraction

To extract the candidates, an adaptive coarse segmentation based on the Otsu method is performed.
The Otsu method [49] is based on a single dimension gray histogram of the image and can automatically
maximize the between-class variance of the foreground and back-ground in the histogram. S(x,y) is
binarized by the threshold determined with the Otsu method. All pixels higher than the threshold are
defined as targets and the rest are considered as the background. After obtaining the corresponding
binary images, we multiply the binary images with the original remote sensing images, and the results
are shown in Figure 7. Based on the binary maps, we define the connected regions covered by the
bounding rectangle as candidates. Some target chips can be obtained in this step. To ensure the
integrity of the targets, we extend the size of each chip by 10 pixels along each dimension.
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Figure 7. Ship target region extraction and marking. 
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3. Ship Discrimination

After extracting ship candidates, some pseudo-targets, for example, the masks of islands and
clouds, may be included. To further reduce these false alarms, other techniques are needed to effectively
remove the interference according to the characteristics of ships and non-ship targets. The shape
feature of a ship is more regular since a ship appears as a long symmetrical strip, whereas the shapes
of the pseudo-targets detected are irregular. Inspired by this fact, a novel descriptor is designed
to identify real ships based on gradient features. Before the identification, the target chip must be
segmented finely, and the major axis of the ship target must be made symmetrical.

3.1. Fine Segmentation and Symmetry

Currently, the availability of high-resolution images has allowed for more accurate detection of
the outline of the ships’ hull. Ship targets have become relatively large targets, unlike the point-like
targets in the low-resolution images. Different from the method in [50], we propose an effective
segmentation method based on the GrabCut algorithm [51], which is improved based on the GraphCut
algorithm. The GrabCut algorithm is an iterative segmentation algorithm based on graph theory. It is
widely used in the extraction of foreground objects from a complex environment. The GrabCut creates
Gaussian Mixture Models (GMMs) for the background and foreground separately, and adopts an
iterative procedure that alternates between parameter learning and segmentation estimation until it
converges. A few improvements are made, and the chips are directly addressed instead of segmenting
the entire image. The ranges of (4, col-4) and (4, row-4) of the chip are defined as the foreground to
be segmented automatically. “col” and “row” are the column and row numbers of the chip. The rest
of the chip is the background. The candidate contains only a single target and a small portion of the
surrounding area. In general, the number of iterations is set to two. If the sea background is complex or
the chip is larger than 60× 60 pixels, the number of iterations can be set to three. The fine segmentation
results are shown in Figure 8. To facilitate the layout, the sizes of the chips are adjusted.
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If the chip contains a ship target, the fine segmentation of ships will be obtained, as shown in
Figure 8a. The ship candidates are regular in general. In the presence of islands or strong reflection
or thick clouds, segmentation results of irregular shape will be obtained, as shown in Figure 8b,c.
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They are irregular in general. If the background is for the most part evenly distributed, the difference
between the target and the background is small. The brightness value of the foreground is zero or
close to zero after segmentation as shown in Figure 8d. If the target area in a chip is smaller than
10 pixels, the chip is abandoned. If the target area is oversized, i.e., larger than 3000 pixels, the chip is
also rejected.

To obtain a rotation-invariant feature, the target should be symmetrical around the ship principal
axis in the vertical direction by rotation and symmetry. Radon transform [52] is used to carry out this
task and estimate the ship target heading, which is the projection of the image intensity along a radial
line oriented at a specific angle. For a spatial discrete image f (x,y), the general Radon transform is
defined as:

R(θ, u) =
∫

D
f (x, y)δ(u− x cos θ − y sin θ)dxdy (15)

where θ represents the angle between the oriented line and the y-axis, and u is the length of the normal
from the origin point to the oriented line. The oriented line can be considered as u = xcosθ + ysinθ.
D denotes the whole x–y image plane. δ is the Dirac delta-function:

δ(t) =

{
+∞ t = 0

0 t 6= 0
(16)

where t is a real parameter. The integral of the δ function over the parameter from −∞ to +∞ is equal
to one. After Radon transform, the lines in the original image are mapped onto bright and dark spots
in Radon space (u,θ). The issue of calculating the ship heading is converted to finding a peak in the
Radon transform. The confident heading of the target is equal to θb value and u(θb) is close to zero,
which corresponds to the brightest spot in the map of Radon Transform. Then, we align the target axis
to the vertical direction by clockwise rotation of θb. The rotation invariance of the gradient distribution
is fulfilled. Detailed illustrations are shown in Figure 9.
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3.2. Gradient Features

In general, a powerful descriptor identifying the ship target is critical for the final discrimination,
which should meet the requirement that it is applicable to ships with different sizes and strong wakes
first. As known, a ship always has a large length-to-width ratio, similar to a very elongated ellipse.
The gradients of the two ship sides are symmetrical and generally have high magnitudes in their
perpendicular directions. Moreover, ship wakes have linear textures. Inspired by these facts, a novel
descriptor based on gradient features is designed, which is improved based on the histogram of
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oriented gradients (HOG) feature. The HOG feature [53] can be used to effectively detect targets
in computer vision and image processing. The HOG feature is based on the well-normalized local
histograms of image gradient orientations in a dense grid, and it essentially describes the local intensity
of gradients and edge directions. The traditional HOG feature identifies an object by the gradients
from its multiple parts. However, it is sensitive to the orientation of small targets. To overcome the
shortfalls and ensure its insensitivity to the heading of the target, the rotation invariance is produced
by Radon transform, as mentioned above. The orientation angles of the target are between 0◦ and 360◦,
and we divide them into eight specific bins, h1–h8. The angle in each bin is 45◦, rendering intervals
of (337.6◦–22.5◦), (22.6◦–67.5◦), . . . , (292.6◦–337.5◦). To identify the target more accurately, we divide
the body of the ship along the principal axis direction into three blocks, B1, B2, and B3, which are one
whole and two halves.

Several examples are shown in Figure 10. The first three rows are the histogram statistics of ships
with different sizes and strong wakes. The fourth and the fifth rows show histogram statistics of clouds
and islands. Theoretically, bin 1 and bin 5 of the ship histogram can acquire higher statistical quantities
than the others bins. The reason for this is that the ship target has a pair of parallel long sides, which
can lead to strong and symmetrical responses in the gradient. Therefore, this descriptor has good
robustness in identifying ships of different sizes and ships with wakes.
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Figure 10. Histogram statistics of the three blocks for eight bins: (from top to down) big ship, small
ship, ship with wake, cloud and island.
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3.3. Discrimination Principles

For the ship discrimination, we characterize ship targets as follows: (1) Magnitudes in bins h1 and
h5 should be larger than those in other bins. (2) Magnitudes in bins h1 and h5 should be comparable.
(3) The three blocks should satisfy rule 1 and rule 2 simultaneously. However, the remote sensing
images are often disturbed, and ship targets in real images might not strictly comply with these rules.
Regarding this degradation, the relaxation parameters α1, α2, and γ are introduced for these constraints.
Let H = {hi, i=1, 2, 3, . . . , 8}; Hf = {h1, h5}; and Hp = {h2, h3, h4, h6, h7, h8}. H f is the average value of
Hf; and Hp is the average value of Hp. The following conditions should be satisfied to decide that the

suspected target is a real ship: 1. Hp
min(H f )

< α1; 2. max(Hp)

max(H f )
< α2; 3.

min(H f )

max(H f )
> γ. A detailed analysis of

how to choose the proper relaxation parameters will be presented in the experimental section.

4. Experimental Results and Discussion

To validate the performance of our method, it is tested step-wise in the following sub-sections.
First, we subjectively compare the results of our combined saliency map (CSM) model with those of
other models according to visual impression. Second, we test them using Recall and Precision for
quantitative evaluation. Third, we objectively demonstrate the overall detection performance of the
proposed method using the accuracy rate, false alarm rate, and other quantitative indicators. Finally,
we analyze how to select the relaxation parameters.

All experiments are performed on remote sensing images from Google Earth. This is virtual
globe software, in which satellite photos, aerial photography, and GIS data are arranged on
a three-dimensional model of the earth. We select and extract 137 representative color images covering
a variety of scenarios to build the database. The database also includes their corresponding gray
images. The size of the selected images is 300 × 210 pixels, and the images involve different sea
regions, different weather conditions, different time periods and different stray light conditions of the
sea surface.

4.1. Comparisons of Different Saliency Models

Figures 11 and 12 illustrate some results of the subjective visual comparison and include ten
groups in total. We compare the CSM model with other typical saliency models. Each group has
12 images, including the input image, results of our combined saliency map (CSM) model, results
of other models, and a ground-truth map. The ground-truth map refers to the accuracy hull of the
ship in the input image, which is a binary image and considered as prior information. For an input
image, we manually mark its ground-truth map. Figure 11 shows the comparisons of the background
suppression abilities of the different models under all types of complex conditions concluding obvious
sea clutter, strong sea waves, low contrast, marine cultivation area, and different color ships.

As shown in Figure 11, although the performance of the CSM model is similar to that of the other
models for the images with a simple background, the CSM model significantly outperforms the other
models over the images with a complex background. It is noted that the background suppression
abilities of the models in the spatial domain are weak, as shown in the first, fourth, and fifth groups.
Most of the uneven textures from the sea background are still highlighted. In addition, some small and
dim ship targets are missed. Compared with the models based on the spatial domain, the models in
the frequency domain are more effective in suppressing the background interference. However, they
are incapable of detecting ships under strong sea wave conditions or targets that are relatively large.
The integrity of the detected targets is poor, and the false alarm rate may be high. Compared with
them, the CSM model has better performance in suppressing the sea clutter, mist, and cloud cover.
Furthermore, it is better at searching for single or multiple differently sized and colored ships, even
with ship wakes. Although SR and PQFT can also suppress the interference from the background,
especially for cloud and mist, they do fail in certain cases in which the ship regions are exceedingly
bright or dark. As shown in the first, second, third and fifth groups, the ship regions detected with SR
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and PQFT may be discontinuous and incomplete. Such phenomena are more obvious when the target
is relatively large. The ship region of the CSM model is more uniform and its integrity is higher than
those of SR and PQFT. Overall, clearer contour and more uniform salient regions can be highlighted,
and more accurate shapes can be obtained by the CSM model.Remote Sens. 2017, 9, 280  14 of 23 
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Figure 12. Visual comparison of saliency maps: (a) input image; (b) CSM; (c) ITTI; (d) AIM; (e) GBVS;
(f) Goferman; (g) LC; (h) HC; (i) FT; (j) SR; (k) PQFT; (l) ground-truth.

Figure 12 shows the saliency detection results for the images with heavy clouds and islands.
In Figure 12, the five groups conclude dark ship, clouds and shadow, heavy clouds coverage,

islands and coastline, and islands and coastline, respectively. As shown in the second and third
groups, the CSM model, the PQFT model and the SR model can effectively suppress the clouds and
highlight the targets. However, for the ships with uneven distributions that are too bright or too
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dark, as shown in the second group, the salient regions are discontinuous when using the PQFT or
SR models. The integrity of the detection results from the CSM model is superior to those from the
other models. For the pseudo-targets that cannot be suppressed in the first, fourth, and fifth groups,
they are expected to be detected as completely as possible. This is conducive to subsequent target
identification, and the computational time can be reduced because of the low repetition. It is noted
that the Goferman model also has a relatively high detection performance, whereas some small and
low-contrast regions may be missed. Compared with these models, different scales and colors of ships
can be extracted quickly and accurately by the CSM model. In addition, the number of false chips is
reduced, and the workload in the stage of target discrimination is cut down greatly.

In addition to visual comparisons of saliency maps, the total computational time is calculated
for the CSM model and the other nine state-of-the-art models. All experiments in this paper are
implemented using Matlab 2014a and VS 2010. They are carried out on a 3.30 GHz Intel Core-i3 system
with 4 GB of RAM operating system. The time consumption of each model is displayed in Table 1.

Table 1. Comparison of the computational time.

Model CSM ITTI AIM GBVS Goferman LC HC FT SR PQFT

Time(s) 1.7219 0.7301 12.6740 7.0883 32.5659 0.0085 0.1323 0.2181 0.1395 0.2019
Code Matlab Matlab Matlab Matlab Matlab C++ C++ C++ Matlab Matlab

In Table 1, since the calculation is relatively simple and C++ code is used, the average computing
times of models LC and HC are the shortest. Compared with the processing speed of the models
in the spatial domain, the speeds of the models in the frequency domain are more time-efficient.
However, in terms of the detection effect, these models are weak at background suppression, as shown
in their saliency maps. Although the average processing time of the CSM model is 1.7219 s, it achieves
the best visual effect. The CSM model is mainly calculated with Matlab code. To achieve higher
computation speed, it will be transplanted to C++ with the use of multi-threading operation, as part of
our future work.

In addition to the comparisons above, we also employ the Recall and Precision to evaluate the
performances of different saliency models. Recall is computed as the ratio of correctly detected salient
regions to the ground-truth regions. Precision is calculated as the ratio of correctly detected saliency
regions to the detected salient regions from the saliency model. In terms of saliency detection, PQFT,
HFT and the CSM model are compared. After obtaining a detected saliency map S, the binary image of
the detected saliency map can be obtained by the threshold segmentation, denoted as SS. For an input
image, we manually mark its ground-truth map G. We have the following formulas.

R ecall = ∑ G× SS
∑ G

(17)

Pr ecision =
∑ G× SS

∑ SS
(18)

Given a saliency map, it is linearized into the [0, 255] range in the first place. Then, a set of binary
maps are obtained by varying the segmentation threshold value from 0 to 255. The Recall and Precision
fitting curves at each value of the threshold are shown in Figure 13a,b. Furthermore, the Recall versus
Precision (RP) curves are shown in Figure 13c and a reliable comparison is provided by these curves.

Based on the comparison in Figure 13c, the PQFT model shows high Precision but relatively poor
Recall, which indicates that its background suppression ability is stronger than that of HFT. However,
disconnected or incomplete detection regions may appear, and more false alarms may be introduced.
The HFT model has better integrity than the PQFT model. The region detected by the HFT model is
larger than the target itself, which leads to its low Precision but high Recall. If different targets vary
greatly in size, some relatively small and dim ship targets may be missed, which causes decreases in
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Recall. Compared with these models, the CSM model combines their merits and generates clearer
contour and more uniform salient regions. The CSM model clearly outperforms the other models and
has a better comprehensive performance.Remote Sens. 2017, 9, 280  17 of 23 
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Figure 13. Performance comparison: (a) Precision curves; (b) Recall curves; (c) RP curves.

There is an inverse relationship between Recall and Precision. Recall and Precision scores are not
discussed in isolation. After coarse segmentation, F-Measure, the harmonic mean of Precision and
Recall, is introduced to evaluate the performance of the saliency model as follows:

F−Measure =

(
1 + β2)× Precision× Recall

β2 × Precision + Recall
(19)

where β is a positive parameter to determine the importance of Recall over Precision. We set β = 1 in
our work to weigh Recall and Precision equally. After obtaining binarized maps, the average values of
Precision, Recall, and the F-Measure are calculated. A comparison between the CSM model and the
other nine models is given in terms of the three measures in Table 2. Note that the overall performance
of the CSM model is better than those of other saliency models.

Table 2. Comparison in terms of the three measures.

Model CSM ITTI AIM GBVS Goferman LC HC FT SR

Recall 0.9506 0.5102 0.4998 0.5718 0.5957 0.3291 0.2952 0.1087 0.6046
Precision 0.6173 0.1482 0.2921 0.4327 0.4944 0.1719 0.1257 0.1001 0.7751
F-Measure 0.7485 0.2297 0.3687 0.4926 0.5403 0.2258 0.1763 0.1042 0.6793

4.2. Discrimination Results

To evaluate the total performance of our method after discrimination, we test it in terms of the
accuracy ratio (Cr), missing ratio (Mr), and false alarm ratio (Far), defined as follows:

Cr =
Ntt
Nt

(20)

Mr =
Nt− Ntt

Nt
(21)

Far =
N f a

Ntt + N f a
(22)

where Nt is the total number of real ships. Ntt is the number of correctly detected ships, and Nfa is
the number of false alarms. The detection results are given in Table 3. Three unsupervised methods
proposed in [17–19] are selected for comparison with our method. Our method without discrimination
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(OMWOD) and our method with discrimination (OMWD) are also compared to test the performance
of the gradient feature descriptor. The gray images are tested in addition to the color images and the
methods for comparisons are abbreviated as follows: our method without discrimination (OMWODG)
and our method with discrimination (OMWDG).

Table 3. Comparison of the results of different methods.

Methods Nt Ntt Nfa Cr Far Mr

% % %

Method [17] 301 239 75 79.402 23.885 20.598
Method [18] 301 256 94 85.049 26.857 14.951
Method [19] 301 254 63 84.385 19.874 15.615

OMWOD 301 288 34 95.681 10.559 4.319
OMWD 301 282 15 93.688 5.050 6.312

OMWODG 301 280 46 93.023 14.11 6.977
OMWDG 301 271 21 90.033 7.192 9.967

Among the first five methods as listed in Table 3, it is easy to conclude that OMWD can achieve
better performance. Most ships are well detected, and the false alarm rate is the lowest. Method [17]
suffers from interference introduced in the process of obtaining the ship target. Despite the use
of wavelet transform for interference removal, the detection in complex sea backgrounds is still
unsatisfying. Method [19] can highlight abnormal signals of ship targets by analyzing the gray level
distribution histogram of the sea surface and identify targets based on the compactness and aspect
ratio. Compared with method [17], method [19] has superior performance. However, the identification
approach used in method [19] is simple and rough. The detection performance is affected greatly in
the case of textured sea. For mild sea surfaces, method [18] achieves higher Cr than methods [17,19],
while it obtains a poor Cr for complex sea surfaces. This occurs since method [18] lacks final ship
identification, whereby the number of false alarms detected would greatly increase. Compared with
the three methods above, thin cloud and fog can be suppressed effectively when OMWOD is used
exclusively. However, Far is still slightly higher when islands or heavy clouds are present. After the
target identification, as a benefit from the characteristics of the gradient feature, the false alarms are
greatly eliminated and most real ships are well identified. The Far of OMWD obviously decreased.
When the last two methods are tested on gray images, the total detection performance of OMWODG
and OMWDG slightly dropped compared with the test results on color images. The reason lies in the
representation ability of the original Lab features being better than that of the synthetic three-channel
color features, which may cause more false alarms. It is noted that the Cr values of OMWD and
OMWDG are slightly lower than those of OMWOD and OMWODG. The reason for this would be that
the shape of the ship target may be irregular and incomplete after fine segmentation, which may cause
errors in identifying the target and result in some real ships being missed. However, the Far values
of OMWD and OMWDG decreased greatly. Through this comprehensive analysis and comparison,
we conclude that the total detection performances are improved in OMWD and OMWDG.

In addition, for a ship chip with size 60 × 51, the average running times of coarse segmentation,
fine segmentation, Radon transform and gradient feature are 0.062, 0.011, 0.149 and 0.158 s, respectively.
In Figure 14, a set of detection examples are displayed, where, most false alarms are removed, whereas
the real ship targets are extracted after the discrimination. The regions containing real ships are marked
with red boxes.

Some detection results for gray images are shown in Figure 15. The first row contains gray
images. The second row contains their corresponding synthetic RGB images and their detection results.
The ships are detected and marked with white boxes. It is noted that the number and the locations of
ships are determined accurately.
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Figure 15. Detection results after discrimination: (a) gray images; (b) synthetic images.

4.3. Selection of Relaxation Parameters

To select appropriate relaxation parameters α1, α2 and γ, the following tests are designed and
illustrated. We vary one parameter each time and fix the other two to the aforementioned empirical
values. For each set of parameter values, we compute Cr and Far. When α1 is small, the determined
condition is strict, and the number of ships correctly discriminated is low. The corresponding Cr is
small. As a result of the high number of false alarms, Far is high. With the increase in α1, the criterion
is relaxed. Cr increases, and Far decreases. When α1 is very large, the number of false alarms is
high, and Far increases. γ reflects magnitude deviation between h1 and h5. If γ changes are smaller,
the determined constraint is more relaxed; otherwise, the condition is stricter. The Cr value increases
with the increase in γ, while Far decreases. α2 reflects the details of the conditions and has little effect
on the experimental result. Its value is affected by parameter γ. These three parameters are set to
the empirical values, which better balance the two indicators Cr and Far. The relationship curves are
shown in Figure 16. Based on the analysis above, the parameters are set to the following values after
the test: α1 = 0.6, α2 = 0.7 and γ = 0.65.



Remote Sens. 2017, 9, 280 20 of 23

Remote Sens. 2017, 9, 280  20 of 23 

 

 
(a) (b)

Figure 16. Cr and Far curves for different relaxation parameters: (a) Cr curves; (b) Far curves. 

5. Conclusions 

In this paper, a new hierarchical framework is proposed for detecting and extracting ships from 
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for color images but also gray images. Quality evaluations, both subjective and objective, of the 
detection performance are executed. Compared with state-of-the-art methods, our method reaches 
relatively high detection accuracy. In addition, it ensures a fairly low false alarm rate. Through 
optimization, the extraction of ship targets on large sea area can be completed quickly. Combined 
with the altitude information of Unmanned Airborne Vehicle (UAV) or satellite platforms, our 
method can further calculate the positions or headings of ships. Moreover, our method also lays the 
foundation for the classification and recognition of ship targets. There is certain significance in civil 
and military applications. 

However, segmentation is difficult in cases with very low-contrast and blurry sea backgrounds. 
The accuracy of segmentation of the ship hulls affects the identification performance in the 
discrimination stage. Thus, our main objective will be to improve the performance of segmentation 
and to thereby ensure high accuracy in target extraction. In addition, the deep neural network 
(DNN) presented by Tang [54] has become increasingly attractive, and we plan to seek possible use 
of it on multimodal object detection and recognition. Owing to the difficulty of constructing the 
DNN and the database of various ship targets, this will be left for future research. 
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5. Conclusions

In this paper, a new hierarchical framework is proposed for detecting and extracting ships from
optical remote sensing images, which includes saliency model improvement, fusion modification
with a self-adaptive threshold and target discrimination. To highlight ship targets against a complex
sea background, we improved the HFT model and PQFT model in terms of the color, frequency
domain transform and amplitude information. To generate clearer contour and more uniform salient
target regions, a combination of the saliency models is constructed which fuses the merits of the two
models through a self-adaptive threshold based on Entropy information. False alarms are effectively
suppressed by using our combined saliency map (CSM) model, whereas most real ship targets are
well preserved. Furthermore, to eliminate heavy clouds, islands, and possible false alarms, a novel
descriptor based on gradient features is introduced to characterize the ship target. As the outcome,
our method achieves robustness against scenes with clouds, islands and sea clutter and is effective in
the presence of ship size variation and ship wakes. Furthermore, it is effective not only for color images
but also gray images. Quality evaluations, both subjective and objective, of the detection performance
are executed. Compared with state-of-the-art methods, our method reaches relatively high detection
accuracy. In addition, it ensures a fairly low false alarm rate. Through optimization, the extraction
of ship targets on large sea area can be completed quickly. Combined with the altitude information
of Unmanned Airborne Vehicle (UAV) or satellite platforms, our method can further calculate the
positions or headings of ships. Moreover, our method also lays the foundation for the classification
and recognition of ship targets. There is certain significance in civil and military applications.

However, segmentation is difficult in cases with very low-contrast and blurry sea backgrounds.
The accuracy of segmentation of the ship hulls affects the identification performance in the
discrimination stage. Thus, our main objective will be to improve the performance of segmentation
and to thereby ensure high accuracy in target extraction. In addition, the deep neural network (DNN)
presented by Tang [54] has become increasingly attractive, and we plan to seek possible use of it on
multimodal object detection and recognition. Owing to the difficulty of constructing the DNN and the
database of various ship targets, this will be left for future research.
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