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Abstract: An object-based method is proposed in this paper for change detection in urban areas
with multi-sensor multispectral (MS) images. The co-registered bi-temporal images are resampled to
match each other. By mapping the segmentation of one image to the other, a change map is generated
by characterizing the change probability of image objects based on the proposed change feature
analysis. The map is then used to separate the changes from unchanged areas by two threshold
selection methods and k-means clustering (k = 2). In order to consider the multi-scale characteristics of
ground objects, multi-scale fusion is implemented. The experimental results obtained with QuickBird
and IKONOS images show the superiority of the proposed method in detecting urban changes in
multi-sensor MS images.
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1. Introduction

Change detection involves identifying the changed ground objects between a given pair of
multi-temporal (so-called bi-temporal) images observing the same scene at different times [1,2].
The existing change detection methods can be classified into two classes: supervised and unsupervised.
Supervised change detection relies on prior information about the ground changes, but unsupervised
change detection automatically generates the difference between bi-temporal images to locate [3–6],
and even distinguish, changes [5–8].

Most of the unsupervised change detection methods are implemented pixel-wise [9,10], and the
classic approach is differencing the bi-temporal images and regarding the pixels with a larger
difference as changed [4]. Subsequently, a large number of pixel-based change detection methods have
been proposed, including methods based on image transformation [11–17], soft clustering [18–20],
and similarity measurement [21]. However, all of these methods presume spatial independence
among the image pixels, which is not appropriate for high-resolution images. This is because,
in high-resolution images, most of the ground objects cover sets of neighboring pixels, and some
information reliance exists among these pixels. Aiming at this drawback of pixel-based change
detection in high-resolution images, some researchers have attempted to use the spatial information
in a fixed-size image unit, together with the spectrum, to detect ground changes. Examples of such
methods include texture extraction [22–24], structural information extraction by Markov random fields
(MRFs) [4,25,26], and morphological filtering [27,28].
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In order to adapt to the irregular distribution of ground objects, object-based theory has been
introduced into change detection for high-resolution images [29]. Object-based theory regards some
of the spatially-neighboring and spectrally-similar pixels as a union (a so-called object) to detect
whether they are changed. It makes use of the spatial information in the high-resolution image,
together with the spectrum, and reduces the salt-and-pepper effect. In recent years, a large number of
object-based unsupervised change detection methods [30–33] have been proposed and have improved
the accuracy of change detection for high-resolution images. However, most of the existing object-based
change detection methods focus on using bi-temporal images acquired by the same sensor. In the
case of massive high-resolution images acquired by different sensors, it is necessary to utilize them
simultaneously to improve the information extraction. In order to detect changes in multi-sensor
remote sensing images, some researchers have addressed change measurement [34,35], and other
researchers have focused on the classification of changed features [6,9,36]. Robust change vector
analysis (RCVA) was proposed for multi-sensor change detection with very-high-resolution optical
satellite data, and this approach improves the robustness of CVA to different viewing geometries or
registration noise [37]. Unfortunately, these methods do not consider the incompatibility between
different band widths in bi-temporal multispectral (MS) images (Table 1). Moreover, some of the
object-based statistical features between bi-temporal images might be affected in the change detection,
since changes always arise from ground objects’ expansion, reduction, or property variation.

Table 1. Comparison between the bandwidth and spatial resolution of QuickBird and IKONOS images.

Blue Band
(um)

Green Band
(um)

Red Band
(um)

Near Infrared
band (um)

Spatial Resolution
(nadir, m)

QuickBird MS image 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.90 2.44
IKONOS MS image 0.445–0.516 0.506–0.595 0.632–0.698 0.757–0.853 3.28

In this paper, a novel object-based change detection method is proposed for multi-sensor MS
imagery. The consistency of bi-temporal image objects is achieved by segmenting one image and
mapping this segmentation to the other. Instead of comparing the objects’ spectral bands in the
bi-temporal images, we summarize the possible distribution between any image object and its relevant
changed areas, and we analyze the statistical feature variation of the change-related objects and define
a change feature to represent the change probability of the image objects in the bi-temporal MS images.
In order to locate the changed areas, binarization of the change map is implemented by thresholding or
binary unsupervised classification. In addition, in view of the multi-scale characteristics of the ground
objects, multi-scale fusion is carried out.

The rest of this paper is organized as follows. Section 2 describes the proposed method.
The experimental results and a discussion are presented in Sections 3 and 4, respectively. Section 5
provides our conclusion and future work directions.

2. Object-Based Change Analysis

The processing flow of the proposed method is shown in Figure 1.
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Figure 1. Processing flow of the proposed method.

2.1. Preprocessing

In the preprocessing of the proposed method, image resampling is conducted to unify the size of
the multi-sensor bi-temporal images. The bilinear resampling method is adopted to suppress the image
heterogeneity, with a reasonable computation cost [38]. When the basis image is the one with a higher
spatial resolution, the other image needs to be interpolated by up-sampling. Otherwise, the image is
degraded by down-sampling to the lower resolution of the basis image.

2.2. Image Segmentation

Image segmentation is implemented to obtain image objects for the subsequent object-based
processes. In this paper, there are three objectives for the image segmentation: (1) the bi-temporal
image objects should be in one-to-one correspondence; (2) the spatial distribution between changed
objects and their relevant changed areas needs to be preserved for the subsequent change feature
analysis (Section 2.3); and (3) the objects obtained from slight under-segmentation are better able to
fit the edges of the changed areas in the other image. Therefore, we propose to segment one of the
bi-temporal images and map the segmentation to the other. These two segmentation processes are
introduced below.

2.2.1. Segmentation of One Image

The segmentation of one image should take into account the spectral and spatial features of the
ground objects. In addition, as mentioned above, the image objects should be slightly under-segmented
to fit the edges of the changed areas in the other image. In this paper, we use the fractal net
evolution approach (FNEA) [39] for the image segmentation. This approach involves calculating
the heterogeneity (S f ) between each pair of neighboring objects according to Equation (1), which is
a weighted sum of the spectral and spatial criteria:

S f = ωspect.hspect. +
(
1−ωspect.

)
hspac. (1)

where 0 ≤ ωspect. ≤ 1 is the user-defined weight of the spectral feature. The sum of the weights of
the spectral and spatial criteria equals 1. If the spectral feature is emphasized in the segmentation,
the value of ωspect. should be larger. Conversely, the value of

(
1−ωspect.

)
, which is the weight of

the spatial feature, should be larger when the spatial feature is more important. hspect. and hspac. are,
respectively, the spectral and spatial heterogeneity, whose definition can be found in [39].

At the beginning of the segmentation, every pixel is regarded as an individual object.
After calculating the heterogeneity (S f ) of each pair of neighboring objects, they are compared to the
value of the scale, which can be regarded as the threshold of the heterogeneity:

(1) If S f < scale, this pair of objects are merged;
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(2) Otherwise, the objects are preserved as two individual objects.

This procedure is repeated until no objects can be merged, and the object map is obtained.
The scale is critical to the segmentation as it determines the size of the objects.

Using FNEA, only the scale parameter needs to be selected to adjust the size of the image objects.
We can make use of Definiens software (Definiens, München, Germany) to simply implement this
method. On the premise of efficiency, other segmentation methods [40,41] could also be adopted in the
proposed method.

2.2.2. Segmentation Mapping to the Other Image

In this paper, we simply map the segmentation of one image to the other. In this way,
the bi-temporal image objects are in one-to-one correspondence. In addition, the spatial distribution
between changed objects and their relevant changed areas are also preserved, which is critical for the
following change feature analysis.

2.3. Change Feature Analysis

After mapping the segmentation of one image to the other, there will be different spatial
distributions between a changed object and its relevant changed area. Figure 2 shows the possible
distributions of a changed object and its relevant changed area, in which the bold object represents
a changed object, and the object above it is one of its neighboring objects. The shadow area represents
the relevant changed area. Through analyzing the six possible distributions in Figure 2, we can deduce
the statistical feature variation of the changed objects as follows:

Denoting the bi-temporal images as L1 and L2 and mapping the segmentation of L1 to L2,

(a) if the relevant changed area is contained in the changed object, the standard deviation of the
changed object in L2 is larger than L1 (Figure 2a);

(b) if the relevant changed area covers parts of the changed object and its neighborhood, the contrast
between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2b);

(c) if the relevant changed area exactly covers the changed object, the ratio of contrast between the
changed object and its neighboring pixels in L1 and L2 is not equal to 1 (Figure 2c);

(d) if the relevant changed area covers the whole changed object and parts of its neighborhood, the
contrast between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2d);

(e) if the relevant changed area exactly covers the changed object and its neighboring object, the
contrast between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2e); and

(f) if the relevant changed area exceeds the changed object and its neighboring object, the contrast
between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2f).
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According to the above statistical feature variations of changed objects, we define a change feature
(Equations (2) and (3)) to describe the statistical features of the image objects in bi-temporal MS images.
The change feature adequately takes into account the statistical features of the image objects in the
bi-temporal images (acquired by the same or different satellites), which is an important innovation of
the proposed method.

If 0 < FiRatio−Ctr. < 1:

Fi =

FiRatio−Ctr. · ∑
∀(i,j)∈ObjNeii

FijCtr.

FiS.D.
(2)

otherwise:

Fi =

∑
∀(i,j)∈ObjNeii

FijCtr.

FiRatio−Ctr. · FiS.D.
(3)

where Fi is the change feature value for object i, and FiRatio−Ctr. is the ratio of contrast between object i
and its neighboring pixels in L1 and L2. FijCtr. is the contrast between object i and its neighboring pixel
(i, j), and FiS.D. is the standard deviation of object i. ObjNeii is the set of pixels adjacent to object i.

The ratio of contrast between the changed object and its neighboring pixels in L1 and L2 can be
defined as:

FiRatio−Ctr. =

∑
∀(i,j)∈ObjNeii

F1ijCtr.

∑
∀(i,j)∈ObjNeii

F2ijCtr.
(4)

where F1ijCtr. and F2ijCtr. represent the contrast between object i and its neighboring pixel (i, j) in L1
and L2, respectively.

The contrast between the changed object and one of its neighboring pixels can be defined as:

FijCtr. =
|µi − X(i, j)|
|µi + X(i, j)| (5)

where µi is the mean value of the pixels in object i, and X(i, j) is the value of the neighboring pixel (i, j).
The standard deviation of the changed object is defined as:

FiS.D. =

√√√√ 1
ni

∑
∀(i,j)∈Obji

(X(i, j)− µi)
2 (6)

where ni is the number of neighboring pixels in object i, and Obji is the set of pixels in object i.
According to the proposed change feature of image objects, there are three statistical factors

related to the changes:

(1) the ratio of contrast between any object and its neighboring pixels in L1 and L2;
(2) the sum of contrast between any object and each of its neighboring pixels; and
(3) the standard deviation value of any object.

In other words, if any image object is related to local changes, one of these three factors would
vary between the bi-temporal images, and the proposed change feature of this object in L2 would be
less in L1. Consequently, the change map in L2 can be generated by representing each object with the
change probability:

P2i = (F1i − F2i)/F1i (7)
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2.4. Combining the Change Maps

In order to preserve the change information as much as possible, the bi-temporal images take
turns to be segmented and mapped to each other. The pair of change maps is combined as:

Pcom.i = ω2 · P2i + ω1 · P1i (8)

where Pcom.i is the combined change probability of object i. P2i and P1i represent the change probabilities
of object i by respectively segmenting L1 and L2 and mapping them to each other. ω1 and ω2 are
the weights of the change maps. Subsequently, the combined change map can be used for locating
the changes. The combination ratio of change maps Rcom. is an important parameter in this method,
which is confirmed in the experiments (Section 3).

Rcom. = ω2/ω1 (9)

2.5. Change Locating

The changes are located by discriminating them from unchanged areas in the combined change
map. Since the combined change map represents the change probability of each gray-level image
object, the change locating can be realized by setting a threshold to divide the map into two parts,
or applying a binary unsupervised classification method. In this paper, two threshold selection
techniques, Otsu’s thresholding method [42] and “threshold selection by clustering gray levels of
boundary” [43], and k-means clustering [44] (k = 2) are used to extract the changes in the combined
change map. These methods could also be replaced by other thresholding or clustering methods [45–47],
in which [45] effectively improved the band selection of hyperspectral imagery concerning on dual
clustering. However, it is confirmed to have little effect on the proposed method (see Section 3).

(1) Otsu’s thresholding method

Otsu’s thresholding method is implemented by searching for the optimal threshold to maximize
the discrimination criterion and achieve the greatest separability of classes. The criterion is defined as:

C =
[µT ·ω(k)− µ(k)]2

ω(k) · [1−ω(k)]
(10)

where C is the criterion value of an image unit (pixel or object), and µT is the mean of the gray levels
in the image. ω(k) and µ(k) are the zeroth- and first-order cumulative moments of the histogram up
to the k-th gray level, respectively. The optimal threshold is obtained by maximizing the value of C.
In this paper, Otsu’s thresholding method is used to find the optimal threshold to separate the changes
and unchanged areas in the combined change map.

(2) Threshold selection by clustering gray levels of boundary

The threshold selection by clustering gray levels of boundary method involves approximating
the mean of the discrete sample pixels lying on the boundary and separating the image into objects
and background. The image is divided into square grids, and classified into edge cells intersected by
boundary and non-edge cells. Mathematically, the boundary of the image can be represented as:{

l(x, y) = 0
‖∆ f (x, y)‖ ≥ Te

(11)

where l(x, y) and ‖∆ f (x, y)‖ are the Laplacian and gradient magnitude functions of pixel (x, y),
respectively. If any edge of an edge cell is intersected by the boundary, the edge has the
following properties:
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(a) its two vertices (p1 and p2) are a pair of zero-crossing points, namely, l(p1) · l(p2) < 0; and
(b) its two vertices (p1 and p2) both have high gradient values. For a predefined gradient threshold

T̃e, g(p1) + g(p2) ≥ 2 · T̃e.

In this way, the intersected pixels of edge cells on the boundary can be obtained. Their positions
and gray values are computed by linear interpolation of the two vertices on the edge. These intersected
pixels are regarded as the discrete sample pixels on the image boundary. The mean of their gray values
is used as the threshold for the image segmentation. In this study, in order to divide the combined
change map into changed and unchanged classes, this threshold selection method is used to find
a bi-level threshold in the feature map.

(3) K-means clustering

K-means clustering is a classical unsupervised classification method. It involves clustering image
pixels according to the similarity of their gray levels. The number of clusters depends on the specific
application and is defined by the user. In this paper, k-means clustering (k = 2) is used to classify the
combined change map—a gray-level image—into two classes of changed and unchanged areas.

2.6. Multi-Scale Fusion

Considering the multi-scale characteristic of ground objects, multi-scale fusion [30] is applied in
the proposed method. The multi-scale fusion is implemented by voting from the single-scale change
detection maps. Firstly, we choose an appropriate interval for the segmentation scale, which needs to
cover most of the image objects’ sizes. We repeat the processes of the proposed method from steps 2.1
to 2.5 (in Figure 1) by increasing the scale with a constant step size, and we obtain a set of single-scale
change detection maps. The image objects in these maps only have two values—0 and 1—which,
respectively, mean unchanged and changed objects. The sum of the single-scale change detection maps
is calculated as:

Mi =
n

∑
j=1

Sji (12)

where Sji is the value of object i in single-scale change detection map j. Mi is the sum of object i in all of
the single-scale change detection maps, and n is the number of single-scale change detection maps.
The multi-scale change detection map is defined as:

Fi =

{
1 If Mi > Tf
0 Otherwise

, Tf = 0, 1, . . . , n− 1 (13)

where Fi is the value of image object i in the multi-scale change detection map, in which 0 and 1,
respectively, mean unchanged and changed objects. Tf is the threshold of the multi-scale fusion.

In this way, if an image object is changed in more than Tf single-scale change detection maps, it is
recognized as changed after the multi-scale fusion. Especially, the changed areas after the multi-scale
fusion are the sum and the intersection of the changes in all the single-scale change detection maps,
when Tf is equal to 0 and 1, respectively.

In the experiments described in Section 3, the optimal result of the multi-scale fusion is the sum
of changes in all the single-scale change detection maps, in which Tf is equal to 0.

2.7. Accuracy Assessment

In this paper, false alarms, missed alarms, and overall errors are used to assess the accuracy of the
urban change detection. False alarms mean the ratio of unchanged pixels wrongly detected as changed,
and missed alarms are the ratio of changed pixels omitted in the change detection. Consequently,
overall errors, which is the integrated ratio of the wrongly detected and omitted changed pixels in the
image, estimates the effectiveness of the change detection method [30].
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Furthermore, in order to validate the effectiveness of the proposed method, it was compared with
some of the existing methods. The most important innovations of the proposed method are that it
takes into account the incompatibility between different bandwidths and uses an object-based change
measure in the multi-sensor MS images. Since there are no other object-based change detection methods
for multi-sensor images, we chose to compare the proposed method with the method proposed in [35],
which utilizes some features that are invariant to change in the illumination conditions to undertake
change detection in multi-sensor images.

3. Experiments

3.1. The First Study Area

The first study area covers the campus of Wuhan University in Hubei province of China.
The bi-temporal images were respectively acquired by the QuickBird satellite in April 2005 (L1)
and the IKONOS satellite in July 2009 (L2). In order to preserve the spectral information, the MS
images were used in the experiments. Although there were four bands in both images, their spectral
and spatial characteristics differed as they were acquired by different sensors (Table 1). Either L1 or L2
can be viewed as the basis image in the image resampling preprocessing.

1. L1 as the basis image

With L1 as the basis image, L2 was interpolated to the spatial resolution of L1. Figure 3 shows the
bi-temporal images after the interpolation, which are both 400 × 400 pixels. In order to avoid the effects
of vegetation phenology and solar elevation, the vegetation and shadow were extracted and masked out.
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Figure 3. Interpolated bi-temporal images of the first study area. (a) Acquired by QuickBird in April
2005 (L1); and (b) acquired by IKONOS in July 2009 (L2).

By mapping the segmentation of L1 to L2, a change map was generated by calculating the
value of the change probability (Equation (7)) for each object. The other change map was obtained
by exchanging the order of the two images. With different ratios for combining these maps,
the characteristics of the combined changed maps varied.

In order to determine the change locations, it is crucial to discriminate the changes from the
unchanged areas in the combined change map. The two threshold selection techniques and k-means
clustering (k = 2) (introduced in Section 2.5) were used to analyze the combined change map. The results
of the three methods are shown in Table 2. In this table, the left, middle, and right parts, respectively,
show false, missed alarms, and overall errors among the three methods with different combining ratios
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of change maps. It can be seen that the overall errors of the three methods are similar. The k-means
clustering (k = 2) obtains the smallest number of errors, and the threshold selection by clustering
gray levels of boundary method performs a little better than Otsu’s thresholding method. Moreover,
with the increase of the combination ratio of the change maps, the overall errors of each method
decrease. This is because, in Equation (8), P2 and P1 represent the change probability of L2 and L1,
which was mapped from the segmentation of L1 and L2, respectively. As L2 was interpolated to
the spatial resolution of L1, the segmentation of L1 was more accurate than the segmentation of L2.
Therefore, a larger weight of P2 leads to a higher accuracy of change feature analysis.

Table 2. Comparison between the change detection results of the three thresholding and clustering
methods, with L1 as the basis image in the first study area (scale = 100).

Combination
Ratio of
Change
Maps

False
Alarm
_Otsu

False
Alarm
_Edge

False
Alarm

_K-Means

Missed
Alarm
_Otsu

Missed
Alarm
_Edge

Missed
Alarm

_K-Means

Overall
Error

s_Otsu

Overall
Errors
_Edge

Overall
Errors

_K-Means

1:9 1.47% 1.52% 2.04% 5.57% 4.88% 3.65% 7.04% 6.39% 5.69%
2:8 1.35% 1.41% 1.91% 5.54% 4.82% 3.43% 6.89% 6.23% 5.34%
3:7 1.28% 1.36% 1.89% 5.52% 4.80% 3.38% 6.80% 6.16% 5.27%
4:6 1.24% 1.31% 1.66% 5.38% 4.76% 3.24% 6.62% 6.07% 4.90%
5:5 1.15% 1.25% 1.69% 5.38% 4.70% 2.93% 6.54% 5.94% 4.63%
6:4 1.07% 1.13% 1.70% 4.95% 4.64% 2.88% 6.02% 5.77% 4.58%
7:3 0.98% 1.05% 1.72% 4.73% 4.34% 2.86% 5.70% 5.39% 4.59%
8:2 0.96% 1.08% 1.70% 4.55% 4.20% 2.77% 5.51% 5.27% 4.47%
9:1 0.94% 1.04% 1.66% 4.16% 3.86% 2.42% 5.10% 4.89% 4.08%

The results are visually compared in Figure 4, in which the white and black regions, respectively,
represent the changed and unchanged areas. The results of the three methods are similar, but the
number of false alarms for k-means clustering (k = 2) is slightly more than for the other two methods,
and the missed alarms are fewer in number, especially in the road areas.

According to the spatial resolution and the objects’ sizes in the bi-temporal images after
preprocessing, the scale interval and step size increase were set as [10, 150] and 10, respectively.
The results of the change feature analysis differ with the varying segmentation scales (Figure 5), and
the optimal scale is around 100. Considering the multi-resolution characteristics of ground objects,
multi-scale fusion is applied in the proposed method, and is realized by voting from the single-scale
binary change maps. Figure 6 shows the accuracy of the k-means clustering (k = 2) after the multi-scale
fusion. The overall errors are the lowest when Tf in Equation (13) is 0, which means that the optimal
multi-scale fusion is the sum of the changes in all of the single-scale change detection maps.
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Figure 4. The change detection maps resulting from: (a) Otsu’s thresholding method, (b) threshold
selection by clustering gray levels of boundaries, and (c) k-means clustering (k = 2), compared with
(d) the reference image, with L1 as the basis image in the first study area (scale = 100).
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Figure 5. Overall errors of change detection with different segmentation scales, with L1 as the basis
image in the first study area.

The accuracies of both the single-scale and multi-scale proposed method are shown in Table 3.
As the multi-scale fusion integrates all the single-scale change maps, there are more false alarms
but fewer missed alarms than for the optimal single-scale method. Comparing the overall errors,
the multi-scale version is more accurate.

Table 3. Comparison between the change detection results of the single-scale and multi-scale proposed
method, with L1 as the basis image in the first study area.

False Alarms_Kmeans Missed Alarms_Kmeans Overall Error_Kmeans

The optimal scale = 100 1.66% 2.42% 4.08%
Multi-scale: 10, 20, . . . , 150 2.53% 0.81% 3.33%
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Figure 6. Overall errors of change detection using different multi-scale fusion thresholds, with L1 as
the basis image in the first study area.

Moreover, in order to validate the effectiveness of the proposed change detection method for
multi-sensor MS imagery, it was compared with the method proposed in [35]. In Figure 7, the white
and black regions represent the changed and unchanged areas, respectively. It can be seen that the
proposed method effectively decreases the false alarms and suppresses the salt-and-pepper noise in
the changed areas. As there are great differences in the visual results, the quantitative assessment and
comparison are omitted. The time costs of the two methods were both less than two minutes using
MATLAB Software (Mathworks, Natick, MA, USA) on a personal computer with 1.80 GHz CPU and
8.00 GB RAM.Remote Sens. 2017, 9, 252  12 of 20 
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2. L2 as the basis image

In this experiment, L2 was used as the basis image in the preprocessing. Having a higher spatial
resolution, L1 was degraded to the same resolution as L2. Figure 8 shows the bi-temporal images
after the down-sampling, which are both 240 × 240 pixels. The vegetation and shadow were again
masked out.
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Figure 8. Degraded bi-temporal images of the first study area: (a) acquired by QuickBird in April 2005
(L1) and (b) acquired by IKONOS in July 2009 (L2).

In the analysis of the combined change map, the two threshold selection methods and k-means
clustering (k = 2) were again used. The results are shown in Table 4. In this table, the left, middle,
and right parts, respectively, show false, missed alarms, and overall errors among the three methods
with increasing ratio of P2. It can be seen that the overall errors of the three methods are again similar.
The k-means clustering (k = 2) obtains the least number of errors, and the threshold selection by
clustering gray levels of boundary method performs slightly better than Otsu’s thresholding method.
Figure 9 shows a visual comparison of the results, in which the white and black regions represent
the changed and unchanged areas, respectively. The results of the three methods are again similar,
and the k-means clustering (k = 2) obtains slightly fewer missed alarms than the two threshold selection
methods, which is the same as the result of the experiment with L1 as the basis image.

Table 4. Comparison between the change detection results of the three thresholding and clustering
methods, with L2 as the basis image in the first study area (scale = 50).

Combination
Ratio of
Change
Maps

False
Alarm
_Otsu

False
Alarm
_Edge

False
Alarm

_K-means

Missed
Alarm
_Otsu

Missed
Alarm
_Edge

Missed
Alarm

_K-means

Overall
Errors
_Otsu

Overall
Errors
_Edge

Overall
Errors

_K-means

1:9 0.10% 0.10% 0.13% 1.20% 1.09% 0.73% 1.30% 1.19% 0.86%
2:8 0.10% 0.10% 0.13% 1.28% 1.11% 0.74% 1.38% 1.21% 0.87%
3:7 0.10% 0.10% 0.14% 1.28% 1.13% 0.80% 1.38% 1.23% 0.93%
4:6 0.12% 0.11% 0.14% 1.42% 1.28% 0.80% 1.53% 1.39% 0.94%
5:5 0.12% 0.10% 0.14% 1.47% 1.30% 0.81% 1.58% 1.40% 0.94%
6:4 0.12% 0.10% 0.14% 1.50% 1.31% 0.94% 1.62% 1.41% 1.07%
7:3 0.12% 0.11% 0.14% 1.52% 1.33% 1.02% 1.64% 1.44% 1.16%
8:2 0.13% 0.09% 0.17% 1.52% 1.39% 1.06% 1.65% 1.48% 1.23%
9:1 0.13% 0.10% 0.17% 1.52% 1.38% 1.09% 0.00% 1.48% 1.26%

However, it is worth noting that the overall errors increase with the decreasing combination ratio
of P1. This is probably because the down-sampling of L1 resulted in the loss of some valuable image
information. As a result, the change map of P1, which was generated by the change feature analysis of
L1 mapped from the segmentation of L2, was more accurate than the other change map. Therefore,
a larger weight of P1 in the combined change map leads to a higher accuracy. From the results of these
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experiments, we can conclude that the accuracy of the change analysis is improved by increasing the
weight of the change map which is generated by mapping the segmentation of the basis image.
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Figure 9. The change detection maps resulting from (a) Otsu’s thresholding method, (b) threshold 
selection by clustering gray levels of boundary, and (c) k-means clustering (k = 2), compared with (d) 
the reference image, with L2 as the basis image in the first study area (scale = 50). 

According to the spatial resolution and the objects’ sizes in the bi-temporal images after 
preprocessing, the scale interval and step size increase were set as [10, 100] and 10, respectively. 
Figure 10 shows the results of the proposed single-scale method using different segmentation scales. 
The optimal scale is 50. As can be seen in Figure 6, the overall errors are the lowest when Tf in 

Figure 9. The change detection maps resulting from (a) Otsu’s thresholding method, (b) threshold
selection by clustering gray levels of boundary, and (c) k-means clustering (k = 2), compared with
(d) the reference image, with L2 as the basis image in the first study area (scale = 50).

According to the spatial resolution and the objects’ sizes in the bi-temporal images after
preprocessing, the scale interval and step size increase were set as [10, 100] and 10, respectively.
Figure 10 shows the results of the proposed single-scale method using different segmentation scales.
The optimal scale is 50. As can be seen in Figure 6, the overall errors are the lowest when Tf in
Equation (13) is 0. In addition, Table 5 shows the improvement of the multi-scale fusion with Tf equal
to 0, which was realized by k-means clustering (k = 2).

Remote Sens. 2017, 9, 252  14 of 20 

 

Equation (13) is 0. In addition, Table 5 shows the improvement of the multi-scale fusion with Tf equal 
to 0, which was realized by k-means clustering (k = 2). 

Figure 10. Overall errors of the change detection with different segmentation scales, with L2 as the 
basis image in the first study area. 

Table 5. Comparison between the change detection results of the single-scale and multi-scale 
proposed method, with L2 as the basis image in the first study area. 

 False Alarms
_Kmeans 

Missed Alarms
_Kmeans 

Overall Errors 
_Kmeans 

The optimal scale = 50 0.13% 0.73% 0.86% 
Multi-scale: 10, 20, …, 100 0.15% 0.52% 0.67% 

In Figure 11, the proposed method is compared with the method proposed in [35]. The white 
and black regions represent the changed and unchanged areas, respectively. It can be seen that the 
proposed method is better able to detect the changes in an urban area with multi-sensor MS images. 
It suppresses the missed alarms in the changed areas and decreases the false alarms. As there is a 
significant difference in the visual results, the quantitative assessment and comparison are omitted. 
The time costs of the two methods were both about one minute using MATLAB Software 
(Mathworks, Natick, MA, USA) on a personal computer with 1.80 GHz CPU and 8.00 GB RAM. 

 
(a) (b)

Figure 11. Change detection maps resulting from (a) the proposed multi-scale k-means method and 
(b) the method using varying geometric and radiometric properties [35], with L2 as the basis image 
in the first study area (scale = 50). 

Comparing the two sets of experiments in the first study area, the accuracy is higher in the results 
with L2 as the basis image. This is probably due to the lower spatial resolution of the basis image. 

1200.00

1300.00

1400.00

1500.00

1600.00

10 20 30 40 50 60 70 80 90 100

O
ve

ra
ll 

Er
ro

rs

segmentation scale

Figure 10. Overall errors of the change detection with different segmentation scales, with L2 as the
basis image in the first study area.
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Table 5. Comparison between the change detection results of the single-scale and multi-scale proposed
method, with L2 as the basis image in the first study area.

False Alarms_Kmeans Missed Alarms_Kmeans Overall Errors_Kmeans

The optimal scale = 50 0.13% 0.73% 0.86%
Multi-scale: 10, 20, . . . , 100 0.15% 0.52% 0.67%

In Figure 11, the proposed method is compared with the method proposed in [35]. The white
and black regions represent the changed and unchanged areas, respectively. It can be seen that the
proposed method is better able to detect the changes in an urban area with multi-sensor MS images.
It suppresses the missed alarms in the changed areas and decreases the false alarms. As there is
a significant difference in the visual results, the quantitative assessment and comparison are omitted.
The time costs of the two methods were both about one minute using MATLAB Software (Mathworks,
Natick, MA, USA) on a personal computer with 1.80 GHz CPU and 8.00 GB RAM.
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Figure 11. Change detection maps resulting from (a) the proposed multi-scale k-means method and
(b) the method using varying geometric and radiometric properties [35], with L2 as the basis image in
the first study area (scale = 50).

Comparing the two sets of experiments in the first study area, the accuracy is higher in the results
with L2 as the basis image. This is probably due to the lower spatial resolution of the basis image.

3.2. The Second Study Area

In order to further verify the proposed method, it was also applied to images from another area
in the south of Wuhan, Hubei province, China. The bi-temporal images were respectively acquired
by QuickBird in April 2002 (L1) and by IKONOS in July 2009 (L2). L2, with the lower resolution,
was regarded as the basis image in the preprocessing, and L1 was degraded by down-sampling.
The images after reprocessing, with a size of 240 × 240 pixels, are shown in Figure 12. The vegetation
and shadow were, again, masked out to avoid the effects of vegetation phenology and solar elevation.

As the spatial resolutions were the same and the ground objects of the urban area were similar to
those of the first study area, the segmentation scale was again set to 50. The results of the two threshold
selection methods and k-means clustering (k = 2) are compared in Table 6, with a decreasing P1 ratio.
In this table, the left, middle, and right parts, respectively, show false, missed alarms, and overall
errors among the three methods with decreasing ratio of P1. The accuracies of the three change locating
methods are again similar. K-means clustering (k = 2) performs the best, and the threshold selection by
clustering gray levels of boundary method performs slightly better than Otsu’s thresholding method,
which is the same as the first study area. As with the results in the first study area, the accuracy of
the proposed method is improved by increasing the weight of P1, which is generated by mapping the
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segmentation of the basis image of L2. Therefore, it can be concluded that if the weight of the change
map, which is mapped from the segmentation of the basis image, is larger than the other, the accuracy
of the proposed method increases.

Remote Sens. 2017, 9, 252  15 of 20 

 

3.2. The Second Study Area 

In order to further verify the proposed method, it was also applied to images from another area 
in the south of Wuhan, Hubei province, China. The bi-temporal images were respectively acquired 
by QuickBird in April 2002 (L1) and by IKONOS in July 2009 (L2). L2, with the lower resolution, was 
regarded as the basis image in the preprocessing, and L1 was degraded by down-sampling. The 
images after reprocessing, with a size of 240 × 240 pixels, are shown in Figure 12. The vegetation and 
shadow were, again, masked out to avoid the effects of vegetation phenology and solar elevation. 

 
(a) (b)

Figure 12. Preprocessed bi-temporal images of the second study area: (a) acquired by QuickBird in 
May 2002 (L1) and (b) acquired by IKONOS in July 2009 (L2). 

As the spatial resolutions were the same and the ground objects of the urban area were similar 
to those of the first study area, the segmentation scale was again set to 50. The results of the two 
threshold selection methods and k-means clustering (k = 2) are compared in Table 6, with a decreasing 
P1 ratio. In this table, the left, middle, and right parts, respectively, show false, missed alarms, and 
overall errors among the three methods with decreasing ratio of P1. The accuracies of the three change 
locating methods are again similar. K-means clustering (k = 2) performs the best, and the threshold 
selection by clustering gray levels of boundary method performs slightly better than Otsu’s 
thresholding method, which is the same as the first study area. As with the results in the first study 
area, the accuracy of the proposed method is improved by increasing the weight of P1, which is 
generated by mapping the segmentation of the basis image of L2. Therefore, it can be concluded that 
if the weight of the change map, which is mapped from the segmentation of the basis image, is larger 
than the other, the accuracy of the proposed method increases. 

Table 6. Comparison between the change detection results of the three thresholding and clustering 
methods, with L2 as the basis image in the second study area (scale = 50). 

Combination 
Ratio of Change 

Maps 

False 
Alarm 
_Otsu 

False 
Alarm 
_Edge 

False 
Alarm_ 

K-
Means 

Missed 
Alarm 
_Otsu 

Missed 
Alarm 
_Edge 

Missed 
Alarm_ 

K-
Means 

Overall 
Errors 
_Otsu 

Overall 
Errors 
_Edge 

Overall 
Errors_ 

K-
Means 

1:9 0.30% 0.28% 0.36% 1.66% 1.52% 1.00% 1.95% 1.80% 1.37% 
2:8 0.31% 0.38% 0.42% 1.67% 1.51% 1.02% 1.98% 1.89% 1.44% 
3:7 0.35% 0.39% 0.40% 1.68% 1.50% 1.07% 2.03% 1.90% 1.47% 
4:6 0.35% 0.38% 0.40% 1.72% 1.53% 1.08% 2.07% 0.00% 1.48% 
5:5 0.36% 0.29% 0.35% 1.76% 1.67% 1.14% 2.11% 1.95% 1.50% 
6:4 0.36% 0.36% 0.40% 1.82% 1.70% 1.10% 2.17% 2.06% 1.50% 
7:3 0.36% 0.35% 0.40% 1.84% 1.74% 1.15% 2.20% 2.09% 1.54% 
8:2 0.38% 0.35% 0.38% 1.89% 1.77% 1.20% 2.27% 2.12% 1.58% 
9:1 0.44% 0.34% 0.39% 1.94% 1.81% 1.22% 2.38% 2.16% 1.61% 

The binary change maps of the three methods are shown in Figure 13, in which the white and 
black regions represent the changed and unchanged areas, respectively. Compared with the reference 
image, the results of the three methods are similar, and the k-means clustering (k = 2) obtains the least 
number of missed alarms. 

Figure 12. Preprocessed bi-temporal images of the second study area: (a) acquired by QuickBird in
May 2002 (L1) and (b) acquired by IKONOS in July 2009 (L2).

Table 6. Comparison between the change detection results of the three thresholding and clustering
methods, with L2 as the basis image in the second study area (scale = 50).

Combination
Ratio of
Change
Maps

False
Alarm
_Otsu

False
Alarm
_Edge

False
Alarm

_K-Means

Missed
Alarm
_Otsu

Missed
Alarm
_Edge

Missed
Alarm

_K-Means

Overall
Errors
_Otsu

Overall
Errors
_Edge

Overall
Errors

_K-Means

1:9 0.30% 0.28% 0.36% 1.66% 1.52% 1.00% 1.95% 1.80% 1.37%
2:8 0.31% 0.38% 0.42% 1.67% 1.51% 1.02% 1.98% 1.89% 1.44%
3:7 0.35% 0.39% 0.40% 1.68% 1.50% 1.07% 2.03% 1.90% 1.47%
4:6 0.35% 0.38% 0.40% 1.72% 1.53% 1.08% 2.07% 0.00% 1.48%
5:5 0.36% 0.29% 0.35% 1.76% 1.67% 1.14% 2.11% 1.95% 1.50%
6:4 0.36% 0.36% 0.40% 1.82% 1.70% 1.10% 2.17% 2.06% 1.50%
7:3 0.36% 0.35% 0.40% 1.84% 1.74% 1.15% 2.20% 2.09% 1.54%
8:2 0.38% 0.35% 0.38% 1.89% 1.77% 1.20% 2.27% 2.12% 1.58%
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The binary change maps of the three methods are shown in Figure 13, in which the white and
black regions represent the changed and unchanged areas, respectively. Compared with the reference
image, the results of the three methods are similar, and the k-means clustering (k = 2) obtains the least
number of missed alarms.

As can be seen in Figure 6, the overall errors after the multi-scale fusion are the lowest when Tf in
Equation (13) is 0. Table 7 shows the improvement of the multi-scale fusion with Tf equal to 0, which
was realized by k-means clustering (k = 2). It can be concluded that the proposed multi-scale method
suppresses the missed alarms and keeps the false alarms to an acceptable level.

Table 7. Comparison between the change detection results of the single-scale and multi-scale proposed
method, with L2 as the basis image in the second study area.

False Alarms_Kmeans Missed Alarms_Kmeans Overall Errors_Kmeans

The optimal scale = 50 0.36% 1.00% 1.37%
Multi-scale: 10, 20, . . . , 100 0.55% 0.22% 0.84%

In Figure 14, the white and black regions represent the changed and unchanged areas, respectively.
Compared with the method proposed in [35], the proposed method is shown to be effective in detecting
changes in an urban area using multi-sensor MS images. It can effectively decrease the missed alarms
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in the changed areas while removing the false alarms. As there is a great difference in the visual results,
the quantitative assessment and comparison are omitted. The time costs of the two methods were both
about one minute using MATLAB Software (Mathworks, Natick, MA, USA) on a personal computer
with 1.80 GHz CPU and 8.00 GB RAM.Remote Sens. 2017, 9, 252  16 of 20 
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4. Discussion

In this paper, we have described the experiments conducted with multi-sensor MS images
acquired by QuickBird and IKONOS in two different study areas. According to the results of the
experiments, the following conclusions can be made:

(1) In the preprocessing of the proposed method, using the image with a lower resolution as the
basis image can improve the change detection accuracy. This is probably because some redundant
information is removed in the image with lower resolution.

(2) We made use of commercial software (Definiens) to carry out the FNEA and adjust the scale of
the image objects to achieve slight under-segmentation. FNEA could be replaced by other segmentation
methods, whose results are similar to FNEA.
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(3) A change feature is defined to estimate the change possibility of image objects in bi-temporal
MS images. The change feature adequately takes into account the statistical features of the image
objects in the bi-temporal images (whether acquired by the same or different satellites), which is
an important innovation of the proposed method.

(4) In the combining of the change maps, greater precision can be achieved by increasing the ratio
of the map which is generated from mapping the segmentation of the basis image to the resampled one.
This is probably because the segmentation of the basis image is more precise than the resampled one.

(5) The results of both thresholding and clustering methods for the change locating in gray-level
images of the change probability are similar, which confirms that they have little effect on the
proposed method.

(6) The multi-scale fusion can effectively improve the accuracy by suppressing the missed alarms
and keeping the false alarms to an acceptable level. The overall errors after the multi-scale fusion
are the lowest when the changed areas are the sum of the changes in all the single-scale change
detection maps.

(7) Compared with the method proposed in [35], the proposed method can effectively detect the
changes in multi-sensor MS images by suppressing the missed and false alarms. Instead of utilizing
features invariant to different the illumination conditions, the proposed method takes into account
the incompatibility between different bandwidths and uses an object-based change measure with the
multi-sensor MS images.

5. Conclusions

In this paper, a novel object-based change detection method has been proposed for multi-sensor
MS imagery. After the resampling preprocessing, we segment one of the bi-temporal images and map
it to the other image, which not only achieves one-to-one correspondence between the bi-temporal
images but also preserves the spatial distribution between changed objects and their relevant changed
areas. Subsequently, by summarizing the possible distribution between any image object and its
relevant changed areas, a change feature is defined to represent the change probability of the image
objects in the bi-temporal MS images, whether they are acquired by the same or different satellites.
Consequently, thresholding or clustering methods are used to automatically locate the changes in
the gray-level image of change probability. Considering the multi-scale feature of ground objects,
multi-scale fusion is implemented by voting from the single-scale maps.

According to the experimental results, the urban change analysis method proposed in this paper
effectively overcomes the incompatibility between different band widths in bi-temporal (MS) images
and utilizes object-based statistical features to describe the changes of ground objects. The overall
errors of the proposed method are less than 3.5%. The proposed method makes full use of the spectral
and spatial information, and it estimates the change probability of image objects by the use of a novel
statistical feature. The object-based change detection method can effectively detect the changes in
multi-sensor MS images, and has been confirmed to perform better than the current methods.

Acknowledgments: The authors appreciate the guidance of Prof. Xin Huang from Wuhan University of China.
This work was supported by the National 973 Plan of China (grant no. 2012CB719903), the National Natural
Science Foundation of China (grant nos. 41401402, 41301453, and 51479215), the Natural Science Foundation
of Hunan Province in China (grant no. 2015JJ3150), the Geographical Conditions Monitoring Project of Hunan
Province in China (grant no. HNGQJC201503), the Open Research Fund Program of the Key Laboratory of Earth
Observation, the State Bureau of Surveying and Mapping (grant no. K201504), the Major Project of High Resolution
Earth Observation System of China (Civil Part) (grant no. 03-Y20A11-9001-15/16), and the Demonstration System
of High-Resolution Remote Sensing Application in Surveying and Mapping of China (grant no. AH1601-8).

Author Contributions: Yuqi Tang designed the proposed mode, implemented the experiments and drafted the
manuscript. Liangpei Zhang provided overall guidance to the project, reviewed and edited the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2017, 9, 252 18 of 19

References

1. Ingram, K.; Knapp, E.; Robinson, J.W. Change Detection Technique Development for Improved
Urbanized Area Delineation. In Technical Memorandum, CSC/TM-81/6087; Computer Sciences Corporation:
Silver Springs, MD, USA, 2004.

2. Bruzzone, L.; Bovolo, F. A novel framework for the design of change-detection systems for very-high-
resolution remote sensing images. Proc. IEEE 2013, 101, 609–630. [CrossRef]

3. Tang, Y.; Huang, X.; Zhang, L. Fault-tolerant building change detection from urban high-resolution remote
sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1060–1064. [CrossRef]

4. Bruzzone, L.; Fernandez-Prieto, D. Automatic analysis of the difference image for unsupervised change
detection. IEEE Geosci. Remote Sens. Lett. 2000, 38, 1170–1182. [CrossRef]

5. Celik, T.; Ma, K.K. Unsupervised change detection for satellite images using dual-tree complex wavelet
transform. IEEE Geosci. Remote Sens. Lett. 2012, 48, 1199–1210. [CrossRef]

6. Bazi, Y.; Melgani, F.; Al-Sharari, H.D. Unsupervised change detection in multispectral remotely sensed
imagery with level set methods. IEEE Geosci. Remote Sens. Lett. 2010, 48, 3178–3187. [CrossRef]

7. Bovolo, F.; Bruzzone, L. A theoretical framework for unsupervised change detection based on change vector
analysis in polar domain. IEEE Geosci. Remote Sens. Lett. 2007, 45, 218–236. [CrossRef]

8. Bovolo, F.; Marchesi, S.; Bruzzone, L. A framework for automatic and unsupervised detection of multiple
changes in multitemporal images. IEEE Geosci. Remote Sens. Lett. 2012, 50, 2196–2212. [CrossRef]

9. Celik, T. Change detection in satellite images using a genetic algorithm approach. IEEE Geosci. Remote
Sens. Lett. 2010, 7, 386–390. [CrossRef]

10. Heng, C.; Celik, T.; Longbotham, N.; Emery, W.J. Gabor feature based unsupervised change detection of
multitemporal SAR images based on two-level clustering. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2458–2462.
[CrossRef]

11. Nielsen, A.A. Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing
data. IEEE Trans. Image Process. 2002, 11, 293–305. [CrossRef] [PubMed]

12. Marchesi, S.; Bovolo, F.; Bruzzone, L. A context-sensitive technique robust to registration noise for change
detection in VHR multispectral images. IEEE Trans. Image Process. 2010, 19, 1877–1889. [CrossRef] [PubMed]

13. Nielsen, A.A.; Conradsem, K.; Simpson, J.J. Multivariate alteration detection(MAD) and MAF postprocessing
in multispectral bitemporal image data: New approaches to change detection studies. Remote Sens. Environ.
1998, 64, 1–19. [CrossRef]

14. Marpu, P.R.; Gamba, P.; Canty, M.J. Improving change detection results of IR-MAD by eliminating strong
changes. IEEE Geosci. Remote Sens. Lett. 2011, 8, 799–803. [CrossRef]

15. Nielsen, A.A. The regularized iteratively reweighted MAD method for change detection in multi- and
hyperspectral data. IEEE Geosci. Remote Sens. Lett. 2007, 16, 463–478. [CrossRef]

16. Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking.
IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279–1289. [CrossRef] [PubMed]

17. Yuan, Y.; Zhu, G.; Wang, Q. Hyperspectral band selection by multi-task sparsity pursuit. IEEE Geosci. Remote
Sens. Lett. 2015, 53, 631–644. [CrossRef]

18. Luo, W.; Li, H. Soft-change detection in optical satellite images. IEEE Geosci. Remote Sens. Lett. 2011, 8,
879–883. [CrossRef]

19. Ling, F.; Li, W.; Du, Y.; Li, X. Land cover change mapping at the subpixel scale with different spatial-resolution
remotely sensed imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 182–186. [CrossRef]

20. Robin, A.; Moisan, L.; Hegarat-Mascle, S.L. An a-contrario approach for subpixel change detection in satellite
imagery. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 1977–1993. [CrossRef] [PubMed]

21. Gueguen, L.; Soille, P.; Pesaresi, M. Change detection based on information measure. IEEE Geosci. Remote
Sens. Lett. 2011, 49, 4503–4515. [CrossRef]

22. Healey, G.; Slater, D. Computing illumination-invariant descriptors of spatially filtered color image regions.
IEEE Trans. Image Process. 1997, 6, 1002–1013. [CrossRef] [PubMed]

23. Smits, P.C.; Annoni, A. Updating land-cover maps by using texture information from very high-resolution
space-borne imagery. IEEE Geosci. Remote Sens. Lett. 1999, 37, 1244–1254. [CrossRef]

24. Li, L.; Leung, M.K.H. Integrating intensity and texture differences for robust change detection. IEEE Trans.
Image Process. 2002, 11, 105–112. [PubMed]

http://dx.doi.org/10.1109/JPROC.2012.2197169
http://dx.doi.org/10.1109/LGRS.2012.2228626
http://dx.doi.org/10.1109/36.843009
http://dx.doi.org/10.1109/TGRS.2009.2029095
http://dx.doi.org/10.1109/TGRS.2010.2045506
http://dx.doi.org/10.1109/TGRS.2006.885408
http://dx.doi.org/10.1109/TGRS.2011.2171493
http://dx.doi.org/10.1109/LGRS.2009.2037024
http://dx.doi.org/10.1109/LGRS.2015.2484220
http://dx.doi.org/10.1109/83.988962
http://www.ncbi.nlm.nih.gov/pubmed/18244632
http://dx.doi.org/10.1109/TIP.2010.2045070
http://www.ncbi.nlm.nih.gov/pubmed/20215070
http://dx.doi.org/10.1016/S0034-4257(97)00162-4
http://dx.doi.org/10.1109/LGRS.2011.2109697
http://dx.doi.org/10.1109/TIP.2006.888195
http://dx.doi.org/10.1109/TNNLS.2015.2477537
http://www.ncbi.nlm.nih.gov/pubmed/28113868
http://dx.doi.org/10.1109/TGRS.2014.2326655
http://dx.doi.org/10.1109/LGRS.2011.2131632
http://dx.doi.org/10.1109/LGRS.2010.2055034
http://dx.doi.org/10.1109/TPAMI.2010.37
http://www.ncbi.nlm.nih.gov/pubmed/20847388
http://dx.doi.org/10.1109/TGRS.2011.2141999
http://dx.doi.org/10.1109/83.597275
http://www.ncbi.nlm.nih.gov/pubmed/18282990
http://dx.doi.org/10.1109/36.763282
http://www.ncbi.nlm.nih.gov/pubmed/18244616


Remote Sens. 2017, 9, 252 19 of 19

25. Moser, G.; Angiati, E.; Serpico, S.B. Multiscale unsupervised change detection on optical images by Markov
random fields and wavelets. IEEE Geosci. Remote Sens. Lett. 2011, 8, 725–729. [CrossRef]

26. Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral image classification via multi-task joint sparse representation and
stepwise MRF optimization. IEEE Trans. Cybern. 2016, 46, 2966–2977. [CrossRef] [PubMed]

27. Dalla Mura, M.; Benediktsson, J.A.; Bovolo, F.; Bruzzone, L. An unsupervised technique based on
morphological filters for change detection in very high resolution images. IEEE Geosci. Remote Sens. Lett.
2008, 5, 433–437. [CrossRef]

28. Dalla Mura, M.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological attribute profiles for the analysis
of very high resolution images. IEEE Geosci. Remote Sens. Lett. 2010, 48, 3747–3762. [CrossRef]

29. Im, J.; Jensen, J.R.; Tullis, J.A. Object-based change detection using correlation image analysis and image
segmentation. Int. J. Remote Sens. 2008, 29, 399–423. [CrossRef]

30. Bovolo, F. A multilevel parcel-based approach to change detection in very high resolution multitemporal
images. IEEE Geosci. Remote Sens. Lett. 2009, 6, 33–37. [CrossRef]

31. Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-oriented change detection for landslide rapid mapping.
IEEE Geosci. Remote Sens. Lett. 2011, 8, 701–705. [CrossRef]

32. Huo, C.; Zhou, Z.; Lu, H.; Pan, C.; Chen, K. Fast object-level change detection for VHR images. IEEE Geosci.
Remote Sens. Lett. 2010, 7, 118–122. [CrossRef]

33. Tang, Y.; Zhang, L.; Huang, X. Object-oriented change detection based on the Kolmogorov-Smirnov test
using high-resolution multispectral imagery. Int. J. Remote Sens. 2011, 32, 5719–5740. [CrossRef]

34. Mercier, G.; Moser, G.; Serpico, S. Conditional copulas for change detection in heterogeneous remote sensing
images. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1428–1441. [CrossRef]

35. Habib, A.; AI-Ruzouq, R.; Kim, C. Semi-automatic registration and change detection using multi-source
imagery with varying geometric and radiometric properties. Int. Arch. Photogramm. Remote Sens. Spat.
Inf. Sci. 2012, 1, 1–6.

36. Bovolo, F.; Bruzzone, L.; Marconcini, M. A novel approach to unsupervised change detection based on a
semisupervised SVM and a similarity measure. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2070–2082. [CrossRef]

37. Thonfeld, F.; Feihauer, H.; Braun, M.; Menz, G. Robust change vector analysis (RVCA) for multi-sensor very
high resolution optical satellite data. Int. J. Appl. Earth Obs. Geoinform. 2016, 51, 131–140. [CrossRef]

38. Richards, J. Remote Sensing Digital Image Analysis: An Introduction; Springer: Berlin/Heidelberg, Germany,
1986; pp. 52–55.

39. Baatz, M.; Schape, A. Multiresolution Segmentation: An Optimization Approach for High Quality Multi-Scale
Image Segmentation; Wichmann-Verlag: Heidelberg, Germany, 2000; pp. 12–23.

40. Pesaresi, M.; Benediktsson, J.A. A new approach for the morphological segmentation of high-resolution
satellite imagery. IEEE Trans. Geosci. Remote Sens. 2011, 39, 309–320. [CrossRef]

41. Huang, X.; Zhang, L. An adaptive mean-shift analysis approach for object extraction and classification from
urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4173–4185. [CrossRef]

42. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9,
61–66. [CrossRef]

43. Wang, L.; Bai, J. Threshold selection by clustering gray levels of boundary. Pattern Recognit. Lett. 2003, 24,
1983–1999. [CrossRef]

44. MacQueen, J. Some Methods for Classification and Analysis of Multivariate Observations. Pro. 5th Berkeley
Symp. Mathem. Stat. Probab. 1967, 1, 281–297.

45. Yuan, Y.; Lin, J.; Wang, Q. Dual clustering based hyperspectral band selection by contextual analysis.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431–1445. [CrossRef]

46. Zhao, B.; Zhong, Y.; Ma, A.; Zhang, L. A spatial Gaussian mixture model for optical remote sensing image
clustering. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5748–5759. [CrossRef]

47. Peng, X.; Tang, H.; Zhang, L.; Yi, Z.; Xiao, S. A unified framework for representation-based subspace
clustering of out-of-sample and large-scale data. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2499–2512.
[CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2010.2102333
http://dx.doi.org/10.1109/TCYB.2015.2484324
http://www.ncbi.nlm.nih.gov/pubmed/26485729
http://dx.doi.org/10.1109/LGRS.2008.917726
http://dx.doi.org/10.1109/TGRS.2010.2048116
http://dx.doi.org/10.1080/01431160601075582
http://dx.doi.org/10.1109/LGRS.2008.2007429
http://dx.doi.org/10.1109/LGRS.2010.2101045
http://dx.doi.org/10.1109/LGRS.2009.2028438
http://dx.doi.org/10.1080/01431161.2010.507263
http://dx.doi.org/10.1109/TGRS.2008.916476
http://dx.doi.org/10.1109/TGRS.2008.916643
http://dx.doi.org/10.1016/j.jag.2016.03.009
http://dx.doi.org/10.1109/36.905239
http://dx.doi.org/10.1109/TGRS.2008.2002577
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/S0167-8655(03)00037-0
http://dx.doi.org/10.1109/TGRS.2015.2480866
http://dx.doi.org/10.1109/JSTARS.2016.2546918
http://dx.doi.org/10.1109/TNNLS.2015.2490080
http://www.ncbi.nlm.nih.gov/pubmed/26540718
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Object-Based Change Analysis 
	Preprocessing 
	Image Segmentation 
	Segmentation of One Image 
	Segmentation Mapping to the Other Image 

	Change Feature Analysis 
	Combining the Change Maps 
	Change Locating 
	Multi-Scale Fusion 
	Accuracy Assessment 

	Experiments 
	The First Study Area 
	The Second Study Area 

	Discussion 
	Conclusions 

