
 

Remote Sens. 2017, 9, 231; doi:10.3390/rs9030231 www.mdpi.com/journal/remotesensing 

Article 

Individual Tree Crown Delineation from Airborne 
Laser Scanning for Diseased Larch Forest Stands 
Chloe Barnes 1,*, Heiko Balzter 1,2, Kirsten Barrett 1, James Eddy 3, Sam Milner 4  
and Juan C. Suárez 5 

1 University of Leicester, Leicester Institute for Space and Earth Observation (LISEO),  
Centre for Landscape and Climate Research, Department of Geography, University Road, LE1 7RH 
Leicester, UK; hb91@le.ac.uk (H.B.); kb308@le.ac.uk (K.B.) 

2 NERC National Centre for Earth Observation (NCEO) at University of Leicester, University Road,  
LE1 7RH Leicester, UK 

3 Bluesky International Limited, The Old Toy Factory, Jackson Street, Coalville, LE67 3NR Leicestershire, 
UK; james.eddy@bluesky-world.com 

4 Natural Resources Wales, Clawdd Newydd, Ruthin, LL14 2NL Denbighshire, UK; 
Sam.Milner@cyfoethnaturiolcymru.gov.uk 

5 Forest Research, Northern Research Station, Roslin, EH25 9SY Midlothian, UK; 
juan.suarez@forestry.gsi.gov.uk 

* Correspondence: cb482@le.ac.uk 

Academic Editors: Lars T. Waser and Prasad S. Thenkabail 
Received: 5 January 2017; Accepted: 28 February 2017; Published: 3 March 2017 

Abstract: Airborne laser scanning (ALS) can be utilised to derive canopy height models (CHMs) for 
individual tree crown (ITC) delineation. In the case of forest areas subject to defoliation and dieback 
as a result of disease, increased irregularities across the canopy can add complications to the 
segmentation of ITCs. Research has yet to address this issue in order to suggest appropriate 
techniques to apply under conditions of forest stands that are infected by phytopathogens. This 
study aimed to find the best method of ITC delineation for larch canopies affected by defoliation as 
a result of a Phytophthora ramorum infection. Sample plots from two study sites in Wales, United 
Kingdom, were selected for ITC segmentation assessment across a range of infection levels and 
stand characteristics. The performance of two segmentation algorithms (marker-controlled 
watershed and region growing) were tested for a series of CHMs generated by a standard 
normalised digital surface model and a pit-free algorithm, across a range of spatial resolutions (0.15 
m, 0.25 m and 0.5 m). The results show that the application of a pit-free CHM generation method 
produced improved segmentation accuracies in moderately and heavily infected larch forest, 
compared to the standard CHM. The success of ITC delineations was also influenced by CHM 
resolution. Across all plots the CHMs with a 0.25 m pixel size performed consistently well. 
However, lower and higher CHM resolutions also provided improved delineation accuracies in 
plots dominated by larger and smaller canopies respectively. The selected segmentation method 
also influenced the success of ITC delineations, with the marker-controlled watershed algorithm 
generating significantly more accurate results than the region growing algorithm (p < 0.10). The 
results demonstrate that ITCs in forest stands infected with Phytophthora ramorum can be 
successfully delineated from ALS when a pit-free algorithm is applied to CHM generation. 
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1. Introduction 

Although the exact area or extent is unclear, current trends suggest that UK forests and 
woodlands are subject to a greater threat from exotic phytopathogens than ever previously 
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experienced [1,2]. One particular invasive phytopathogen, Phytophthora ramorum, has caused large-
scale infections of larch (Larix spp.) trees in UK forestry, particularly across Southwest England, South 
Wales and Southwest Scotland [3]. The nature of the infection and its foliar symptoms include 
discolouration and defoliation [4], which are currently being used for manual aerial detection by tree-
health surveyors during helicopter surveys. This highlights the potential application of remotely 
sensed datasets for P. ramorum assessment in larch across the UK [5].  

In recent decades, airborne laser scanning (ALS), also referred to as lidar, has been increasingly 
applied in forestry [6–8]. The three-dimensional nature of ALS data provides structural information 
on topography, canopy height, tree density and crown dimensions, which can be used to determine 
biophysical parameters and inform forest inventories [9–11]. The high resolution and accuracy 
associated with ALS enable the extraction of forest parameters associated with individual tree crowns 
(ITCs) within the forest canopy [12]. The ability to conduct crown-based analysis of remotely sensed 
data for forest environments provides the opportunity for the detailed study of forest condition and 
dynamics [13].  

A range of algorithms can be applied for ITC delineation from ALS data, which typically exploit 
structural differences present among tree tops, canopy boundaries and canopy spaces [14]. These 
algorithms include the region growing [15,16] and watershed segmentations [14] which often require 
the prior identification of treetops as seed inputs. From ALS data, treetops are typically located via 
the detection and filtering of local maxima [17,18], in CHMs these represent points where 
neighbouring pixels present equal or lower values in height [19]. The performance of a particular ITC 
delineation algorithm is dependent on the characteristics of both tree canopies and input datasets, 
and the subsequent suitability of methods for a specific study should be considered [20–22]. 

In the case of ITC delineation, ALS datasets are typically analysed in raster format as a canopy 
height model (CHM) [23]. A CHM represents the canopy surface elevation and is computed by the 
subtraction of the digital terrain model (DTM) from the digital surface model (DSM) [24,25]. The 
selected pixel size for the CHM, can affect the potential performance of the ITC detection [14,26]. In 
cases where the resolution is too coarse, the ability to distinguish between the boundaries of 
neighbouring tree crowns can be lost where pixels contain multiple overlapping tree crowns. 
Conversely, when spatial resolution is too fine, excessive intra-crown height variability may cause an 
over-segmentation of canopies. Pouliot et al. [20] described the ratio between crown diameter and 
pixel size in order to address this point. The optimum ratio will vary in accordance with the 
sensitivity of segmentation algorithms to intra-crown irregularity and the distinction of crown 
boundaries, but can provide a useful tool in considering the influence of pixel size on ITC delineation 
success. Nevertheless, the insufficient availability of data regarding the relationship between pixel 
size and tree crown dimensions makes it difficult to determine specific recommendations for selection 
[27]. In this paper we will consider the implications of varying CHM pixel size on the performance 
of ITC delineation across a range of crown dimensions. 

Canopy height anomalies that are present in CHMs are known as data pits and can influence the 
accuracy of ITC detection [25,26]. Despite the uncertainty surrounding the specific source of these 
pits, cited causal factors have been acknowledged during the acquisition and processing of ALS 
datasets [25,28], these include: penetration of laser beams through the canopy, merging of ALS flight 
lines [29], classification of ground and non-ground points [30] and interpolation of point clouds to 
raster datasets [31]. To address the problem, many studies have used image smoothing techniques 
such as Gaussian filtering, to remove intra-canopy elevation artefacts [12,19,21]. More recent 
solutions have introduced the use of pit-filling algorithms [25,32] and the application of pit-free CHM 
generation methodologies [26]. 

In forests subject to defoliation and dieback as a result of phytopathogens and pests, canopy 
structures are typically more complex and exhibit larger elevation irregularities across the canopy 
surface [33,34], causing an increased presence of data pits. Such characteristics can be useful in 
disease detection [35,36], but may also provide an added complication with regard to the isolation of 
ITCs for the assessment of crown deterioration. Consequently, the methodologies employed for ITC 
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delineation in canopies affected by disease require consideration of data pits and their implications 
for segmentation accuracy.  

In the case of phytopathological assessments from remotely sensed datasets, the application of 
an ITC approach presents several advantages for identifying areas that require phytosanitary 
interventions [37]. In the early stages of the disease establishment in the forest stand, the isolation of 
ITCs, which initially succumb to infection, can enable a rapid response to pests and pathogens, which 
present new risks to forest areas [38]. In studies of diseased forest landscapes, crown-based 
approaches can also facilitate the detailed study of heterogeneous patterns of infection [39]. In 
addition, the use of ITC delineation techniques alongside species identification [40,41] can facilitate a 
targeted assessment of susceptible tree species [39]. This combined approach also presents the 
potential for the identification of disease resistant individuals, which may prove particularly useful 
with regard to the breeding of resistant genotypes and the development of resilience in forest stock 
[42]. Resultantly, in the case of P. ramorum, the application of an ITC-based approach could therefore 
facilitate a detailed assessment of infected forested areas. 

To address the difficulties in conducting ITC segmentation in partially or wholly defoliated 
forest canopies, this study aimed to determine the best method for the extraction of ITCs within P. 
ramorum infected larch forests using ALS data. In order to identify the most suitable approach the 
separate influences of segmentation method, CHM resolution and pit-removal were all considered. 

2. Materials and Methods 

2.1. Study Area 

The two study sites are located in Wales, United Kingdom (Figure 1). Ogmore Forest in South 
Wales (51.595387°N, −3.532012°W) is within the core P. ramorum disease zone in Wales and has been 
subject to the infection since 2011 [3]. The site contains Japanese larch (Larix kaempferi) and hybrid 
larch (Larix x eurolepis), two principal host trees of the P. ramorum pathogen [43]. Due to the extent of 
the P. ramorum infection across the Ogmore study site, plots containing healthy larch could not be 
established; consequently, a second study site was also used. Radnor Forest in Mid-Wales 
(52.270817°N, −3.150316°W) was selected as a control site as it is free from the P. ramorum infection. 
Across the two sites, 8 sample plots were established covering a total area of 0.02 km2 (Table 1). The 
4 plots at Ogmore Forest showed a range of P. ramorum infection severities, whilst the 4 plots in 
Radnor Forest offered healthy trees for comparison across a similar range of species compositions 
and stand heights. The rectangular plots were situated along the edge of established forest sub-
compartments to facilitate access and aid in recording the geographical position of individual trees. 
Small variations in plot size (Table 1) were incurred as the result of differences in sub-compartment 
shape and tree crown size. 

Table 1. Sample plot characteristics. 

Plot No. Forest 
Species 

Composition 
Max. Height 

(m) 
Min. Height 

(m) 
Mean Height 

(m) 
Plot Size 

(m2) 
No. 

Trees * 
P. ramorum 

Infection 
1 Ogmore HL, MB, MC 12.6 2.2 8.5 2500 104 Light 
2 Ogmore JL 21.9 8.3 17.4 2500 64 Moderate 
3 Ogmore JL 25.8 8.8 19.7 2500 57 Heavy 
4 Ogmore JL 30.4 19.7 24.6 2500 59 Heavy 
5 Radnor HL, MB, MC 7.1 3.3 5.3 1000 98 None 
6 Radnor JL, MB 19.8 14.3 16.3 1000 72 None 
7 Radnor JL, BE 23.4 9.9 17.8 2500 51 None 
8 Radnor EL, HL, BI, MC 33.8 19.6 29.4 5500 38 None 

* Number of trees with complete crowns located within the plot. Abbreviations: EL = European Larch; 
HL = Hybrid Larch; JL = Japanese Larch; BI = Birch; BE = Beech; MB = Mixed Broadleaves; MC = Mixed 
Conifers. 
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Figure 1. Location of study areas in Wales. 

2.2. Ground Data Collection 

The severity of the P. ramorum infection in each plot was recorded during field visits in 2015 
using a simple scale:  

• None = no individuals within the plot showed symptoms of P. ramorum;  
• Light = less than 50% of individuals showed P. ramorum symptoms, but these were typically 

confined to a small portion of the canopy;  
• Moderate = more than 50% of individuals demonstrated P. ramorum symptoms, a few cases may 

have resulted in significant discolouration or defoliation of the canopy; and  
• Heavy = more than 75% of individuals were infected with P. ramorum and many exhibited severe 

dieback. 

In addition, the position of individual trees situated within the established sample plots, which 
were safely accessible for ground surveying, were also recorded in the field using a handheld Garmin 
Oregon 550t GPS. 

2.3. Airborne Laser Scanning Data Collection 

ALS data were acquired by Bluesky International for both study sites via a single aircraft survey 
utilising the Orion M300 sensor on the 30 June 2015, with an average flight altitude of 1500 m. The 
scan frequency was 66 Hz, laser pulse repetition frequency was 100 kHz, field-of-view was 8°, beam 
divergence was 0.25 mrad, sensor range precision was <8 mm and elevation accuracy was 3–10 cm. 
Resulting point densities for the Ogmore (infected) and Radnor (control) sites were 20.34 points/m2 
and 27.39 points/m2, respectively. Small differences in the resulting point densities across the two 
sites were incurred as a result of slight variations in flight altitude. 

2.4. Data Processing Overview 

To provide an overview of the methodology required, Figure 2 provides a summary of the data 
processing tasks performed. 
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Figure 2. A summary of the data processing tasks required for the implementation of the ITC 
segmentation methodology.  

2.5. Canopy Height Models 

CHMs were produced for both study sites using two separate methods. The first approach used 
a standard normalised digital surface model (CHMstandard) to represent the relative height of above-
ground vegetation [19]. Height normalised ALS points were classified into ground and above-ground 
hits and following the generation of a triangulated irregular network (TIN) were rasterised to 
produce a DTM (ground points only) and DSM (maximum of all points). Subsequently, the 
CHMstandard was produced following the subtraction of the DTM from the DSM [44]. In addition, the 
pit-free algorithm outlined by Khosravipour et al. [26] was also used to generate CHMs for the study 
areas (CHMpitfree). The method uses height-normalised ALS points for the construction of partial 
CHMs representing various levels within the canopy (2 m, 5 m, 10 m, 15 m and 20 m). A rasterisation 
threshold is applied during the triangulation of partial CHMs, to ensure that only triangles within a 
single crown are rasterised, this threshold was varied based on the pixel size of the CHMs generated 
(Table 2). Partial CHMs are then stacked in height order and the maximum value for each pixel was 
subsequently extracted for the creation of the pit-free CHM. 

Table 2. Rasterisation thresholds for pit-free CHM generation. 

Pixel Size (m) Rasterisation Threshold (m)
0.15 0.45 
0.25 0.75 
0.5 1.5 

The CHM outputs from both methodologies were generated at three different resolutions. Based 
on the suitable range of crown diameter to pixel size ratios suggested by Pouliot et al. [20] and the 
CHM resolutions used in previous ITC detection studies [26,45–47], pixel sizes of 0.15 m, 0.25 m and 
0.5 m were selected. All the processing for both the CHM approaches was implemented using 
LAStools [48]. 
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2.6. Manual ITC Delineation 

A manual tree crown delineation was performed for each sample plot in order to provide 
information regarding ITC dimensions and a basis for comparing segmentation results [20]. The 
manual delineation was performed using the ALS-derived data, in addition to photographs and GPS 
positions for ITCs recorded during ground surveys [49,50]. The resulting reference polygons enabled 
the extraction of crown area and diameter. In this case, due to the circular nature of coniferous 
canopies [50,51], equivalent crown diameter, which represents the diameter of a perfectly circular 
crown of equal area, was extracted using the diameter equation for a circle [52,53]. 

2.7. Filtering 

The standard CHMs were smoothed with a Gaussian filter to remove data pits and intra-canopy 
irregularities as shown in Figure 3 [12,19,26,54]. The standard deviation of the Gaussian filter has 
little impact on the final smoothing of CHMs [14,55] and the standard deviation value was set to 2, 
following preliminary testing [19]. The size (spatial diameter) of the filter applied, however, can have 
a significant influence on the resulting CHM. Chen et al. [14] acknowledged that filter size should not 
exceed that of the smallest crown within the canopy of interest. Subsequently, the filter size was 
varied for each sample plot in accordance with pre-defined maximum canopy height thresholds 
(Table 3). These categories were determined based on the minimum equivalent crown diameter and 
maximum height for each sample plot. The variation in pixel size was also accounted for, with the 
size of filter in pixels rounded to the closest multiple for each of the three CHM resolutions [56]. For 
implementation over larger areas of larch forest, it is suggested that filtering and segmentation be 
employed for individual forest stands using the maximum tree height for each stand to define 
diameter and tailor filtering to stand characteristics. 

Table 3. Gaussian and local maxima filter size. 

Maximum Tree 
Height (m) 

Filter 
Diameter (m) 

Gaussian Filter Size in Pixels Based on CHM Resolution (m)
0.15 0.25 0.5 

≥15 1 7 × 7 5 × 5 3 × 3 
>15 and <30 2 13 × 13 9 × 9 5 × 5 ≥30 3 21 × 21 13 × 13 7 × 7 

In the case of the pit-free CHMs, a low-pass smoothing filter was applied (Figure 3). Preliminary 
testing was carried out to consider the performance of the pit-free CHMs without smoothing, 
however in the majority of cases the reduction in intra-canopy variation as a result of the filter 
prevented the over-segmentation of ITCs. Due to the removal of data pits via the CHM generation 
methodology, a lower level of filtering was required to smooth the canopy surface in preparation for 
segmentation. In this case a simple low-pass smoothing filter was selected with a square search mode 
[20,22]. The filter size was also adjusted in accordance with maximum tree height (Table 4), however 
it was smaller than that applied for the CHMstandard, which over-smoothed the data. All filtering 
undertaken for both CHM generation methodologies was undertaken using SAGA GIS [57].  

Table 4. Simple low-pass filter sizes for pit-free CHMs. 

Max Tree Height (m) Size of Simple Filter in Pixels Based on CHM Resolution (m)
0.15 0.25 0.5 

≥15 5 × 5 3 × 3 3 × 3 
>15 and <30 7 × 7 5 × 5 3 × 3 ≥30 9 × 9 7 × 7 5 × 5 
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Figure 3. CHMs with 0.25 m resolution for Plot 4 (Ogmore Forest) heavily infected with P. ramorum: 
(a) standard CHM no filter; (b) pit-free CHM no filter; (c) standard CHM with Gaussian filter; and (d) 
pit-free CHM with simple filter. Legend presents the height (m) for each of the CHMs. 

2.8. Local Maxima 

Prior to the application of the selected segmentation methods (marker-controlled watershed and 
region growing algorithm), seed points representing treetops within the canopy need to be identified 
[16,58]. Treetops can be located via the identification of local maxima [59], which are detected when 
neighbouring pixels on the CHM exhibit equal or lower height values [19]. In order to avoid 
identifying multiple seed points within ITCs, local maxima were extracted from the smoothed 
standard and pit-free CHMs for each of the three resolutions [14]. Resulting local maxima were then 
subject to height filtering, removing points with a tree height of less than 2 m, to avoid the detection 
of understorey vegetation as tree crowns [54,60]. 

In addition, minimum distance filters can also be applied to local maxima to reduce the over-
estimation of the number of treetops. The size of these filters can be fixed or variable; however, their 
dimensions are typically informed by the diameter of tree crowns within the forest area of study. 
Variable filters are typically applied with regard to the relationship between tree height and crown 
diameter [14], which in this instance exhibits high levels of variation (Figure 4). A weak relationship 
between crown diameter and tree height can result in poor estimates of tree crown diameter [61]. To 
detect treetops with smaller crowns, filter size thresholds were used [19]. As with the Gaussian 
smoothing, filter diameter represented the minimum equivalent crown diameter in relation to the 
maximum tree height for the sample plots (Table 3). This minimal distance point filtering was applied 
to local maxima points for each sample plot following height filtering, and all processing was 
performed in SAGA GIS [57].  
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Figure 4. The relationship between equivalent crown diameter and tree height for all individuals 
across the eight sample plots. The dashed line is the exponential regression curve. 

2.9. Segmentation 

For CHMs, the marker-controlled watershed and region growing segmentation algorithms have 
both previously been acknowledged as effective approaches for the delineation of ITCs [14,62]. The 
marker-controlled watershed algorithm treats the inverted CHM as “valleys”, “flooding” each 
system from points of local minima (markers or seeds) representing treetops within the canopy. 
Respective boundaries for each tree crown are subsequently delineated by determining the 
“watershed” for each individual “valley” [58]. The region growing algorithm also requires a seed 
input to denote the location of treetops, from which neighbouring pixels are compared and merged 
until some specified threshold criteria is reached [16,27,63]. In the case of both segmentation methods, 
filtered local maxima were used as seed inputs and processing was undertaken in SAGA GIS [63–67]. 
Additional input parameters for the two segmentation algorithms in SAGA GIS [57] were subject to 
preliminary testing. Subsequently the marker-controlled watershed segmentation was subject to no 
additional threshold for joining segments. For the region growing segmentation, the similarity 
threshold was set to 0.01 and an 8-pixel neighbourhood was applied. 

2.10. Post-Processing 

Following the ITC delineations, output segments from both segmentation approaches were 
labelled with a unique ID [68], converted to polygons and joined with tree heights extracted from 
seed outputs [69]. To avoid over-segmentation, polygons with an area below that of the minimum 
threshold area (Table 5) derived as the circular area from the Gaussian and local maxima filter size 
diameters, were merged with the neighbouring segment exhibiting the longest common border [19,70]. 

Table 5. Minimum area thresholds for automatically delineated tree crowns. 

Maximum Tree Height Category (m) Minimum Area Threshold (m2) 
≥15 0.5 

>15 and <30 3 ≥30 7 

2.11. Accuracy Assessment 

To assess the accuracy of the automated ITC delineations, resulting segments were compared to 
manual tree crown delineations (reference crowns) via an automated overlap analysis, which 
determined the percentage of overlap for corresponding polygons. For each reference crown in the 
plot, the percentage overlap with automated polygons was computed. Subsequently, the two highest 
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percentage overlap values for individual reference crowns were recorded as R1 and R2. In addition, 
the percentage of the automated polygons which overlapped with the corresponding reference crown 
were also determined, the two highest values were reported as A1 and A2. Using these values for 
each reference tree, percentage overlap criteria were subsequently applied to previously established 
accuracy assessment categories (Table 6) [17,19,23,29,50,71]. ITC segmentations classified as correct 
or satisfactory were deemed acceptable for the purpose of the study and collectively referred to as 
successfully delineated segments [17,71]. Accuracy percentages were also calculated using the ratio 
of successful delineations to the total number of reference tree crowns for each plot [23]. 

Table 6. Accuracy assessment categories for the tree crown delineation accuracy analysis. 

Category Description 
Percentage Overlap (%)

R1 R2 A1 A2
Correct Reference crown dominated by one automated crown ≥50 <2 ≥50 N/C 

Satisfactory Reference crown largely associated with one automated crown ≥50 <50 ≥50 <50 
Oversized Reference crown only accounts for small portion of automated crown ≥50 N/C <50 N/C 

Split Reference crown dominated by more than one automated crown N/C N/C N/C ≥50 
Missed Reference crown has no or poor overlap with automated crowns <50 N/C N/C <50 

Abbreviations: N/C = No conditions; R1 = Highest percentage overlap value for reference crown;  
R2 = Second highest percentage overlap value for reference crown; A1 = Highest percentage overlap 
value for corresponding automated crown; A2 = Second highest percentage overlap value for 
corresponding automated crown. 

2.12. Data Analysis 

To evaluate the influence of CHM generation method on delineation accuracy, the non-
parametric Wilcoxon signed rank test was used to analyse the difference in the segmentation accuracy 
percentages produced by the standard and pit-free CHMs for each of the pixel size/segmentation 
algorithm combinations. The same testing was also applied in the comparison of two segmentation 
algorithms (marker-controlled watershed and region growing), for each of the CHM generation 
method/pixel size combinations. The equivalent parametric paired t-test was not selected in this 
instance as several datasets did not meet the assumptions of normality (Shapiro–Wilk test). To 
address the additional type 1 error incurred via multiple testing, the Holm–Bonferroni sequential 
correction was also applied to the results of the statistical testing. 

To consider the influence of CHM pixel size on delineation accuracy, the mean and standard 
deviation values for segmentation accuracy percentages across all study plots were calculated for 
each CHM generation method/segmentation algorithm combination. In addition, to assess the 
relationship between CHM pixel size and tree height, a linear regression model was fitted to the 
maximum plot tree height (m) and the percentage of successful delineation (%), for all segmentation 
algorithms and CHMs tested.  

3. Results 

3.1. Overall Segmentation Performance 

The ITC delineation results from the marker-controlled watershed and region growing 
segmentations for all CHMs are displayed in Table 7, with the highest percentages for each of the 
plots in bold. In cases where the highest percentage is tied, those producing the greater percentage 
of correct delineations (Table 6) were selected. Successful delineations exceeding 70% were achieved 
for all of the sample areas, however no single method or CHM presented optimal results across all 
sample plots. The most successful delineation method recorded for each of the sample plots is 
summarised in Table 8. 
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Table 7. Successful delineation percentages for all segmentation algorithm, CHM generation method 
and CHM pixel size combinations tested for all sample plots. 

  
0.15 m 0.25 m 0.5 m 

Standard Pit-free Standard Pit-Free Standard  Pit-Free

Plot Method Successful 
(%) 

Successful 
(%) 

Successful 
(%) 

Successful 
(%) 

Successful 
(%) 

Successful 
(%) 

1 
WS 77.88 74.04 77.88 65.38 60.58 53.85 
RG 48.08 44.23 66.35 57.69 36.54 44.23 

2 
WS 89.06 71.88 82.81 92.19 67.19 71.88 
RG 20.31 15.63 54.69 50.00 67.19 78.13 

3 
WS 63.16 50.88 57.89 70.18 61.40 66.67 
RG 10.53 7.02 35.09 33.33 33.33 49.12 

4 
WS 40.35 37.29 62.71 81.36 76.27 83.05
RG 15.25 5.08 27.12 35.59 57.63 74.58 

5 
WS 79.59 76.53 79.59 78.57 45.92 20.41 
RG 80.61 74.49 73.47 68.37 41.84 11.22 

6 
WS 88.89 84.72 69.44 79.17 50.00 51.39 
RG 61.11 62.50 65.28 79.17 41.67 51.39 

7 
WS 84.31 78.43 68.63 78.43 64.71 64.71 
RG 29.41 23.53 39.22 33.34 43.14 39.22 

8 
WS 36.84 21.05 71.05 65.79 81.58 84.21
RG 0.00 0.00 2.63 2.63 7.89 78.95 

Abbreviations: WS = marker-controlled watershed; RG = region growing. 

Table 8. Best performing segmentation algorithm, CHM generation method and pixel size for the tree 
crown segmentation in each of the sample plots. 

Plot P. ramorum 
Infection 

Max. Tree 
Height 

No. 
Trees 

Best Delineation Performance 
Successful 

Delineation (%) 
Segmentation

Algorithm 
CHM Generation 

Method 
Pixel Size

(m) 
1 Light 12.6 104 77.88 WS Standard 0.25 
2 Moderate 21.9 64 92.19 WS Pit-free 0.25 
3 Heavy 25.8 57 70.18 WS Pit-free 0.25 
4 Heavy 30.4 59 83.05 WS Pit-free 0.50 
5 None 7.1 98 80.61 RG Standard 0.15 
6 None 19.8 72 88.89 WS Standard 0.15 
7 None 23.4 51 84.31 WS Standard 0.15 
8 None 33.8 38 84.21 WS Pit-free 0.50 

Abbreviations: WS = marker-controlled watershed; RG = region growing. 

3.2. CHM Generation Method 

Table 8 shows which CHM generation method produced the most successful delineation 
accuracies. The standard and pit-free methodologies both performed best in four of the eight sample 
plots. Interestingly, for Plots 2, 3 and 4, which exhibited moderate and heavy severities of P. ramorum 
infection, the pit-free CHM generated the best delineation accuracies. Figure 5 displays the difference 
in successful delineation percentages for the standard and pit-free CHMs, across the three different 
pixel sizes tested. In the case of the 0.15 m pixel size, the standard CHM produced the best accuracies 
for all segmentations across the eight sample plots, except one (Plot 6, region growing, 0.15 m). 
Conversely, for the 0.5 m pixel size, the pit-free CHM generation method resulted in a more successful 
delineation for the majority of segmentations. At the 0.25 m pixel size however, the CHM generation 
methods performed similarly. The segmentation algorithms did not influence the success of the two 
CHM generation methods. The results from the statistical analysis (Table 9) demonstrate no 
significant difference between the delineation accuracy of the two different CHM generation 
methods, except in the case of the marker-controlled watershed segmentation at the 0.15 m pixel size 
(p > 0.10). 
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Figure 5. The difference between the CHMstandard and CHMpitfree delineation accuracy (DA) percentages 
for each of the segmentation methods across the: (a) 0.15 m; (b) 0.25 m; and (c) 0.5 m pixel sizes. 

Table 9. p values from the Wilcoxon signed rank test after Holm–Bonferroni correction comparing 
results from the two CHM generation methods (standard and pit-free). * Denotes values significant 
at the 90% confidence level (p < 0.10). 

CHM Pixel Size (m) 
Segmentation Algorithm

Marker-Controlled Watershed Region Growing 
0.15 0.072 * 0.140 
0.25 0.789 1.000 
0.5 1.000 0.644 

3.3. Segmentation Algorithim  

The marker-controlled watershed approach produced higher delineation accuracies across the 
sample plots, than the region growing method (Figure 6). This result was consistent across the two 
CHM generation methodologies and three pixel sizes tested. The greatest difference (73.69) was 
observed in the case of the CHMstandard in at the 0.5 m pixel size. In this instance 71% of tree crowns 
segmented with the region growing algorithm were categorised as missed (Table 6). The results from 
the Wilcoxon signed rank test (Table 10) indicated a significant difference, at the 90% confidence level 
(p < 0.10) between the segmentation algorithms across all CHM generation method/pixel size 
combinations tested. 

Table 10. p values from the Wilcoxon signed rank test after Holm–Bonferroni correction, comparing 
results from the two segmentation algorithms (marker-controlled watershed and region growing). 

CHM Pixel Size (m) 
CHM Generation Method
Standard Pit-free

0.15 0.068 * 0.072 * 
0.25 0.072 * 0.054 * 
0.5 0.054 * 0.043 *,$ 

* Denotes values significant at the 90% confidence level (p < 0.10). $ The p value is not significant at 
the 95% confidence limit because it follows a not significant result in the Holm–Bonferroni sequential 
correction for a p value < 0.05. 
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Figure 6. The difference between marker-controlled watershed (WS) and region growing (RG) 
segmentation delineation accuracy (DA) percentages for each of the CHM generation methods 
(standard and pit-free) across the: (a) 0.15 m; (b) 0.25 m; and (c) 0.5 m pixel sizes. 

3.4. CHM Pixel Size 

In relation to CHM pixel size, no single resolution consistently yielded the most successful 
delineations (Table 8). To consider the overall performance of each pixel size, Table 11 provides the 
mean and standard deviation values for the successful delineation percentages from all eight sample 
plots, for each of the segmentation algorithm and CHM generation methodology combinations 
tested. The 0.25 m resolution provided the highest mean value in three of the four instances. 
Additionally, the 0.25 m pixel size also exhibited comparatively low standard deviation values in the 
case of the two marker-controlled watershed segmentations. The higher standard deviations across 
all combinations at the 0.15 m and 0.5 m resolutions, in addition to the 0.25 m region growing 
segmentations, reflect the large disparities in successful delineations percentages across the eight 
sample plots. 

Table 11. The mean and standard deviation (ߪ) values for the successful delineation percentages 
produced from all sample plots at the three CHM pixel sizes (0.15 m, 0.25 m and 0.5 m), for each of 
the segmentation algorithm and CHM generation method combinations. 

Segmentation 
Algorithm 

CHM Generation 
Method 

CHM Pixel Size (m) 
0.15 0.25 0.5 

Mean ࣌ Mean ࣌ Mean ࣌
WS Standard 70.01 21.06 71.25 8.53 63.46 12.01 
WS Pit-free 61.85 22.84 76.38 8.97 62.02 20.60 
RG Standard 33.16 27.69 45.48 23.95 41.15 17.50 
RG Pit-free 29.06 28.10 45.02 24.07 53.36 23.30 

Abbreviations: WS = marker-controlled watershed; RG = region growing. 

The segmentation results suggest that the suitability of CHM pixel size for ITC delineation may 
be governed by crown size and tree height, two correlated variables regarding the structural character 
of individual trees. Figure 7 presents the relationship between tree height and segmentation accuracy 
for all of the segmentation algorithms and CHMs tested. The linear regressions suggest that the high-
resolution CHMs (0.15 m) performed best for plots with a low maximum tree height (<20 m). 
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Conversely, the lowest resolution CHM (0.5 m) was best suited for plots that exhibited a high 
maximum tree height (>30 m). In the case of the 0.25 m pixel size, the relationship between maximum 
tree height and successful delineation percentage is less clear, although a negative trend was typically 
observed. 

 

Figure 7. Scatterplots demonstrating the linear regression model fitted between successful tree crown 
delineations and maximum plot tree height in relation to CHM pixel size (0.15 m, 0.25 m and 0.5 m) 
and the four segmentation algorithm and CHM generation method combinations (marker-controlled 
watershed (WS) segmentation for standard CHM, marker-controlled watershed segmentation for pit-
free CHM, region growing (RG) segmentation for standard CHM and region growing segmentation 
for pit-free CHM). 

Each of the scatterplots in Figure 7 displays the R2 values for the fit of the linear regression model 
between maximum tree height per plot (m) and successful delineation (%), at the three CHM pixel 
sizes (0.15 m, 0.25 m and 0.5 m) for the different segmentation algorithms and CHM generation 
methods. For the 0.15 m pixel size, negative trends were consistent across the two segmentation 
algorithms and CHM generation methods, though more significant in the case of the region growing 
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segmentations (0.82 (standard) and 0.78 (pit-free)). At the 0.25 m pixel size, trends were 
predominantly negative and stronger for segmentations with the region growing algorithm (0.86 
(standard) and 0.64 (pit-free)). In contrast, segmentations at the 0.5 m pixel size typically exhibited a 
positive relationship between maximum plot tree height and success percentage, with stronger 
correlations produced by the marker-controlled watershed segmentations (0.73 (standard) and 0.86 
(pit-free). 

An additional approach to examine the relationship between pixel size and successful ITC 
delineation considered the crown diameter to pixel size ratio put forward by Pouliot et al. [20]. For 
each sample plot, the mean equivalent crown diameter was determined in order to produce the crown 
diameter to pixel ratios for each of the eight sample plots (Table 12). The ratios that contributed to 
the best performance for each of the plots ranged between 10:1 and 35:1. To consider the influence of 
these ratios on the performance of ITC segmentations, the relationship between the mean equivalent 
crown diameter to pixel size ratio and successful delineations (%) across all sample plots, 
segmentation approaches and CHMs is shown in Figure 8. Segmentations that exceeded 80% success 
rate exhibited a crown diameter to pixel ratio from 11:1 to 35:1. 

Table 12. The mean equivalent crown diameter to pixel ratio for each plot across the three different 
CHM pixel sizes. The values highlighted in bold demonstrate those associated with the highest 
successful delineation percentage for the sample plot. 

Plot Study Area P. ramorum 
Infection 

Max. Tree 
Height 

Mean Crown Diameter to Pixel Ratio 
0.15 m 0.25 m 0.5 m 

1 Ogmore Light 12.6 23:1 14:1 7:1 
2 Ogmore Moderate 21.9 31:1 19:1 9:1 
3 Ogmore Heavy 25.8 32:1 19:1 10:1 
4 Ogmore Heavy 30.4 38:1 23:1 11:1 
5 Radnor None 7.1 17:1 10:1 5:1 
6 Radnor None 19.8 21:1 13:1 6:1 
7 Radnor None 23.4 35:1 21:1 11:1 
8 Radnor None 33.8 64:1 38:1 19:1 

 

Figure 8. The relationship between mean equivalent crown diameter to pixel size ratio and successful 
delineation (%) for all segmentation algorithms (marker-controlled watershed and region growing), 
CHM generation methods (standard and pit-free) and CHM pixel sizes (0.15 m, 0.25 m, and 0.5 m). 
The solid black line represents the number successful delineations at 80%. 
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4. Discussion 

The absence of an optimal method or input CHM for ITC delineation across the study plots 
highlights the difficulties of utilising a single algorithm and input dataset to assess forest 
environments comprising of mixed stand ages and species [12,47]. Nevertheless, the results shown 
here allow us to infer several key points informing the selection of the most appropriate segmentation 
approach and CHM input for canopies subject to P. ramorum infection. 

Neither CHM generation method (standard/pit-free) exhibited a consistently stronger 
performance, with each outperforming the other for four of the eight sample plots. This is different 
from the results observed by Khosravipour et al. [26], who documented consistently improved tree 
top detection accuracy for all pit-free CHM inputs at pixel sizes of 0.15 m and 0.5 m. In our case, it is 
likely that the weaker performance of the pit-free CHMs in four of the sample plots may stem from 
the low-pass filtering used to smooth the canopy surface for improved local maxima detection. This 
was not applied in the study by Khosravipour et al. [26], who instead extracted local maxima with an 
established variable window for coniferous forests [51]. In addition, Khosravipour et al. [26] assessed 
the accuracy of treetop detection, rather than the segmentation on ITCs. Nevertheless, in the case of 
the Plots 2, 3 and 4 which were subject to moderate and heavy P. ramorum infection, the pit-free CHMs 
out performed those generated using the standard CHM. This improved performance is likely to be 
a result of the data pit filling during the CHM generation, providing a more complete canopy for 
image segmentation (Figure 3). 

Between the two segmentation algorithms, the marker-controlled watershed demonstrated a 
superior performance (p < 0.10) compared to the region growing segmentation, for both CHM 
generation methods and all CHM pixel sizes tested. Since both algorithms were provided with the 
same seed points, the difference in performance is due to their ability to delineate crown boundaries 
in the CHMs. In the case of the region growing segmentation, boundaries are delineated when a 
specified threshold value is reached. The poor overall performance of this particular segmentation 
algorithm is likely to have resulted from the inability of the region growing threshold to 
accommodate the variation in crown size and characteristics across the canopy, as a result of mixed 
species and tree ages [50]. Although the region growing algorithm has previously produced 
satisfactory ITC delineations [27,72–74], studies have also noted difficulties and poor performance 
associated with the algorithm when applied in forest stands comprising of mixed species, multiple 
canopy layers and high tree densities [27,73,74]. In comparison, the delineation of crown boundaries 
by the watershed segmentation directly utilises the height information for the CHMs when 
delineating watershed boundaries, providing a more informed segmentation [58]. Studies from an 
array of forest types have noted successful isolation or segmentation of ITCs resulting from the 
marker-controlled watershed segmentation, examples include: commercially thinned conifer forest 
(75.6%) [58], savanna woodland (64.1%) [14] and eucalypts forest [75]. Nevertheless, the delineation 
accuracies achieved by segmentation algorithms can vary due to a combination of factors including: 
the effectiveness of the algorithm, forest characteristics and ALS data acquisition and properties [65]. 
Consequently, the difference between the performance of the marker-controlled watershed and 
region growing algorithms may change for segmentations performed for other forest environments 
and ALS datasets.  

The results from the study also highlighted that CHM resolution used in the ITC segmentation 
strongly influences segmentation accuracy. Relationships between the maximum canopy height and 
optimum CHM pixel size were not unexpected given the strong influence of tree height on crown 
diameter [14]. The suitability of certain pixel sizes for particular forest canopies has previously been 
explored in the literature [20]. For example, with regard to crown diameter to pixel ratios, Pouliot et 
al. [20] suggested a lower and upper limit of 3:1 and 19:1 respectively. In comparison, the ratios (mean 
equivalent crown diameter) that produced the best tree crown delineations across the sample plots 
were slightly higher, between 10:1 and 35:1. This may be as a result of reduced intra-canopy variation 
within the CHMs caused by the image smoothing filters applied [12,19]. In addition, these examples 
from Pouliot et al. [20] were also suggested for imagery rather than CHMs produced from ALS. 
Previous studies have also considered the impact of CHM resolution on segmentation accuracy, 
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Stereńczak et al. [76] for example, noted no significant difference between the ITC segmentation 
results from the 0.25 m and 0.5 m resolution CHMs, however a significant reduction in the percentage 
of recognised ITCs was noted for the 1.0 m CHM. The results from previous research, in addition to 
those obtained in this study highlight the importance of selecting a suitable CHM pixel size for ITC 
segmentation. Nevertheless, in many cases the selected resolution of the CHMs utilised for ITC 
segmentations is governed by ALS point density [26]. 

In relation to each of the CHM resolutions, several observed relationships require further 
discussion. Firstly, the 0.25 m CHM resolution performed consistently well across all sample plots, 
especially for the marker-controlled watershed segmentations, suggesting that this pixel size may be 
most suitable for the two study areas as a whole. This implies that at the 0.25 m resolution, enough 
detail is provided for the majority of ITCs to delineate boundaries without high levels intra-canopy 
variation resulting in over segmentations. However, in the cases of plots which exhibited a large 
maximum tree height (>30 m), the application of a lower resolution CHM (0.5 m) typically facilitated 
a greater percentage of successful ITC delineations. Again, the level of intra-crown variation provided 
in the CHM is likely to be the causal factor for this observation. With regard to the higher resolution 
CHMs (0.15 m) tested, a relationship between pixel size suitability and maximum tree height was 
also evident. In this instance, plots characterised by a small maximum tree height (<20 m) in general 
produced higher percentages of successful ITC delineations. 

Nevertheless, it is important to note, that while these criteria explain the characteristic 
relationship between pixel size, maximum tree height and successful ITC delineation across the 
sample plots, variability in the observed trend was also evident in the dataset. This suggests that 
other plot characteristics such as variation in tree size and tree density may also influence the 
suitability of a particular CHM pixel size for ITC segmentation [50]. Hence, it should be 
acknowledged that, while crown diameter should be recognised as a dominant variable influencing 
the suitability of pixel sizes for ITC delineation, consideration should also be given to other forest 
characteristics. In addition, it should also be recognised that the level of intra-canopy variation is also 
controlled by the filtering of the CHMs before segmentation [14]. Consequently, relationships 
between the performance of CHMs at different resolutions and tree height may be altered for CHMs 
subject to varying degrees of smoothing. 

The research demonstrates that ITCs within larch stands affected by P. ramorum can be 
successfully delineated (>70%) using a pit-free CHM generation methodology, a marker-controlled 
watershed segmentation and the selection of an appropriate CHM pixel size. Nevertheless, whilst 
these methods provide successful results at the selected study sites, further testing would be required 
to consider the performance these methods for defoliated canopies of other tree species in different 
forest environments. In addition, preliminary testing was used to identify the most suitable 
parameters in the filtering and segmentation processes, however such parameters can significantly 
influence final segmentation results and may not be best suited for other forest environments and 
ALS datasets [14,72]. Furthermore, an additional limitation to the study can also be noted with regard 
to the use of two separate study areas for the comparison between healthy and infected stands. 
Although larch dominated plots were selected to best match with regard to tree height parameters, 
variations in tree density and species composition may have also influenced the performance of ITC 
segmentations across the two sites. 

5. Conclusions 

The results presented in the study highlight that larch canopies partially or wholly defoliated as 
a result of P. ramorum infection can be successfully segmented (>70%). In addition, the research also 
demonstrates that the selection of segmentation algorithm, CHM generation method and CHM 
resolution can all impact on the performance of ITC delineations from ALS for larch forests in the 
U.K. The marker-controlled watershed algorithm may provide better successful delineations 
percentages in comparison to the region growing method in mixed age plantation forests (p < 0.10), 
where the selected threshold value may limit the optimal application of the segmentation across all 
crowns. In the case of forests subject to moderate and severe defoliation due to P. ramorum infection, 
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the application of a pit-free CHM generation method facilitated a greater ITC delineation percentage 
than segmentations using a standard CHM. With regard to CHM resolution, the results from the 
research suggest that a 0.25 m pixel size was most suitable for the larch dominated plots of all ages. 
In the case of the plots which exhibited large (>30 m) or small (<20 m) maximum tree heights, the 
selection of lower (0.5 m) or higher (0.15 m) resolution CHM, respectively, provided a more successful 
delineation. Overall, the results demonstrate that despite the increased presence of data pits in 
defoliated canopies, ITCs subject to infection from phytopathogens can be successfully identified. 
Whilst the presented methods provide a benchmark for the segmentation of ITCs subject to decline 
from phytopathogens, in order to consider the performance of this approach in other defoliated tree 
species and environments further research would be required. 
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