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Abstract: The aim of this study is to adapt and evaluate the effectiveness of a multi-temporal 
downscaled images technique for classifying the typical vegetation types of a reclaimed area. The 
areas reclaimed from estuarine tidal flats show high spatial heterogeneity in soil salinity 
conditions. There are three typical vegetation types for which the distribution is restricted by the 
soil conditions. A halophyte-dominated vegetation is located in a high saline area, grass vegetation 
is found in a mid- or low saline area, and reed/small-reed vegetation is situated in a low saline 
area. Multi-temporal satellite images were used to classify the vegetation types. Landsat images 
were downscaled to take into account spatial heterogeneity using cokriging. A random forest 
classifier was used for the classification, with downscaled Landsat and RapidEye images. 
Classification with RapidEye images alone demonstrated a lower level of accuracy than when 
combined with multi-temporal downscaled images. The results demonstrate the usefulness of a 
downscaling technique for mapping. This approach can provide a framework which is able to 
maintain low costs whilst producing richer images for the monitoring of a large and heterogeneous 
ecosystem. 

Keywords: vegetation classification; random forest; downscaling; multi-temporal image; 
cokriging; Saemangeum 

 

1. Introduction 

The accomplishment of many reclamation projects has changed tidal flats into agricultural 
areas on the West Sea coast of the Korean Peninsula. The Saemangeum is one of the largest 
reclamation projects in the Republic of Korea. The reclaimed areas have typical ecological 
characteristics. The soil salinity of the land is usually high, which leads to harsh conditions for 
plants, restricting the colonization of new plants and the development of vegetation. Until the soil 
salinity reaches a normal level, it is a strong driving force in regulating the distribution of vegetation 
communities within the area. The soil salinity in the area is continuously changing and 
heterogeneous [1,2], and as a result, it shapes the unique and dynamic characteristics of the 
ecosystems. 
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To understand the development and change of these vegetation communities, it is critical to 
determine the distribution of vegetation types that have different resistances to salinity. Studies of 
vegetation in reclaimed areas are relatively rare [1–5] in Korea compared to studies in salt marshes 
[6–10]. The studies have primarily focused on the relationship between the soil conditions and 
physiological traits of plants in reclaimed areas. Lee et al. [4] surveyed four tidal reclamation project 
areas and concluded that the distribution of plants was strongly restricted by the soil salinity. The 
clear relationship between the soil salinity and the distribution of vegetation was also found in the 
Saemangeum area [1,3]. Kim et al. [3] classified the vegetation types of the Saemangeum area as: (1) 
halophyte vegetation located in a high saline area (mean electrical conductivity (EC): 14 dSm-1), 
dominated by Salicornia europaea, Suaeda asparagoides, and S. japonica; (2) mixed halophyte 
vegetation located in mid saline areas (mean EC: 6.7 dSm-1), dominated by Phragmites communis, 
Puccinellia nipponica, and Carex pumila; and (3) low-saline vegetation located in low saline areas 
(mean EC: 3.0 dSm-1), dominated by diverse plants, including Aster subulatus, A. tripolium, and 
Echinochloa spp.. Despite the physiological relationships, there is a limited understanding of the 
ecosystem conditions in a spatial context because these studies were usually conducted at 
experimental sites [1–3,5]. 

Remote sensing is an effective method for estimating or mapping target quantities in a large 
area. It is cost-effective, rapid, and able to cover a large area. Remote sensing has also been 
extensively used to estimate vegetation in salt marshes [6,7,11–17], but there is little research on 
using remotely sensed data for reclaimed areas [18]. In salt marsh studies, many researchers have 
tackled classifying halophyte plant and/or vegetation types that share many common characteristics 
of vegetation in an area reclaimed from estuarine tidal flats. Some studies have focused on 
(multi-temporal) spectral differences [6,7,11,16,17], whilst others have concentrated on classification 
methods such as Neural Networks Classification [12] or the random forest method [19]. 

For the application of remote sensing techniques to be effective, remotely sensed data should 
have a strong connection to the target quantity or characteristics, in addition to the proper 
resolution, in order to take into account spatial variability. Vegetation in the Saemangeum is 
dominated by grass/herbaceous plants, and the biomass is low. The vegetation types show similar 
spectral responses, which makes it difficult to classify the types using spectral characteristics alone. 
Additionally, the vegetation patches are diverse in terms of size and shape. The patch sizes vary 
from several m2 to thousands of m2, and the shapes are irregular. To take into account spatial 
heterogeneity, it is important to select the proper resolution of the image. 

It is well known that the phenological traits of vegetation can be used to improve the accuracy 
of vegetation or plant species mapping [11,20–22]. The plants in the study area primarily appear 
after the rainy season (mid-June to mid-July), due to the dry soil conditions in the spring. The 
biomass reaches a maximum in late-August to mid-September. Gilmore et al. [11] found that 
information on phenological variability in the growing season was useful for distinguishing 
dominant marsh plant species. However, it is difficult to obtain multi-temporal images with a high 
resolution during the short growing season. If images with short revisit frequencies and coarse 
resolutions can be downscaled (i.e., increased in spatial resolution), the utility of the images can be 
effectively increased. 

The downscaling of imagery has gained attention in recent years, and many approaches have 
been developed (see Atkinson [23]). Among them, the use of cokriging for image sharpening 
provides several advantages. Cokriging has a well-established theoretical model and uses 
semivariograms and cross-variograms of two or more images of different resolutions [24–26]. 
Because cokriging is a generic tool, it is possible to include diverse types of data, such as topographic 
maps, thematic maps, or experimental data. Additionally, the downscaling cokriging method has 
demonstrated a lower error (mean error and mean squared error) than the method of using a high 
pass filter [24]. 

The objective of this study was to propose a modified approach to map vegetation in a 
reclaimed area using multi-temporal downscaled images. This study used cokriging methods to 
downscale Landsat imagery to the resolution of a RapidEye image. This study provides an effective 
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method for creating an accurate vegetation map, which is essential for monitoring and managing the 
ecosystem of the reclaimed Saemangeum area. 

2. Materials and Methods 

2.1. Study Area 

The Saemangeum is a reclaimed area that was created by the construction of a sea dike (33 km) 
across an estuarine tidal flat on the West Sea coast of South Korea (completed in April 2010). The 
dike encloses a total area of 401 km  (281 km  of land and 120 km  of fresh water reservoir). 
Although there are many reclaimed areas in Korea, the Saemangeum is unique because of its large 
scale and relatively long development period. These conditions allow large areas to remain under 
natural conditions, with very limited anthropogenic disturbance to the vegetation. It is worth noting 
that the soil is not imported from outside of the reclamation area, due to its large scale. The 
reclaimed land was created by lowering the water elevation level (EL). Since the end of 2010, the EL 
has been maintained at about −1.5 m (below sea level, Figure 1). At the EL, a large area of estuarine 
tidal flat (ca. 180 km ) became land [27], while some portions of the area remained natural. The 
study area was selected, based on the criteria of: (1) minimal anthropogenic disturbance; and (2) 
heterogeneity and typical vegetation type of the reclamation area (Figure 1). 

(a) (b)

Figure 1. Overview of the Saemangeum area: (a) 1 June 2009, 4-3-2 Landsat 5; (b) 5 October 2014, 
5-4-3 Landsat 8. The EL is maintained at approximately −1.5 m; insets show the location of the study 
area in Figure 2. 

2.2. Collecting Field Data 

The study area was approximately 3.5 km2. A total of 127 sample plots (each plot: 5 m × 5	m) 
were selected by simple random sampling (Figure 2) within the study area. A field survey was 
conducted in September 2014. We recorded the coverage of each species and dominant vegetation 
type within 25 m2 of the sample points and classified the typical vegetation types. There were three 
typical vegetation types: halophyte vegetation (HV), mid- to low saline vegetation (MLV), and 
reed/small-reed vegetation (Reed, Figure 3). A total of three randomly selected soil core samples (0–
5 cm depth) were collected from each sample point. The soil samples, which were air dried, crushed, 
and uniformly mixed, were sifted through a 2 mm sieve for EC and pH analysis and a 0.5 mm sieve 
for organic matter content analysis. The soil EC and pH were measured in saturated paste extract 
and saturated paste, respectively, according to the methods described by the NAAS [28]. The 
organic matter content of the soils was measured by Tyurin’s method. 
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(a) (b)

Figure 2. 1 September 2014, 5-3-2 RapidEye image of the study area; (a) southern part of the 
Saemangeum; (b) study area and 127 randomly selected sample points. 

 
(a) (b) 

(c) 

Figure 3. The typical vegetation types in Saemangeum, (a) HV dominated by Suaeda spp.; (b) MLV 
dominated by Aster tripolium and Carex scabrifolia; (c) Reed dominated by Phragmites communis and 
Calamagrostis epigeios. 
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2.3. Satellite Data Acquisition and Processing 

RapidEye and Landsat OLI (Operational Land Imager) satellite images were used. A RapidEye 
image was acquired on 1 September 2014. The RapidEye imagery is multispectral, with a red edge 
(690–730 nm) and blue (440–510 nm), green (520–590 nm), red (630–685 nm), and near-infrared (NIR, 
760–785 nm) bands. A level 2B RapidEye image was used, and the image was georeferenced to the 
Universal Transverse Mercator (UTM) coordinate system using the WGS 1984 datum with an 
accuracy of less than the root mean square of 0.01 pixels. The image was resampled to a 6 m × 6	m 
spatial resolution. Image processing was conducted with ERDAS Image software (version 9.1). 

Landsat 8 OLI images were acquired on 1 July and 5 October 2014. The Landsat 8 OLI blue 
(450–515 nm), green (525–600 nm), red (630–680 nm), and NIR (845–885 nm) bands were used for 
downscaling. The digital number (DN) values of the image were converted to reflectance with a 
multiplicative rescaling factor and an additive rescaling factor. Topographic correction was not 
necessary because the study area was very flat. The atmospheric correction was carried out with the 
Second Simulation of Satellite Signal in the Solar Spectrum (6S) model [29], using GRASS software 
[30]. 

2.4. Downscaling Cokriging 

The following description of downscaling cokriging is mainly based on the work of 
Pardo-Iguzquiz et al. [24]. All of the formulas and notations followed Pardo-Iguzquiz et al. [24]. The 
cokriged finer-spatial-resolution image (downscaled Landsat) of band k, calculated from a Landsat 
(band k) image and RapidEye (band l), is given by: 

= +  (1) 

where: 
 is a random variable (RV) of a pixel of areal size u (RapidEye), with the spatial location 

 and spectral band k estimated by cokriging. 
 is a RV of the pixel of the coarse spatial resolution image with areal size V (Landsat OLI) 

and spectral band k. N of these pixels are used. The weight assigned to the random variable of the 
i-th pixel is . The number of window pixels for Landsat (N) was nine (=3 × 3). 

 is a RV of the pixel of the fine spatial resolution image with areal size u (RapidEye) and 
spectral band l. M of these pixels are used. The weight assigned to the random variable of the j-th 
pixel is . The number of window pixels for RapidEye (M) was 25 (=5 × 5). 

The two sets of weights { ; i = 1,…,N} and { ; j = 1,…,M} are obtained through cokriging. To be 
optimal in the sense of giving a minimum variance unbiased estimator, the sum weights of the 
variable  must be 1 (∑ = 1), and the sum of the weights of the variable  must be 0 
(∑ = 0). The weights are calculated by formulizing the spatial structure of the image data and 
minimizing the unbiased estimation variance. 

There are two ways to address the local mean in the downscaling cokriging process. One is to 
consider non-stationarity (taking into account the variation of local mean) [26], and the other is to 
use a global model [24]. This study used a global model due to its ease of application and statistical 
reliability [24]. The point spread function (PSF) is important to consider when factoring in 
area-to-point kriging. A uniform PSF was applied in this study because there was little information 
available to formulate a specific PSF. The Fortran source code for downscaling cokriging (DISKORI) 
was obtained via the Computers and Geosciences website [31]. 

2.5. Classification of Vegetation Type 

The random forest classifier (RFC) proposed by Brieman [32] was applied to image 
classification because it is widely used in a range of fields and often yields good results [19,33–35]. 
The random forest algorithm (RF) is a type of decision tree classification. The RFC only has two 
parameters: the number of trees in the forest (number of bootstrap samples from the original data) 
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and the number of random variables at each node (the maximum number of this parameter is the 
number of predictors). The RFC can use diverse types of data with little restriction because it does 
not make specific assumptions about the data distribution. Additionally, it can easily handle a large 
number of input variables. 

R software [36] was used for image classification. The RFC was conducted with the 
‘randomForest’ package (version 4.6–10), which was implemented by Liaw and Wiener [37] based 
on the algorithm proposed by Brieman [32]. 

Classification was performed for different combinations of images (Table 1). In addition to the 
reflectance of image bands, the normalized difference vegetation index (NDVI) was used. The 
NDVI was computed with the following equation: NDVI = −+  (2) 

where  and  are the surface reflectance at the red and near infrared band, respectively. 

Table 1. Image bands used for classification. 

Input Images 
RF Model

1 2 3 4 5 6

RapidEye  
1 Sepetember 

Blue O O O O O O 
Green O O O O O O 
Red O O O O O O 

Red edge O O O O O  
NIR O O O O O O 

NDVI O O O  O O 

Downscaled 
Landsat  

1 July 

Blue  O  O O O 
Green  O  O O O 
Red  O  O O O 
NIR  O  O O O 

NDVI  O   O O 

Downscaled 
Landsat  

5 October 

Blue   O O O O 
Green   O O O O 
Red   O O O O 
NIR   O O O O 

NDVI   O  O O 
 

Training samples were selected, based on the 127 randomly selected field survey points. Pixels 
with centers within a 9 m radius of the training samples were assigned the same vegetation type as 
the training samples (Figure 4). The radius criterion was determined by only selecting adjacent 
pixels (considering the 6 m resolution of the RapidEye and downscaled Landsat imagery) to the 
sampling points. Diagonal pixels were selectively included, according to the distance from the 
sampling point. The total sample size was 915. The vegetation classification was trained using 
randomly selected 200 pixels from each of the three vegetation types (600 training data = 200 × 
three types). After building RF models, the models were used to predict the vegetation type of the 
remaining 315 pixels. An accuracy assessment of classifications was carried out by comparing the 
predicted vegetation type and field data. The confusion matrices for each model were created after 
classification. The overall accuracy, producer’s accuracy, user’s accuracy, and Cohens’ kappa [38] 
were calculated, as suggested by Congalton [39]. 
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Figure 4. A diagram of training samples. 

2.6. Characterisics of Vegetation Distribution 

After creating the vegetation map, the spatial characteristics of the vegetation were analyzed 
with R software [36]. The mean NDVI of each vegetation type was calculated with a ‘raster’ package 
(version 2.5–8). The patch statistics of the vegetation types were calculated with an ‘SDMTools’ 
package (version 1.1–221). 

3. Results 

3.1. Characteristics of Vegetation Types 

HV was located in the high saline area and was dominated by Suaeda spp. and/or Salicornia 
europaea. The plant density was generally low and very low in some locations. Although there were 
some areas that were rarely covered by plants, a bare soil class was not included, because it is 
difficult to clearly distinguish between a bare soil class and a halophyte-dominated vegetation class, 
due to a low plant density and biomass. Additionally, it is worth noting that the area is not 
degraded, but is in the process of being colonized by halophyte species. This means that the areas of 
low plant density will be colonized by HV in the next few years, until the condition has been eased 
for non-halophyte species colonization. The height of HV was less than 0.5 m. The MLV was located 
in the mid- or low saline areas and was dominated by diverse grass species, with an admixture of 
Conyza Canadensis and/or Carex scabrifolia. The height of MLV was 0.5~1.5 m. The plant density of 
MLV was higher than HV, but generally lower than Reed vegetation. Reed vegetation was located 
in the low saline area and was dominated by Phragmites communis and/or Calamagrostis epigeios. The 
plant density of this type was usually higher than the other types. The height of Reed vegetation 
was 1.5~2.5 m. 

3.2. Soil Environment of Vegetation Types 

The texture of all soil samples was clayey. The soil EC, pH, and organic matter (OM) of the 
vegetation are summarized in Table 2. The Wilcoxon rank sum test was used for the multiple 
comparison of mean, because the distributions were non-normal. The HV type showed the highest 
mean and standard deviation EC. The mean EC of the MLV and Reed vegetation types was 
significantly lower than HV. The high soil EC restricts the colonization of low- or non-saline plants. 
The pH was close to neutral in all vegetation types. However, the mean pH of HV was significantly 
lower than the other types. The mean OM was less than 2%. The low OM represents the poor soil 
conditions of the area. 
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Table 2. Environmental conditions of sample points according to the vegetation types. 
Means with different superscript letters indicate significant difference between vegetation types (p < 
0.05). (Mean: Arithmetic mean, SD: Standard deviation) 

 
HV MLV Reed 

Mean SD Mean SD Mean SD 
EC (dS/m) 9.7 a 5.5 1.3 b 2.1 0.5 b 0.4 

pH 7.3 b 0.5 7.8 a 0.6 7.6 a 0.4 
OM (%) 1.7 a 0.4 1.6 a 0.4 2.0 a 1.1 

3.3. Spectral Characteristics of Classification Classes 

The spectral signatures of the RapidEye image are shown in Figure 5. The reflectance of the 
MLV and Reed classes was almost identical in the blue, green, and red bands. There was a large 
overlap between the HV and MLV classes in the NIR band. Although the red edge band was 
expected to be useful for the detection of fine differences in the vegetation condition, the three 
vegetation types showed a similar reflectance value in this band. The similarities in spectral 
reflectance among classes can reduce classification separability. However, the water class very 
clearly showed a distinguishable signature in the mean and standard deviation, especially in the red, 
red edge, and NIR bands. 

 
Figure 5. Spectral signatures of training data (RapidEye image). Dot and error bar represents the mean 
and standard deviation of reflectance, respectively. 

3.4. Downscaling Cokriging 

In this study, Landsat images with a 30 m resolution were downscaled to a 6 m resolution, to 
account for the spatial heterogeneity of the vegetation distribution. To conduct downscaling 
cokriging, the variogram and cross-variogram were fitted. An isotropic exponential model was 
applied as the fitting model for all variograms, because there was little difference in the direction of 
the experimental variogram. A nested model with two exponential structures was used, because 
one experimental structure was not sufficient for fitting the experimental variogram. The variogram 
and cross-variogram of the NIR band are shown in Figure 6. The fitted (cross) variogram models are 
summarized in Table 3. As the nested structure was applied, two ranges were identified. The range 
of the first structure was 40 m and that of the second was 300 m. In the case of the RapidEye image, 
the partial sills of the two structures were relatively similar. In contrast, the partial sills of the 
second structure were much larger than those of the first one in the Landsat image. This difference 
is related to the resolution of the images. For example, the small variation of the first structure can 
be explained by its short range. A pair of two points, separated by a smaller distance than the first 
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range (40 m), was usually located in adjacent pixels or the same pixel. This leads to little difference 
in the values of the two points. 

(a) (b)

Figure 6. The variogram and cross-variogram between the Landsat 8 NIR band and RapidEye NIR 
band (image value = Reflectance × 1000). (a) Landsat (1 July); (b) Landsat (5 October). 

Table 3. Variogram models used in downscaling cokriging. 

RapidEye (1 Sepetember) Landsat (1 July) Cross-Variogram 

  
Nugget First 

Structure 
Second 

Structure 
Nugget First 

Structure 
Second 

Structure 
Nugget First 

Structure 
Second 

Structure 
Common Range  40 300  40 300  40 300 

Partial 
Sill 

Blue 0 195 270 0 10 270 0 5 260 
Green 0 340 300 0 30 490 0 30 350 
Red 0 470 390 0 60 800 0 30 510 
NIR 0 1540 3420 0 180 810 0 75 1660 

RapidEye (1 Sepetember) Landsat (5 October) Cross-Variogram 

  
Nugget 

First 
Structure 

Second 
Structure 

Nugget 
First 

Structure 
Second 

Structure 
Nugget 

First 
Structure 

Second 
Structure 

Common Range  40 300  40 300  40 300 

Partial 
Sill 

Blue 0 195 270 0 10 110 0 20 185 
Green 0 340 300 0 25 230 0 45 320 
Red 0 470 390 0 40 285 0 85 370 
NIR 0 1540 3420 0 155 1350 0 190 2325 

The plots of the reflectance value of the RapidEye image versus the downscaled Landsat 
images are shown in Figure 7. The reflectance of the July image was higher than that of the one 
produced in October, in all bands. However, it was lower than that of the RapidEye image in the 
blue and NIR bands (below of 1:1 line). The reflectance of the October image was more highly 
correlated with the RapidEye image in all bands. 

Figures 8 and 9 show the original Landsat images and downscaled images. Downscaled images 
provide spatially detailed information, especially in terms of the linear shape. The difference in the 
phenological traits of vegetation is easily found in these multi-temporal images. The color change of 
the images was variable, according to the location. Some areas remained unchanged or underwent 
little change, while other areas changed in color. 

distance

se
m

iv
ar

ia
nc

e
0

20
0

40
0

60
0

80
0

10
00

50 100 150 200 250 300

Landsat 8 (NIR).RapidEye (NIR)

0
10

00
20

00
30

00

RapidEye (NIR)

0
20

0
40

0
60

0

Landsat 8 (NIR)

distance

se
m

iv
ar

ia
nc

e
0

50
0

10
00

15
00

50 100 150 200 250 300

Landsat 8 (NIR).RapidEye (NIR)

0
10

00
20

00
30

00

RapidEye (NIR)

0
20

0
40

0
60

0
80

0
10

00

Landsat 8 (NIR)



Remote Sens. 2017, 9, 272  10 of 17 

 

 
Figure 7. Scatter plots of RapidEye reflectance vs. downscaled Landsat reflectance. The correlation 
coefficient between the values of RapidEye and downscaled Landsat are shown in the r value. 

(a) (b)

Figure 8. (a) Original Landsat image (1 July 2014, 5-4-3) and (b) images downscaled by cokriging 
(126.60°E, 35.73ºN). 
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(a) (b)

Figure 9. (a) Original Landsat image (5 October 2014, 5-4-3) and (b) images downscaled by cokriging 
(126.60°E, 35.73ºN). 

3.5. Result of Image Classification 

The RFC was used to test whether the number of trees (the size of the forest) or the number of 
variables investigated at each node affected the classification accuracy. The former did not create a 
significant change in the results when the number of trees was larger than 1000. The accuracy was 
also not substantially affected by the number of variables investigated at each node when the 
number of trees was larger than 1000. The RFC was carried out with 1000 trees and two variables 
were investigated at each node. 

A total of six RF models (Table 1) were tested for vegetation classification accuracy. The results 
are shown in Tables 4–9. The RF model (Model 1) that used a single RapidEye image yielded a 
poorer result (Overall Accuracy (OA) = 82.5%) than a multi-temporal image, which improved 
accuracy. Two images (RF model 2 (OA = 88.3%) and RF model 3 (OA = 87.9%)) were more efficient 
at producing accurate results. However, the best result was shown in the later three RF models (RF 
model 4–6) that used three image data, especially the RapidEye and Landsat images acquired in July 
and October, without the Rededge band (RF model 6 (OA = 92.4%) Table 9). There was no 
substantial difference in OA and 	  among the three RF models. 

Table 4. Confusion matrix of the RF model using RapidEye (RF model 1). 	 = 0.72 
Reference

HV MLV Reed User’s Accuracy 

Prediction 

HV 112 14 1 88.2% 
MLV 7 108 8 87.8% 
Reed 0 25 40 61.5% 

Producer’s accuracy 94.1% 73.5% 81.6% 82.5% 

Table 5. Confusion matrix of the RF model using RapidEye and Landsat (1 July) (RF model 2). 	= 0.81 
Reference

HV MLV Reed User’s Accuracy 

Prediction 

HV 115 15 0 88.5% 
MLV 3 120 6 93.0% 
Reed 1 12 43 76.8% 

Producer’s accuracy 96.6% 81.6% 87.8% 88.3% 
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Table 6. Confusion matrix of the RF model using RapidEye and Landsat (5 October) (RF model 3). 	 = 0.81 
Reference

HV MLV Reed User’s Accuracy 

Prediction 

HV 113 12 1 89.7% 
MLV 6 120 4 92.3% 
Reed 0 15 44 74.6% 

Producer’s 
accuracy 95.0% 81.6% 89.8% 87.9% 

Table 7. Confusion matrix of the RF model using all of the bands, excluding NDVI (RF model 4). 	 = 0.87 
Reference

HV MLV Reed User’s Accuracy 

Prediction 

HV 115 13 0 89.8% 
MLV 4 129 4 94.2% 
Reed 0 5 45 90.0% 

Producer’s accuracy 96.6% 87.8% 91.8% 91.7% 

Table 8. Confusion matrix of the RF model using all of the bands (RF model 5). 	 = 0.87 
Reference

HV MLV Reed User’s Accuracy 

Prediction 

HV 114 12 0 90.5% 
MLV 5 131 4 93.6% 
Reed 0 4 45 91.8% 

Producer’s accuracy 95.8% 89.1% 91.8% 92.1% 

Table 9. Confusion matrix of the RF model using all of the bands, excluding Red Edge band (RF 
model 6). 	 = 0.88 

Reference
HV MLV Reed User’s Accuracy 

Prediction 

HV 114 10 0 91.9% 
MLV 5 133 5 93.0% 
Reed 0 4 44 91.7% 

Producer’s accuracy 95.8% 90.5% 89.8% 92.4% 

The classification map of the RF model 6 is shown in Figure 10. The Reed patches were 
surrounded by MLV, and HV shared most of its boundaries with MLV. This pattern of vegetation 
distribution implies that there is a strong environmental gradient that has been spatially structured 
and regulates the vegetation distribution. Additionally, there were many linear patches located 
along narrow channels that were naturally formed when the area was an estuarine tidal flat. 

The percentage of each vegetation type was 39.8% (HV), 38.9% (MLV), and 21.3% (Reed) (Table 
10). Almost 40% of the total area was covered by halophyte-dominated vegetation. Another 40% was 
colonized by diverse grass/herbaceous plants. The rest of the area was occupied by relatively dense 
vegetation, such as reed and small-reed plants. However, the Reed class is prone to expand due to 
its rhizome roots system, which is competitive in grass/herbaceous communities. 

The pattern of NDVI reflects the plant phenology. Early July marks the beginning of the 
growing season. The leaf biomass increases until late summer or early autumn. After the peak, the 
NDVI decreases, due to the loss of leaf biomass. The pattern was the same for all vegetation types 
(Table 10). The Reed type had the highest NDVI, meaning that the Reed type may substantially 
contribute to the above ground biomass of the area, regardless of its relatively small coverage. 
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The area of the vegetation patch was calculated and the frequency is shown in Figure 11. There 
were many small patches. The number of patches smaller than 450 m2 (half of Landsat support area: 
30 m × 30 m) was 569. These small patches are difficult to identify using the Landsat image for the 
vegetation classification. Each pixel of Landsat was composed of 25 subpixels that contained 
information on the vegetation types. Among the Landsat pixels, only 47.7% were composed of a 
single vegetation type, 44.6% were composed of two vegetation types, and 7.7% were composed of 
three vegetation types. The highly diverse vegetation distribution needs finer image data to figure 
out the state of vegetation distribution. 

 
Figure 10. Classification map by the RF model 6 (126.60°E, 35.73°N). 
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Table 10. Zonal statistics of each vegetation type. 

 HV MLV Reed 
Area (%) 39.8 38.9 21.3 

Mean NDVI 
1 July (Downscaled Landsat 8) 0.188 0.281 0.463 

1 Sepetember (Rapid Eye) 0.262 0.441 0.527 
5 October (Downscaled Landsat 8) 0.216 0.389 0.491 

4. Discussion 

The study area became permanent land after the water level was lowered in 2010, and the soil 
condition has been changing. Kim et al. [3] reported the mean soil EC of halophyte vegetation as 14 
dSm-1, mixed vegetation as 6.7 dSm-1, and reed dominant vegetation as 3.0 dSm-1 in 2010. 
Compared to an earlier study, the soil EC showed lower levels in 2014. The mean soil EC of HV was 
9.5 dSm-1, MLV was 1.0 dSm-1, and Reed was 0.5 dSm-1. The rapid changes in the soil conditions 
during this relatively short period also influenced the distribution of vegetation. 

Although the characteristics and distribution of vegetation are crucial for determining the 
condition of the ecosystem, it is hard to create accurate vegetation maps of grass/herbaceous 
plant-dominated areas. There have been a number of studies that have tried to improve the 
accuracy of vegetation mapping using the phenological characteristics of plants [11,20–22]. Gilmore 
[11] suggested that it is possible to discriminate Phragmites spp. using single-date images acquired 
in the autumn season. However, it was difficult to classify Phragmites-dominated vegetation using 
timely acquired RapidEye imagery. More than 20% of the Reed class was misclassified (Table 4). 
The accuracy increased when the multi-temporal images were used in classification (Tables 5–8). 

The goal is to acquire multi-temporal images, especially in the growing season. This research 
applied cokriging to downscale Landsat imagery, which is easy to obtain, but has limited utility due 
to its relatively low spatial resolution. Sharpened Landsat imagery taken at different time periods 
improved the accuracy of the vegetation map. Cokriging is a useful approach because it is based on a 
well-established geostatistical theory and provides a framework to combine different types of data 
[23,24]. However, the application of the approach has been limited, until recently [40]. The results 
show that image downscaling using cokriging can be applied in vegetation studies and is useful for 
the analysis of multi-temporal data. 

In this study, a nested variogram model with two structures was used in cokriging. A nested 
model is useful for modelling the spatial structure with different scales [41,42]. Pardo-Iguzquiz et al. 
[24] also used a nested model for downscaling two images with different resolutions. The nested 
structure model fitted the data well, with a 0 nugget value. The partial sill of the first structure (short 
range) was much smaller than that of the second structure in a variogram model of a low resolution 
image. It is consistent with the results of this study. However, in both cases, further research is 
needed to quantify the uncertainty of using the nested model for downscaling images. 

Multi-temporal and multispectral data analysis raises the problem that the number of input 
variables can rapidly increase. The RFC can easily and effectively handle a large number of input 
variables [19,33,34,43]. For that reason, it was used in this study and yielded good results. 

5. Conclusions 

An area reclaimed from estuarine tidal flats forms a very unique and dynamic ecosystem. The 
creation of a large reclamation area in itself is a difficult challenge for ecosystem monitoring and 
management. 

This paper presents a novel approach for the classification of vegetation in reclaimed areas, 
using multi-temporal downscaled Landsat imagery along with RapidEye imagery. The study area 
has a typical environmental gradient of soil salinity and vegetation types, of which the distribution 
is mainly controlled by the environmental conditions. This study provides a framework to reduce 
spatial and temporal resolution by downscaling images with a low spatial and high temporal 
resolution, with an image that has a high spatial and low temporal resolution. Multi-temporal 
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downscaled images were compared to single high resolution images, to classify the vegetation type. 
The accuracy of the vegetation map using the multi-temporal downscaled image was approximately 
10% higher than the accuracy of the map using a single high resolution image. 

These results demonstrate that the downscaling technique is useful when a high resolution 
image is not available. This technique is also capable of increasing the utility of relatively low spatial 
resolution images, such as Landsat imagery. The results also confirmed the performance of the RFC. 
The analysis of multi-temporal multi-band data causes difficulties in handling high dimensional 
data. The RFC was very versatile and demonstrated a high performance when classifying the 
vegetation type with a large number of variables. 

The results of this study can be utilized in ecosystem monitoring for target objects that are 
difficult to distinguish with single, high spatial resolution imagery. The method can not only expand 
the time span of the data, but also increase the accuracy of mapping. It is also possible to apply this 
approach to the monitoring of ecosystems that witness rapid changes. 
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