
remote sensing  

Article

Impacts of Land Cover and Seasonal Variation
on Maximum Air Temperature Estimation
Using MODIS Imagery

Yulin Cai 1,2,3,*, Gang Chen 3, Yali Wang 1 and Li Yang 1

1 Geomatics College, Shandong University of Sciences and Technology, Qingdao 266590, Shandong, China;
wylsdau@163.com (Y.W.); yangli_7823@163.com (L.Y.)

2 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,China

3 Laboratory for Remote Sensing and Environmental Change (LRSEC), Department of Geography and Earth
Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; gchen7@uncc.edu

* Correspondence: caiyl@sdust.edu.cn; Tel.: +86-532-806-81162

Academic Editors: Parth Sarathi Roy and Prasad S. Thenkabail
Received: 18 January 2017; Accepted: 1 March 2017; Published: 3 March 2017

Abstract: Daily maximum surface air temperature (Tamax) is a crucial factor for understanding
complex land surface processes under rapid climate change. Remote detection of Tamax has widely
relied on the empirical relationship between air temperature and land surface temperature (LST),
a product derived from remote sensing. However, little is known about how such a relationship is
affected by the high heterogeneity in landscapes and dynamics in seasonality. This study aims to
advance our understanding of the roles of land cover and seasonal variation in the estimation of Tamax
using the MODIS (Moderate Resolution Imaging Spectroradiometer) LST product. We developed
statistical models to link Tamax and LST in the middle and lower reaches of the Yangtze River
in China for five major land-cover types (i.e., forest, shrub, water, impervious surface, cropland,
and grassland) and two seasons (i.e., growing season and non-growing season). Results show that
the performance of modeling the Tamax-LST relationship was highly dependent on land cover
and seasonal variation. Estimating Tamax over grasslands and water bodies achieved superior
performance; while uncertainties were high over forested lands that contained extensive heterogeneity
in species types, plant structure, and topography. We further found that all the land-cover specific
models developed for the plant non-growing season outperformed the corresponding models
developed for the growing season. Discrepancies in model performance mainly occurred in the
vegetated areas (forest, cropland, and shrub), suggesting an important role of plant phenology in
defining the statistical relationship between Tamax and LST. For impervious surfaces, the challenge
of capturing the high spatial heterogeneity in urban settings using the low-resolution MODIS data
made Tamax estimation a difficult task, which was especially true in the growing season.
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1. Introduction

Surface air temperature (Ta) not only serves as a direct indicator of climate change [1], but also
plays a crucial role in a range of studies for understanding the complex land surface processes,
such as drought monitoring [2,3], greenhouse effect [4], hydrological simulation [5], urban heat
island analysis [6–9], epidemiological modeling [10], and snowpack investigation [11]. Spatially
explicit Ta mapping has been traditionally relying spatial interpolation to scale up the point-based
temperature measurements recorded by sample meteorological stations to the landscape level.

Remote Sens. 2017, 9, 233; doi:10.3390/rs9030233 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 233 2 of 14

However, the performance of such an approach is known to be highly dependent on the density
of station network and the spatial heterogeneity of the geographic regions of interest [12].

Remote sensing provides a viable alternative that makes use of infrared sensors to measure land
temperature through detecting thermal infrared radiation emitted from the geographic objects on
land surfaces [13,14]. The detected thermal radiation describes the kinetic energy of the ground
objects informing land surface temperature (LST). While the LST is not equivalent to the air
temperature above the surface (i.e., Ta), previous studies have confirmed a promising relationship
between LST and Ta using three main categories of modeling approaches, including statistical,
TVX (temperature–vegetation index), and energy-balance modeling. Specifically, (i) statistical
modeling aims to establish an empirical relationship between Ta and LST through statistical regression
analysis [15–20]. To account for spatial heterogeneity in the land surface, ancillary data are
included as supplementary explanatory variables, such as elevation, albedo, NDVI (normalized
difference vegetation index), NDWI (normalized difference water index), and solar radiation [21–30];
(ii) The empirical TVX method relies on the negative linear relationship between LST and the
abundance of live vegetation, as represented by a vegetation index, e.g., NDVI [31,32]. The basic
assumption is that Ta approaches LST under full canopy cover. Hence, Ta can be estimated by
extrapolation of the LST-NDVI relationship to an NDVI value corresponding to the full canopy cover.
However, recent studies have discovered inconsistent, non-linear relationships between LST and NDVI
under complex land-cover conditions, which could negatively affect the TVX modeling performance
(e.g., [33,34]); (iii) Energy-balance modeling is a physically-based approach directly grounded in
thermodynamics. It treats Ta as the function of a range of variables describing the behavior of energy
dynamics in the Earth system, such as radiation balance, and soil, sensible, and latent heat fluxes [35].
While theoretically promising, it remains challenging to accurately estimate such a large number of
model inputs solely through remote detection [16].

Among the three aforementioned categories of approaches, statistical modeling has been the
most popular mainly due to its simplicity and relative robustness [36]. However, few studies
have systematically evaluated how the statistical relationship between Ta and LST varies across
major land cover types. This is a crucial issue, because the Ta-LST relationship was found to be
inconsistent over various landscapes, even if supplementary explanatory variables are used [24,37].
Additionally, seasonal variation is likely to introduce extra uncertainties in Ta modeling. Especially at
forested and agricultural sites, vegetation phenology plays a vital role affecting the actual land cover
condition (e.g., leaf-on versus leaf-off). Previous efforts have discovered significantly varied modeling
performance from the environments with low temperatures (or in winter seasons) versus those on hot
summer days [38–41]. To date, the joint impacts of land cover and seasonal variation remain to be
systematically evaluated.

The main objective of this study was to improve our understanding of the statistical relationship
between Ta and LST through remote detection. Here, we emphasized peak daytime air temperature
(Tamax). Although the daytime surface energy flux is more complex than that at night, accurately
estimating daytime air temperature was proven to more effectively inform extreme heat events
and the associated human health issues (e.g., mortality) than using nighttime or daily average
temperature [25,27,34,39,42]. To achieve our goal, we ask two research questions in this study: (i) How
do major land-cover types influence the statistical relationship between Ta and LST? (ii) How does
seasonal variation affect such a relationship by changing land-cover conditions?

2. Data and Methods

2.1. Study Area

Our study area is located in the middle and lower reaches of the Yangtze River (a.k.a., Changjiang
River), the longest river in Asia and the third-longest in the world. The area is centered at the
Poyang Lake Basin (Figure 1), which accounts for about 19% of the Yangtze River drainage area,
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with total coverage of 340,838 km2. Over the past decades, the region has experienced dramatic
changes in landscape, resulting in variable land-cover types, significant environmental degradation,
and substantial alteration in water and energy balance processes [43–46]. The need for improved
conservation of natural resources has stimulated intensive management and research activities in
the area, e.g., monitoring crucial climatic variables (e.g., surface air temperature) from the recently
established meteorological network [45,47].
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Figure 1. Maps of the study area (a) Location map; (b) Land cover and the spatial distribution of
meteorological stations map; (c) Topographic map.

2.2. Air Temperature Meteorological Station Data

The meteorological time series of daily maximum air temperature observations from 1 December
2008 to 31 January 2010 were consistently collected by the China Meteorological Administration (CMA).
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We acquired data from 234 meteorological stations, which were evenly distributed throughout the
study area (Figure 1). The locations of these stations can be identified on the MODIS (Moderate
Resolution Imaging Spectroradiometer) LST images, then, LST data matching with daily maximum air
temperature ground observations are extracted for study. Since MODIS LST products have a large
amount of missing data due to cloud, heavy aerosols, only those observations matching with MODIS
LST product data will be used for further study. Finally, our study used a total of 3916 observations,
which were all taken at the height of 2 m above the ground level in accordance with the standards
defined by the World Meteorological Organization (WMO).

2.3. MODIS Land Surface Temperature (LST) Data

The LST products from the MODIS system are one of the most widely used temperature products
via remote detection. The system is comprised of sensors on two platforms of Terra (morning
overpass at 10:30 am local) and Aqua (afternoon overpass at 1:30 pm local). Compared to Terra,
Aqua has a closer overpass time when daily maximum air temperature occurs. However, previous
efforts discovered superior performance of applying the LST data from MODIS/Terra to estimate air
temperature [34,48]. Hence, this study employed one of the Terra’s daily land surface temperature
and emissivity products, MOD11A1, in the succeeding analyses. MOD11A1 was produced at the
spatial resolution of approximately 1 km (precisely 0.928 km), and gridded in the Sinusoidal projection.
The MOD11A1 products were validated through field campaigns and radiance-based validation
studies, with results indicating an accuracy of better than 1.0 K in most cases [49].

We downloaded the daily MOD11A1 products from the MODIS Land Processes Distributed Active
Archive Center (LP DAAC) (http://lpdaac.usgs.gov/), with spatial and temporal coverage meeting
the requirements of our research design. We further conducted data pre-processing by eliminating
low-quality pixels (as indicated in the MOD11A1 Quality Control data layer) that corresponded
to large errors induced by several factors, such as surface emissivity estimation error, atmospheric
contamination, and viewing geometry on retrieval [49,50]. We retained the ‘good quality’ pixels in L1B
bands 31 and 32, with an average emissivity error of less than 0.01, and an average LST error of no
more than 1.0 K.

2.4. Land-Cover Map

To evaluate the potential impact of land cover on the Ta-LST relationship, we adopted a relatively
new land-cover product FROM-GLC (Finer Resolution Observation and Monitoring of Global Land
Cover), provided by the Center for Earth System Science (CESS) at Tsinghua University [51,52].
FROM-GLC was generated at the initial spatial resolution of 30 m using Landsat Thematic Mapper
(TM) and Enhanced Thematic Mapper Plus (ETM+) data circa 2009 and 2010, which is consistent
with the time period of our study. With the use of majority aggregation and proportion aggregation
approaches, the products were delivered at multiple resolutions (e.g., 250 m, 500 m, 1 km, 5 km,
and 10 km). To match the resolution of the selected MODIS LST product, the 1 km FROM-GLC map
was chosen in this study, which was evaluated at an overall accuracy of 73.47% [52]. Because we only
focused on major land-cover types, the land-cover classes in FROM-GLC were further combined to
represent forest, shrub, water, impervious surface, cropland, and grassland. To evaluate the accuracy
of the final land-cover map at our study site, we further selected 200 randomly distributed sample
points through field surveys and image interpretation, with the result reaching an accuracy of 82%.
The percentage and area extent of each land-cover type are demonstrated in Table 1.

Table 1. Areal coverage of individual major land cover types in the study area.

Land-Cover Type Cropland Forest Grassland Shrub Water Impervious Surface

Percentage (%) 29.27 60.81 1.21 5.78 2.29 0.63
Area (km2) 92,158 191,459 3817 18,191 7215 1985

http://lpdaac.usgs.gov/
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2.5. Model Development and Validation

Statistical analysis of the relationship between air and land surface temperature has been primarily
relying on regression modeling in previous studies (e.g., [16,36,37,40,41]). Here, we adopted such
approach using ordinary least squares regression (OLS) to establish the linkage between Tamax and
LST. To account for the impacts of land cover and seasonal variation, models were developed for
six land-cover types (i.e., forest, shrub, water, impervious surface, cropland, and grassland) and two
main seasons (plant growing and non-growing seasons). For comparison purposes, we also built OLS
models without distinguishing between land-cover types, and between seasons. In total, 19 models
were developed, calibrated by a randomly selected 80% of the observational data from ground stations.

Model validation was conducted with the remaining 20% of the observational data.
The performance of the models was evaluated using three criteria: adjusted coefficient of determination
(R2

adjusted), mean absolute error (MAE), and root mean square error (RMSE).

3. Results

3.1. Estimation of Maximum Air Temperature for Major Land-Cover Types

The scatter plots in Figures 2 and 3 illustrate the relationships between LST and the estimated
Tamax across various land-cover types. Similar to previous studies [25,37,39,40], LST and Ta were
found to have a relatively strong linear correlation. The general OLS model without considering land
cover and seasonal variation reached an adjusted R2 value of 0.87 (Figure 2). Compared to the general
model, the models developed for specific land-cover types demonstrated varying levels of performance.
More specifically, cropland, grassland, shrub, and water had better performance with higher adjusted
R2 values of 0.89, 0.92, 0.89, and 0.96 (Figure 3). Modeling forests and impervious surfaces showed
inferior performance with lower adjusted R2 values of 0.85 and 0.84 (Figure 3). The corresponding
model validation results presented similar trends of performance using RMSE and MAE (Table 2).
Distinguishing between land-cover types introduced an average of 4.5% of variance in adjusted R2.
Particularly for water and grassland, LST was found to explain 92% and 96% of the variation in Tamax,
indicating noticeable improvement in model performance for certain land-cover types. In contrast,
forests were found to weaken the strong relationship between LST and Tamax. Compared to the
general model, the forest model reduced the adjusted R2 value by 2.0%, and considerably increased
the model error by 15.2% in MAE and 19.6% in RMSE (Table 2), respectively.

Statistical significance tests showed that the effect of land cover on the Tamax-LST relationship was
significant at the 0.01 level. The tests were performed by comparing the results predicted respectively
using the general model and the land-cover specific models, using Paried-Samples T-TEST function in
the SPSS software package (IBM, Armonk, NY, USA).
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Figure 2. Scatter plot of the daily maximum air temperature (Tamax) and surface temperature (LST)
relationship without distinguishing between land covers.
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Figure 3. Scatter plots of the daily maximum air temperature (Tamax)-surface temperature (LST)
relationship over six major land-cover types: (a) Cropland; (b) Forest; (c) Grassland; (d) Shrub; (e) Water;
(f) Impervious surface.

Table 2. Model performance for the combined and individual land-cover types.

Land-Cover Type R2
adjusted MAE (◦C) RMSE (◦C) Change in MAE (%) Change in RMSE (%)

All combined 0.87 2.04 2.55 \ \
Cropland 0.89 1.97 2.42 3.4 5.1

Forest 0.85 2.35 3.05 −15.2 −19.6
Grassland 0.92 1.89 2.40 7.4 5.9

Shrub 0.89 2.01 2.45 1.5 3.9
Water 0.96 1.93 2.22 5.4 12.9

Impervious surface 0.84 1.98 2.48 2.9 2.8



Remote Sens. 2017, 9, 233 7 of 14

3.2. Estimation of Maximum Air Temperature for Growing and Non-Growing Seasons

The scatter plots in Figure 4 illustrate the relationships between LST and the estimated daily
maximum surface air temperature (Tamax) in the plant growing season across the six major land-cover
types; while Figure 5 shows a similar type of scatter plots illustrating the Tamax-LST relationship in
the non-growing season. Specifically, in the growing season, LST was found to explain 79, 72, 87, 75,
93, and 74 percent R2 with Tamax across the six land-cover types of cropland, forest, grassland, shrub,
water, and impervious surface, respectively. Compared to the growing season, most of non-growing
season models revealed better performance with the corresponding adjusted R2 values found to be 86,
80, 87, 86, 97, and 82 percent. The difference in model performance mainly occurred over the landscape
covered by vegetation, e.g., cropland (7% increase), forest (8% increase), and shrub (9% increase).
We also discovered a better model fitting over impervious surfaces (8% increase). However, seasonal
variation did not demonstrate itself as an essential factor influencing the Tamax-LST relationship over
water and grasslands, where the changes in adjusted R2 were less than 5%.
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Figure 4. Scatter plots of the daily maximum air temperature (Tamax)-surface temperature (LST)
relationship over six land-cover types in the growing season: (a) Cropland; (b) Forest; (c) Grassland;
(d) Shrub; (e) Water; (f) Impervious surface.
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Figure 5. Scatter plots of the daily maximum air temperature (Tamax)-surface temperature (LST)
relationship over six land-cover types in the non-growing season: (a) Cropland; (b) Forest; (c) Grassland;
(d) Shrub; (e) Water; (f) Impervious surface.

4. Discussion

4.1. Impact of Land Cover on the Estimation of Maximum Air Temperature

The modeling results for the six land-cover types confirmed the hypothesis that land surface
characteristics have an impact on the Tamax-LST relationship. Similar analyses were carried out by
Xu (2012) [24], Benali et al. (2012) [25], and Janatian et al. (2016) [30]. The result in our study agrees
with the findings of Xu (2012), although it seems contradictory to those of Benali et al. (2012) and
Janatian et al. (2016). Benali et al. (2012) concluded that “model performance was independent of
the meteorological stations’ land cover”. Janatian et al. (2016) indicated that a unique calibration
equation can be adequately applied to a very large area (as large as half of Iran), despite an extreme
heterogeneity of the land cover. We note that several auxiliary variables (e.g., elevation, zenith angle,
reflectance, NDVI, etc.) were included in the Benali et al. (2012) and Janatian et al. (2016) models,
which could have indirectly accounted for the effects by the land-cover variations. Another potential
reason for contradiction is the differences in vegetation cover, and surface roughness, which may have
influenced the surface–atmosphere energy exchanges. For example, Janatian et al. (2016) indicated
that the land surface within the study area (eastern part of Iran) mainly consisted of bare or sparsely
vegetated soils, which were different from our study area. In this study, such impact was found to vary
across different types of terrestrial features. Particularly, estimating Tamax demonstrated superior
performance over grasslands and water bodies (Figure 3). This may be explained by the fact that those
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landscapes are homogenous in surface cover, resulting in spatially homogenous energy exchange
between land surfaces and the overlying atmosphere.

In contrast, modeling Tamax across forested areas showed noticeable inferior performance
(Figure 3). This is possibly explained by the extensive heterogeneity in plant structure, live biomass,
aerodynamic roughness, and leaf area index, which caused substantial variation of surface albedo
in forests. Because our study area is located in the humid subtropical climatic region, highly mixed
coniferous and broadleaved forest of rich species types (e.g., China fir (Cunninghamia lanceolata), slash
pine (Pinus elliotii), and Chinese red pine (Pinus massoniana)) and structures dominate the region [53–55],
which further complicated the Tamax-LST relationship. Topography is another crucial factor. Our study
area features rugged landscapes (e.g., karst), with steep slopes, deep valleys, and mixed mountains
and plains. For example, 60% of the area of Jiangxi Province, centered at the study area, are mountains
and hills [56]. The elevation difference in some areas reaches over 2000 m [57]. As mountainous
areas are difficult to access, they are mainly covered by natural or planted forests (e.g., fruit trees and
fast-growing timber trees). Hence, the combined heterogeneity in topography and forest structure
possibly have negatively contributed to Tamax modeling in forested areas.

4.2. Impact of Seasonal Variation on the Estimation of Maximum Air Temperature

Plant surfaces typically show distinct characteristics in growing versus non-growing seasons
corresponding to their phenological development. This changed plant surface albedo, and in turn
affected the LST-Tamax relationship as revealed by the study (Figures 4 and 5). Their variation
in adjusted R2 was found to be 8% and 6% for the growing and non-growing season, respectively.
However, such variation was 4% without considering seasonal variation (Figure 3).

Our results further indicated that the errors of estimating Tamax likely increase during the
growing season for the landscapes covered by crops, forests, and shrubs (Figures 4 and 5). However,
their models all achieved better performance in the non-growing season, with an average increase of
8% in adjusted R2. This was possibly owing to the subtropical climate of the study area, featuring
a wide range of vegetation types. For example, local crops include cereal, wheat, cotton, peanut, tea,
and tobacco. These areas demonstrated a sharp contrast in vegetation cover between growing and
non-growing seasons. Forests in the study area consist of both natural and planted trees, such as
those producing non-timber products of pineapple, oak, sugarcane, tea, and orange [58,59]. The 1 km
resolution data was coarse, which did not allow us to capture such heterogeneity in vegetation type
and structure. From the phenology perspective, those plants exhibited various forms of growth
during the growing season. In one of our earlier evaluations, we tried to divide the long growing
season into several sub-seasons; however, the performance of the developed models exhibited high
variation with no clear patterns. Such variation led to a high level of heterogeneity in surface
characteristics in the growing season, as compared to the landscapes with reduced vegetation cover in
the non-growing season.

Besides the vegetation-covered landscapes, impervious surfaces also demonstrated noticeable
model improvement using data from the non-growing season, with results showing an increase of 8%
in adjusted R2 (Figures 4 and 5). This may be explained from two aspects. First, impervious surfaces
were primarily located in urban areas, interspersed with vegetation within the city bounds. At the
spatial resolution of 1 km, a land patch classified as impervious surface possibly contained plants,
where their spectral variation in the non-growing season was much lower than that in the growing
season as described in the previous paragraph [60]. Second, the growing season in the study site is
part of the year with a significant increase of precipitation. Researchers have argued that topography
and land cover can lead to substantial variability of rainfall both spatially and temporally [61,62],
which adds variation to land-atmosphere interactions across the urban areas.

Our analysis was based on a linear relationship between Tamax and LST, although several scatter
plots of Figures 2–5 indicate a ‘convex upward’ distribution. This suggests a potential nonlinear
quadratic relationship between those two variables, inferring a potential effect of within-season
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variation on Tamax estimation. It can be further observed that the regression lines for the non-growing
season (Figure 5) are steeper than those for the growing season (Figure 4). That is, Tamax rises more
rapidly when LST increases in colder seasons than that in warmer seasons. However, our emphasis
was the model comparison among various land-cover types, and the nonlinear quadratic relationship
only showed slightly improved model performance. We decided to use linear models in this study.

4.3. Spatial Uncertainties in the Estimation of Maximum Air Temperature

Since land cover and seasonal variation were found to affect the estimation of Tamax, we have
applied the previously developed models to produce two temperature maps considering major
land-cover types for two dates in the growing season (on 24 May 2010; Figure 6a) and non-growing
season (on 31 December 2010; Figure 7a), respectively. Figure 6a reveals a clear temperature gradient
in spring, i.e., the closer to water bodies, the lower the maximum air temperature. For example,
Fujian Province in the southeast faces East China Sea to the east, and South China Sea to the south,
and its estimated Tamax was much lower than that in Hubei Province, located in the Central China
region. Besides ocean, inland water (e.g., the Poyang Lake in Jiangxi Province) also showed an evident
impact in cooling down the neighborhood regions in the upper middle of our study area. In contrast,
the spatial pattern of winter temperature was mainly controlled by the latitudinal variation that has
more than five degrees across out study area (Figure 7a).
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To better understand the spatial uncertainty of our estimates, the same-day field observations were
used as a comparison, where the radius of each circle corresponds to the level of error at individual
meteorological stations (Figures 6b and 7b). The MAE in Figures 6b and 7b ranges from 2.46 to 3.00
and from 1.34 to 1.60 respectively. The land-cover map was used as a backdrop. The circles in the two
figures demonstrated consistent findings, where the low-performance stations were mostly located in
vegetated areas, especially those vegetated areas in the mountains. In addition to the aforementioned
reason of high level of heterogeneity in species types and topography, a portion of errors may stem from
the data acquisition stage. For example, as pointed out by Lee et al. (2011) [63], meteorological stations
that represent the surrounding forests are in fact typically located in forest clearings, which makes
the observations less representative with high variation. Another source of error is possibly from
land cover classification. Benali et al. (2012) [25] argued that land cover data with different accuracies
and from various classification schemes could result in high uncertainties in temperature estimation.
To mitigate the impact of error propagation from a complex classification scheme, a relatively simple
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and straightforward classification system may be a better option [49]. In addition, we suggest that
such a system needs to incorporate vegetation phenology in classification, so the results can better
assist with our assessment of the Tamax-LST relationship in the plant growing season.
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5. Conclusions

Results in this study revealed noticeable impacts of land cover and seasonal variation on the
estimation of Tamax using MODIS-derived LST. Owing to the high level of heterogeneity in plant
structure and topography, the Tamax-LST relationship was found to be negatively affected in forest
landscapes with high uncertainties. Estimating Tamax over grasslands and water bodies achieved
superior performance, which could be explained by the spatially homogenous energy exchange
between land surfaces and the overlying atmosphere. We also found that all the land-cover specific
models developed for the non-growing season outperformed the corresponding models developed
for the growing season. Discrepancies in model performance mainly occurred in the vegetated areas
(forest, cropland, and shrub), suggesting that plant phenology plays an important role defining
the statistical relationship between Tamax and LST. Because different plant species exhibit varying
growth patterns over time, understanding specific species types may significantly improve model
performance in the growing season. Compared to the other land-cover types, impervious surfaces in
urban areas contained high spatial heterogeneity that was difficult to capture by MODIS, which led
to high uncertainties in Tamax estimation. In contrast to previous studies, this research provides
a more in-depth analysis emphasizing on major land-cover types and seasons in the middle-low
reaches of Yangtze River featuring high variation in topography and climatic conditions. Our research
suggests the necessity of improving the current Tamax-LST relationship through modeling the seasonal,
sub-pixel landscape heterogeneity that typically relies on medium to coarse spatial resolution Earth
observation data, although we take advantage of the sensors’ short revisit intervals.
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