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Abstract: For in-season site-specific nitrogen (N) management of rice to be successful, it is crucially
important to diagnose rice N status efficiently across large areas within a short time frame. In recent
studies, the FORMOSAT-2 satellite images with traditional blue (B), green (G), red (R), and
near-infrared (NIR) wavebands have been used to estimate rice N status due to its high spatial
resolution, daily revisit capability, and relatively lower cost. This study aimed to evaluate the potential
improvements of RapidEye and WorldView-2 data over FORMOSAT-2 for rice N status monitoring,
as the former two sensors provide additional wavelengths besides the traditional four wavebands.
Ten site-year N rate experiments were conducted in Jiansanjiang, Heilongjiang Province of Northeast
China from 2008 to 2011. Plant samples and field hyperspectral data were collected at three growth
stages: panicle initiation (PI), stem elongation (SE), and heading (HE). The canopy-scale hyperspectral
data were upscaled to simulate the satellite bands. Vegetation index (VI) analysis, stepwise multiple
linear regression (SMLR), and partial least squares regression (PLSR) were performed to derive plant
N status indicators. The results indicated that the best-performed VIs calculated from the simulated
RapidEye and WorldView-2 bands, especially those based on the red edge (RE) bands, explained
significantly more variability for above ground biomass (AGB), plant N uptake (PNU), and nitrogen
nutrition index (NNI) estimations than their FORMOSAT-2-based counterparts did, especially at the
PI and SE stages. The SMLR and PLSR models based on the WorldView-2 bands generally had the
best performance, followed by the ones based on the RapidEye bands. The SMLR results revealed
that both the NIR and RE bands were important for N status estimation. In particular, the NIR1 band
(760–900 nm from RapidEye or 770–895 nm from WorldView-2) was most important for estimating
all the N status indicators. The RE band (690–730 nm or 705–745 nm) improved AGB, PNU, and NNI
estimations at all three stages, especially at the PI and SE stages. AGB and PNU were best estimated
using data across the stages while plant N concentration (PNC) and NNI were best estimated at the
HE stage. The PLSR analysis confirmed the significance of the NIR1 band for AGB, PNU, and NNI
estimations at all stages except for the HE stage. It also showed the importance of including extra
bands (coastal, yellow, and NIR2) from the WorldView-2 sensor for N status estimation. Overall, both
the RapidEye and WorldView-2 data with RE bands improved the results relative to FORMOSAT-2
data. However, the WorldView-2 data with three extra bands in the visible and NIR regions showed
the highest potential in estimating rice N status.
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1. Introduction

Precision nitrogen (N) management of rice (Oryza sativa L.) is crucially important for food security
and sustainable development, especially for Asian countries like China [1–3]. Non-destructive
technologies are needed for in-season site-specific diagnosis of rice plant N status and making
topdressing N recommendations. During the past decade, active canopy sensors (ACS), such as
GreenSeeker (Trimble Navigation Limited, Sunnyvale, CA, USA) and Crop Circle (Holland Scientific,
Lincoln, NE, USA) sensors, have been developed and have gained popularity for diagnosing crop
N status and guiding in-season N management of wheat (Triticum aestivum L.), maize (Zea mays L.),
and rice [1,4–8]. For large production field applications, such sensors have been installed on variable
rate fertilizer application machines for real-time sensing, diagnosis of crop N status, topdressing or
side-dressing N recommendation, and variable rate application [9–11]. However, such systems are not
common for rice, as it is difficult for variable rate application machines to enter flooded paddy fields.
It is also very challenging and time-consuming to carry active canopy sensors and walk across large
paddy fields.

Alternatively, satellite remote sensing offers a promising non-intrusive solution to monitor rice
N status and to guide site-specific N recommendations over large areas [3,12,13]. For in-season
site-specific N management, a satellite sensor with relatively high spatial resolution is required because
rice canopy plots are small. In addition, high temporal resolution is also crucially important, as cloudy
weather conditions are quite common in rice planting regions. There is only a narrow time window
to collect and process remote sensing images, produce topdressing fertilization prescription, and
implement fertilizer applications. Therefore, to date, studies of using satellite instruments for crop N
monitoring are still limited due to the restricted sensor resolutions of most satellites.

The FORMOSAT-2 is the first earth observation satellite developed by the National Space
Organization (NSPO) of Taiwan in 2004. The FORMOSAT-2 data have a spatial resolution of 8 m for
the four multispectral bands (Blue (B), Green (G), Red (R), and Near Infrared (NIR)) and 2 m for the
panchromatic band. The daily revisit capability with a constant view angle and the medium-high
spatial resolution make FORMOSAT-2 one of the most suitable satellites for regional precision
agriculture applications [3,14]. Particularly, Huang et al. (2015) [3] found that FORMOSAT-2 images
could be used to estimate rice aboveground biomass (AGB), leaf area index (LAI), plant N uptake
(PNU) and N nutrition index (NNI) at early growth stage. In addition, the IKONOS and QuickBird
satellite sensors have higher spatial resolutions but lower temporal resolutions than FORMOSAT-2
with the same band settings. They also have been used in previous studies for monitoring crop N
status, green LAI (GLAI), and yield [15–17].

Launched in August of 2008, RapidEye was the first commercial satellite with a red edge (RE)
band in addition to traditional B, G, R, and NIR bands, with an improved 5 m spatial resolution [18].
Many studies evaluated the applicability of the RE waveband. Eitel et al. (2007) [19] used hyperspectral
data to simulate RapidEye wavebands and found that the RE-based vegetation index (VI), Modified
Chlorophyll Absorption Ratio Index/Modified Triangular Vegetation Index 2 (MCARI/MTVI2),
performed the best for chlorophyll content and leaf N concentration estimations. Eitel et al. (2011) [20]
stated that the RE-based VI, Normalized Difference Red Edge (NDRE), could identify plant N stress
earlier than Normalized Difference Vegetation Index (NDVI) and Green NDVI (GNDVI). The RE-based
indices from the RapidEye images improved the LAI and plant N status estimations compared with
the R radiation-based VIs [21–23].

In addition to RapidEye, the WorldView-2 satellite was launched in October of 2009 with a further
increased spatial resolution of 2 m. Besides the traditional four and the RE wavebands, three additional
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ones are included: coastal (C), yellow (Y), and an extra NIR band (NIR2). Mutanga et al. (2012) [24]
found that the NDRE using WorldView-2 imagery could solve the saturation problem encountered
with high-density biomass estimation for wetland vegetation.

The FORMOSAT-2, RapidEye, and WorldView-2 satellites are ideal choices for crop N status
estimation since they all have short revisit time with 2–8 m spatial resolutions. Notably, both the
RapidEye and WorldView-2 satellite sensors with additional wavelengths have the potential to
further improve crop N monitoring. The first crucial question addresses how to define the expected
improvements of RapidEye data for rice N status monitoring compared with FORMOSAT-2data.
Second, can WorldView-2 data further improve the estimation of rice N status with three extra spectral
bands compared with RapidEye? Comparing these three satellite datasets directly proves difficult
because of the lacking of archived images from these satellite sensors at multiple growth stages for
this study site on our sampling dates. To evaluate and quantify the potential benefits of the RE
band or the additional three bands, a practical approach is to use hyperspectral canopy reflectance
data to simulate the spectral bands of the three satellite sensors. This approach has been widely
used in remote sensing studies in recent years. Yang et al. (2008) [25] found that the NDVI values
calculated with a hyperspectral canopy sensor were highly correlated (R2 = 0.79) with NDVIs derived
from broadband FORMOSAT-2 images. Bsaibes et al. (2008) [26] compared the ground measured
albedo and FORMOSAT-2 retrievals for five crops and found their albedo values were closely related.
Bausch et al. (2010) [27] compared several normalized VIs based on QuickBird imagery with the ones
calculated from simulated QuickBird bands using hyperspectral data, and confirmed their high levels
of similarity.

In previous studies, VIs have been widely used to estimate crop N status. While numerous
VIs have been developed, the most commonly used VIs are based on R and NIR bands, such as the
NDVI. However, the NDVI may saturate under moderate-to-high biomass conditions at later growth
stages [28–30]. The RE-based VIs have been proven to be sensitive to crop canopy chlorophyll and N
variation, even under the high biomass condition [7,31–34]. Since both RapidEye and WorldView-2
have the RE band, the question of how RE-based indices could improve the estimation of rice N status
needed to be answered. In addition to VI analysis, the stepwise multiple linear regression (SMLR)
and partial least squares regression (PLSR) were applied as well since it was noted that multivariate
techniques have usually allowed slightly better N prediction than the VI method [35]. The PLSR
analysis combines the methods of principal component analysis (PCA) and multiple linear regression
that cut the predictors to a smaller and uncorrelated subset. Therefore, it can efficiently deal with
the multi-collinearity issue in predicting variables [36]. PLSR has been used successfully to estimate
canopy biomass and N status in wheat crops [37] and to assess rice leaf growth and N status [38].

Therefore, the objective of this study was to evaluate the potential of using RapidEye and
WorldView-2 satellite data to improve rice N status monitoring over commonly used four-band
satellite data such as FORMOSAT-2 at different growth stages based on ground hyperspectral canopy
data and VI analysis, SMLR as well as PLSR.

2. Materials and Methods

2.1. Study Area

The study area is located at the Qixing Farm in the Sanjiang Plain, Heilongjiang Province,
Northeast China. The Sanjiang Plain used to be a wild natural wetland formed by the alluvium
of three river systems—Heilong River, Songhua River, and Wusuli River. This area has a typical
cool-temperate sub-humid continental monsoon climate. During the growing season (April–October),
the average rainfall is around 400 mm, which accounts for approximately 70% of yearly precipitation.
The mean annual temperature is about 2 ◦C [39], and the average daily temperature is 19.9 ◦C during
the growing season (from mid-May to mid-September). The annual sunshine duration is 2300–2600 h,
and the whole year frost-free period is about 120–140 days [40]. The main soil type in the region
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is Albic soil, classified as Mollic Planosols in the FAO-UNESCO system and Typical Argialbolls in
Soil Taxonomy [41].

Two sites were selected to conduct 10 N rate experiments. Site 1 (47◦15′52”N, 132◦39′05”E) has
been planted with rice since 1992 and at Site 2 (47◦13′59”N, 132◦38′50”E) rice planting started in 2002.

2.2. Experimental Design

Ten N rate experiments were conducted in 2008, 2009, and 2011, involving two Japonica rice
cultivars: Kongyu 131 (11 leaves) and Longjing 21 (12 leaves) (Table 1). All of the experiments
adopted the randomized complete block design with 3–4 replications. The N fertilizer was applied
in three splits for Experiments 1–6: 40%–45% as the basal application before transplanting, 20%–30%
at the tillering stage, and 30%–35% at the stem elongation (SE) stage. For Experiments 7–10, the N
fertilizer was applied in two splits: 60% as the basal application and 40% at the tillering stage. In each
experiment, 45–60 kg·ha−1phosphate (P2O5) and 90–105 kg·ha−1potash (K2O) fertilizers were applied
to ensure sufficient phosphorus (P) and potassium (K) nutrients. The P fertilizer was applied as a basal
application before transplanting while the K fertilizer was applied in two splits, with 50% as the basal
fertilizer and 50% as the panicle fertilizer at the SE stage.

Table 1. Details of the nitrogen rate experiments conducted from 2008 to 2011 in Jiansanjiang,
Heilongjiang Province, Northeast China.

Experiment Site Year Cultivar N Rates (kg·ha−1) Transplanting/Harvesting Date Sampling Stage

1 1 2008 Kongyu 131 0, 35, 70, 105, 140 29 May/21 September PI, SE, HE
2 2 2008 Kongyu 131 0, 35, 70, 105, 140 13 May/22 September PI, SE, HE
3 1 2009 Kongyu 131 0, 35, 70, 105, 140 24 May/27 September SE, HE
4 2 2009 Kongyu 131 0, 35, 70, 105, 140 20 May/27 September PI,SE, HE
5 1 2011 Kongyu 131 0, 70, 100, 130,160 17 May/21 September PI
6 1 2011 Longjing 21 0, 70, 100, 130, 160 19 May/21 September PI
7 1 2008 Kongyu 131 0, 23, 45, 68, 91 29 May/21 September HE
8 2 2008 Kongyu 131 0, 23, 45, 68, 91 13 May/22 September HE
9 1 2009 Kongyu 131 0, 23, 45, 68, 91 24 May/27 September SE, HE
10 2 2009 Kongyu 131 0, 23, 45, 68, 91 20 May/27 September SE, HE

PI: panicle initiation stage; SE: stem elongation stage; HE: heading stage.

2.3. Determining N Status Indicators with Plant Sampling and Analysis

Plant samples were collected at several critical growth stages, including the panicle initiation
(PI), SE and heading (HE) stages, to determine the values of four N status indicators—AGB, plant N
concentration (PNC), PNU, and NNI. Growth stages have significant impacts on estimating N status
indicators. The AGB and PNU increase with the advancement of growth stages, and they have positive
correlations with N nutritional status. As explained by the dilution effect [42,43], the PNC declines
during the growth period within dense canopies. It is positively correlated with N nutritional status
but inversely related with growth stages.

The detailed sampling dates and related information were listed in Table 1. Before plant sampling,
the average tiller number per hill for each treatment plot was determined, and then 3 to 6 representative
hills with average tiller numbers were randomly selected and cut at ground surface. All the plant
samples were rinsed with water and the roots were removed to determine the AGB. Then the samples
were separated into leaves, stems, and panicles (for samples collected at the HE stage). The separated
samples were put into an oven at 105 ◦C for half an hour for deactivation of enzymes, and then dried
at 70–80 ◦C until constant weight. After being weighed, the samples were ground into powders and
sub-samples were put through 1 mm sieve for PNC analysis using the standard Kjeldahl-N method.
The PNU was determined by multiplying PNC with dry AGB. Both PNC and PNU have been widely
used as N status indicators in former studies.

NNI is defined as the ratio of the actual PNC (Na) and the critical N concentration (Nc), which
was calculated using the equation developed for rice in Northeast China based on data from N rate
experiments conducted in this region from 2008 to 2013 following the method of Justes et al. (1994) [44].
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More details about the method can be found in Huang et al. (2015) [3]. NNI is a unitless parameter.
It increases with increasing N rates. This trend remains constant during the growth period [45,46].
If Na is greater than Nc (NNI > 1), it indicates a surplus of N while the opposite is true if Na is smaller
than Nc (NNI < 1). An NNI value of 1 indicates an optimal N supply [3,43]. NNI has advantages as
a specific, sensitive, memorable, and predictive tool for crop N diagnosis [43,47]. Therefore, NNI is
a better indicator for diagnosing crop N status than PNC and PNU [43]. The NNI map can be used
directly to guide in-season topdressing N applications [3,48].

2.4. Field Spectral Measurements and Re-Sampling

The rice canopy spectra were collected using portable hyperspectral instruments FieldSpec3
(Analytical Spectral Devices Inc., Boulder, CO, USA) for Experiments 1–4 and 7–10, and QualitySpec
Pro (Analytical Spectral Devices Inc., Boulder, CO, USA) for Experiments 5 and 6. The QualitySpec Pro
collects reflectance from 350 to 1800 nm while the FieldSpec 3 provides spectra across 350 to 2500 nm.
Both of them have a spectral resolution of 1.2 nm from 350 to 1100 nm and a 2 nm spectral resolution
beyond 1100 nm.

All spectra were obtained under sunny cloudless conditions during local mid-day
(9:00 a.m.–1:00 p.m.). The measurements were taken 0.3 m above the canopy with a 25◦ field of
view, which gave a sample diameter of 0.14 m. The sensors were carried along the north side of the
rice plant rows to minimize the disturbance of the canopy structure and avoid the creation of shadows.
The reflectance values were calibrated by a barium sulfate (BaSO4) reference panel at least every
10–15 min. Five to six scans were taken randomly for each plot. The average value was calculated
subsequently and used as the plot reflectance.

Next, the FORMOSAT-2 (F2), RapidEye (RY), and WorldView-2 (WV2) bands were simulated
and evaluated. Detailed sensor characteristics for the three satellite systems were shown in Table 2.
The field hyperspectral data were resampled in order to simulate the satellite wavebands based on the
theory of band equivalent reflectance explained as Equation (1):

ri =
λli

∑
λui

r(λ)ϕi(λ)/
λli

∑
λui

ϕi(λ) (1)

where ri stands for the reflectance of band i; λui is the starting wavelength of band i; λ`i is the
termination wavelength of band i; r(λ) is the reflectance value at wavelength λ; ϕi(λ) is the band
response function of band i at wavelength λ. The band response function data of FORMOSAT-2 were
provided by the NSPO while the corresponding data for RapidEye and WorldView-2 were supplied by
the ENVI 4.8 software (Harris Geospatial Solutions, Broomfield, CO, USA) (Figure 1).

Table 2. The properties of the FORMOSAT-2, RapidEye, and WorldView-2 satellite sensors.

Properties FORMOSAT-2 (F2) RapidEye (RY) WorldView-2 (WV2)

Type Sun-synchronous Sun-synchronous Sun-synchronous

Launch time 4 May 2004 8 August 2008 9 October 2009

Orbit altitude (km) 891 620 770

Spatial Resolution for
Multispectral bands (m) 8 6.5 2

Spatial Resolution for
Panchromatic bands (m) 2 - 0.5

Revisit time (Day) 1 <1 1.1
Swath width (km) 24 80 16.4

Band settings

450–520 nm (Blue: FB)
520–600 nm (Green: FG)

630–690 nm (Red: FR)
760–900 nm (NIR1: FNIR1)

440–510 nm (Blue: RB)
520–590 nm (Green: RG)

630–685 nm (Red: RR)
690–730 nm (Red edge: RRE)
760–900 nm (NIR1: RNIR1)

400–450 nm (Coastal: WVC)
450–510 nm (Blue: WVB)

510–581 nm (Green: WVG)
585–625 nm (Yellow: WVY)

630–690 nm (Red: WVR)
705–745 nm (Red Edge: WVRE)
770–895 nm (NIR1: WVNIR1)

860–1040 nm (NIR2: WVNIR2)
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Figure 1. Band response functions for: FORMOSAT-2 (a); RapidEye (b); and WorldView-2 (c) satellite
sensors used in this study.

2.5. Data Analysis

All 369 in-situ samples were divided into two groups by a stratified random sampling method,
with approximately 2/3 of the data used for model calibration and the rest for model validation.

In total, 21 different VIs were calculated (Table 3) and correlated with the four N status indicators
separately. To evaluate the band effects of simulated satellite data on the relationships between VIs and
N status indicators over the growing season, the same VIs were calculated for all three types of satellite
data when possible. Linear regression models were then constructed for the three individual growth
stages and across the stages. The relationships between each of the VIs and each of the indicators were
determined. The coefficient of determination (r2) was used to assess and compare the performance of
the VI models. According to the r2 ranking, the top 5 VIs were listed, and the best VIs were shown
in scatter plots. The Root Mean Square Error (RMSE) and relative error (REr) were also calculated to
evaluate the model performance.

Table 3. Vegetation indices evaluated in this study for estimating rice N status indicators.

Vegetation Index Formula Satellite Sensors Reference

Ration Vegetation Index (RVI) NIR/R F2, RY, WV2 [49]

Chlorophyll Index (CI) (NIR/G) − 1 F2, RY, WV2 [50]

Normalized Difference Vegetation Index (NDVI) (NIR − R)/(NIR + R) F2, RY, WV2 [51]

Green NDVI (GNDVI) (NIR − G)/(NIR + G) F2, RY, WV2 [52]

Optimized Soil Adjusted Vegetation Index (OSAVI) (1 + 0.16) × ((NIR − R)/(NIR + R + 0.16)) F2, RY, WV2 [53]

Modified Chlorophyll Absorption in Reflectance
Index (MCARI) ((NIR − R)− 0.2(R − G)) × (NIR/R) F2, RY, WV2 [54]

Triangular Vegetation Index (TVI) 0.5 × (120(NIR − G) − 200(R − G)) F2, RY, WV2 [55]

Modified Transformed Chlorophyll Absorption in
Reflectance Index (TCARI) 3 × ((NIR − R) − 0.2(NIR − G)(NIR/R)) F2, RY, WV2 [56]

MCARI/OSAVI MCARI/OSAVI F2, RY, WV2 [56]

TCARI/OSAVI TCARI/OSAVI F2, RY, WV2 [56]

Red Edge Chlorophyll Index (RECI) (NIR/RE) − 1 RY, WV2 [50]

Normalized difference Red Edge Index (NDRE) (NIR − RE)/(NIR + RE) RY, WV2 [57]

MERIS Terrestrial Chlorophyll Index (MTCI) (NIR − RE)/(RE − R) RY, WV2 [58]

Canopy Chlorophyll Content Index (CCCI) (NDRE − NDREmin)/(NDREmax − NDREmin) RY, WV2 [57]

Nitrogen Planar Domain Index (NDPI) (RECI − RECImin)/(RECImax − RECImin) RY, WV2 [59]

Red Edge OSAVI (REOSAVI) (1 + 0.16) × ((NIR − RE)/(NIR + RE + 0.16)) RY, WV2 [60]

Red Edge MCARI (REMCARI) ((NIR − RE) − 0.2(RE − G)) × (NIR/RE) RY, WV2 [60]

Red Edge Triangular Vegetation Index (RETVI) 0.5 × (120(NIR − G) − 200(RE − G)) RY, WV2 [55]

Red Edge TCARI (RETCARI) 3 × ((NIR − RE) − 0.2(NIR − G)(NIR/RE)) RY, WV2 [60]

REMCARI/REOSAVI REMCARI/REOSAVI RY, WV2 [60]

RETCARI/REOSAVI RETCARI/REOSAVI RY, WV2 [60]
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In addition, SMLR using SPSS V.20.0 (IBM SPSS Statistics, Armonk, NY, USA) and PLSR using
Matlab 7.10 (MathWorks, Natick, MA, USA) were implemented to estimate the four variables. In order
to evaluate the relative importance of each waveband in each of the PLSR models, the Variable
Importance in Projection (VIP) values were computed. The VIP is a variable selection method in PLSR.
It calculates the influence of the independent variables to the dependent variable, and selects the most
influential predictors for a PLSR model. The VIP value for a variable is a weighted sum of squares of
the PLSR weights that takes into account the explained variance of each PLSR dimension. A variable
with a VIP value greater than one is considered important in the PLSR model. The larger the VIP
score, the greater the contribution of the variable. The VIP values can be used to identify individual
waveband importance and the most effective spectral regions [61,62].

3. Results

3.1. Variability of the N Status Indicators

The descriptive statistics of the four N status indicators at different growth stages for both of
the calibration and validation datasets were listed in Table 4. In the calibration dataset, both AGB
and PNU increased moderately from the PI stage to the SE stage, and dramatically to the HE stage.
In contrast, PNC decreased slightly from the PI stage to the SE stage, and declined sharply to the HE
stage, affected by the “dilution effect” described by Plénet and Lemaire (1999) [61]. The NNI indicated
a slightly under-supply of N at the PI stage, but a nearly optimal N supply at the SE stage and an
over-supply at the HE stage. The AGB and PNU had larger coefficients of variation (CVs) than PNC
and NNI (Table 4). Similar trends were observed for the validation dataset. The mean values of the
four N indicators across stages were similar for both datasets.

Table 4. Descriptive statistics of the measured aboveground biomass (AGB), nitrogen concentration
(PNC), plant N uptake (PNU), and nitrogen nutrition index (NNI) for the model estimation and
validation at the panicle initiation (PI), stem elongation (SE), heading (HE) and across stages (All).

Stage
Calibration Dataset Validation Dataset

AGB (t·ha−1) PNC (%) PNU (kg·ha−1) NNI AGB (t·ha−1) PNC (%) PNU (kg·ha−1) NNI

PI

N 57 57 57 57 28 28 28 28
Mean 1.11 2.47 27.53 0.96 1.05 2.46 26.09 0.94

SD 0.50 0.17 12.71 0.11 0.48 0.21 11.84 0.10
CV 45.02 6.97 46.17 11.4 45.79 8.45 45.40 10.63

SE

N 92 92 92 92 45 45 45 45
Mean 1.78 2.36 40.13 1.01 1.83 2.39 41.32 1.02

SD 0.88 0.36 16.96 0.14 0.99 0.35 18.25 0.12
CV 49.36 15.11 42.26 13.74 54.17 14.64 44.17 12.04

HE

N 98 98 98 98 49 49 49 49
Mean 6.28 1.62 103.34 1.09 5.93 1.6 95.41 1.05

SD 1.49 0.28 36.2 0.24 1.45 0.29 31.09 0.22
CV 23.75 17.06 35.03 21.97 24.46 18.11 32.59 21.18

All

N 247 247 247 247 122 122 122 122
Min 0.20 0.83 4.39 0.53 0.14 0.96 3.17 0.65
Max 9.92 3.15 205.64 1.63 9.21 3.35 195.37 1.63

Mean 3.41 2.09 62.30 1.03 3.30 2.09 59.55 1.02
SD 2.59 0.48 42.36 0.19 2.45 0.50 37.94 0.17
CV 75.95 22.97 67.99 18.45 74.24 23.92 63.71 16.67

N: number of observations; SD: standard deviation; CV, coefficient of variation (%).

3.2. Correlation between N Indicators and Vegetation Indices

For VI models derived from RapidEye and WorldView-2 bands, all the top five ones for AGB
(Table 5) and PNU (Table 6) estimations were based on RE indices—MERIS Terrestrial Chlorophyll
Index (MTCI), Canopy Chlorophyll Content Index (CCCI), N Planar Domain Index (NDPI), Red Edge
Chlorophyll Index (RECI), and NDRE. Comparatively, the top five FORMOSAT-2-based VI models
showed significantly lower performance at the PI and SE stages and slightly lower performance at the
HE stage and across the stages, demonstrating the importance of using RE band in AGB and PNU
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estimations at early and middle growth stages. From the PI through the HE stages, the best performed
RE VI models showed r2 values ranging from 0.62 to 0.65 for PNU estimation (Table 6). Across the
stages, the RE-based NDPI, RECI, MTCI and the traditional Chlorophyll Index (CI) explained the most
variability for AGB and PNU estimations with r2 ranging from 0.80 to 0.83 (Figure 2).

In contrast, as shown in Table 5, PNC did not have any significant relationships with most
of the VIs at the PI and SE stages, indicating the difficulty of estimating N concentrations at early
and middle stages using VIs. However, at the HE stage, the model performance was significantly
improved with the highest r2 ranging from 0.42 to 0.57. Again, the RE-based indices performed
better at this stage. Across the stages, similar performance was obtained for both groups of indices.
In addition, Table 6 revealed an improved NNI estimation using RE-based VIs relative to the non-RE
ones. The performance gap between the two groups of indices was the smallest at the SE stage.
Likewise, the best RE-based VI models (r2 = 0.60–0.62) for NNI estimation were found to be at the
HE stage, slightly better than the original CI (r2 = 0.58) and GNDVI (r2 = 0.57) models. These results
demonstrated that the best stage for PNC and NNI estimations based on these satellite sensor bands
was the HE stage. For FORMOSAT-2-based indices, the CI was the best for estimating these N
indicators in most cases (Figure 2).
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Figure 2. Relationships between: FORMOSAT-2-based Chlorophyll Index (CI) (a); RapidEye-based
MERIS Terrestrial Chlorophyll Index (MTCI) (b); WorldView-2-based Nitrogen Planar Domain Index
(NDPI) (c), and aboveground biomass (AGB); FORMOSAT-2-based CI (d); RapidEye-based MTCI
(e); WorldView-2-based NDPI (f), and plant N uptake (PNU); and FORMOSAT-2-based CI (g);
RapidEye-based MTCI (h); WorldView-2-based NDPI (i), and N nutrition index (NNI), at the panicle
initiation (PI), stem elongation (SE), heading (HE), and across all stages. The relationships between VIs
and N status indicators across growth stages are indicated by the red lines.
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Table 5. The top five coefficients of determination (r2) for the relationships between vegetation indices based on the wavebands of FORMOSAT-2 (F2), RapidEye (RY),
WorldView-2 (WV2) and aboveground biomass (AGB), plant N concentration (PNC) at the panicle initiation (PI), stem elongation (SE), heading (HE), and across
stages (All), respectively. Only significant r2 values were listed.

PI Stage SE Stage HE Stage All

Index AGB Index AGB Index AGB Index AGB

F2-CI 0.39 ** F2-GNDVI 0.41 ** F2-CI 0.28 ** F2-CI 0.82 **
F2-GNDVI 0.35 ** F2-OSAVI 0.41 ** F2-GNDVI 0.27 ** F2-RVI 0.80 **

F2-MCARI/OSAVI 0.33 ** F2-NDVI 0.41 ** F2-RVI 0.21 ** F2-MCARI/OSAVI 0.77 **
F2-TCARI/OSAVI 0.34 ** F2-CI 0.40 ** F2-NDVI 0.20 ** F2-TCARI/OSAVI 0.77 **

F2-RVI 0.33 ** F2-TVI 0.39 ** F2-TCARI/OSAVI 0.18 ** F2-MCARI 0.75 **
RY-MTCI 0.64 ** RY-MTCI 0.53 ** RY-MTCI 0.28 ** RY-CI 0.82 **
RY-CCCI 0.61 ** RY-CCCI 0.51 ** RY-CCCI 0.28 ** RY-RECI 0.81 **
RY-NDPI 0.59 ** RY-NDPI 0.50 ** RY-NDPI 0.28 ** RY-NDPI 0.81 **
RY-RECI 0.46 ** RY-RECI 0.47 ** RY-RECI 0.28 ** RY-RVI 0.80 **

RY-NDRE 0.43 ** RY-NDRE 0.46 ** RY-NDRE 0.28 ** RY-MTCI 0.80 **
WV2-NDPI 0.65 ** WV2-MTCI 0.57 ** WV2-NDPI 0.30 ** WV2-CI 0.82 **
WV2-MTCI 0.62 ** WV2-NDPI 0.54 ** WV2-MTCI 0.30 ** WV2-RECI 0.82 **
WV2-RETVI 0.57 ** WV2-RECI 0.51 ** WV2-RECI 0.30 ** WV2-MTCI 0.81 **
WV2-RECI 0.54 ** WV2-NDRE 0.50 ** WV2-NDRE 0.30 ** WV2-RETVI 0.81 **

WV2-NDRE 0.53 ** WV2-RETVI 0.47 ** WV2-CCCI 0.30 ** WV2-NDPI 0.80 **
Index PNC Index PNC Index PNC Index PNC
F2-CI F2-NDVI 0.06 * F2-CI 0.53 ** F2-OSAVI 0.42 **

F2-GNDVI F2-GNDVI F2-GNDVI 0.52 ** F2-TVI 0.41 **
F2-RVI F2-OSAVI F2-NDVI 0.46 ** F2-NDVI 0.39 **

F2-TCARI/OSAVI F2-CI F2-RVI 0.44 ** F2-RVI 0.39 **
F2-TCARI F2-RVI F2-TCARI/OSAVI 0.42 ** F2-GNDVI 0.39 **

RY-RETCARI/REOSAVI RY-RETCARI 0.09 ** RY-RECI 0.57 ** RY-OSAVI 0.42 **
RY-GNDVI RY-NDVI 0.06 * RY-MTCI 0.56 ** RY-REOSAVI 0.42 **

RY-RECI RY-NDRE 0.05 * RY-NDPI 0.56 ** RY-TVI 0.41 **
RY-NDPI RY-MTCI RY-NDRE 0.55 ** RY-GNDVI 0.40 **
RY-MTCI RY-GNDVI RY-RETCARI/REOSAVI 0.55 ** RY-RETVI 0.40 **

WV2-GNDVI WV2-MTCI 0.07 * WV2-REOSAVI 0.57 ** WV2-RETCARI 0.44 **
WV2-RECI WV2-NDVI 0.06 * WV2-RECI 0.56 ** WV2-OSAVI 0.42 **
WV2-NDPI WV2-NDRE 0.05 * WV2-MTCI 0.56 ** WV2-REOSAVI 0.41 **
WV2-NDRE WV2-GNDVI WV2-NDRE 0.56 ** WV2-TVI 0.41 **

WV2-CI WV2-RECI WV2-NDPI 0.55 ** WV2-GNDVI 0.39 **

** Correlation is significant at the p < 0.01 level; * Correlation is significant at the p < 0.05 level.
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Table 6. The top five coefficients of determination (r2) for the relationships between vegetation indices based on the wavebands of FORMOSAT-2 (F2), RapidEye (RY),
WorldView-2 (WV2) and plant N uptake (PNU), nitrogen nutrition index (NNI) at the panicle initiation (PI), stem elongation (SE), heading (HE), and across stages
(All), respectively. Only significant r2 values were listed.

PI Stage SE Stage HE Stage All

Index PNU Index PNU Index PNU Index PNU

F2-CI 0.39 ** F2-CI 0.52 ** F2-CI 0.50 ** F2-CI 0.81 **
F2-GNDVI 0.35 ** F2-TVI 0.52 ** F2-GNDVI 0.48 ** F2-RVI 0.77 **

F2-TCARI/OSAVI 0.34 ** F2-GNDVI 0.50 ** F2-RVI 0.40 ** F2-MCARI/OSAVI 0.76 **
F2-RVI 0.33 ** F2-OSAVI 0.50 ** F2-NDVI 0.39 ** F2-TCARI/OSAVI 0.76 **

F2-MCARI/OSAVI 0.33 ** F2-MCARI/OSAVI 0.49 ** F2-TCARI/OSAVI 0.36 ** F2-MCARI 0.75 **
RY-MTCI 0.62 ** RY-MTCI 0.64 ** RY-NDPI 0.52 ** RY-NDPI 0.83 **
RY-CCCI 0.59 ** RY-CCCI 0.62 ** RY-RECI 0.52 ** RY-MTCI 0.82 **
RY-NDPI 0.58 ** RY-NDPI 0.61 ** RY-MTCI 0.51 ** RY-CI 0.81 **
RY-RECI 0.46 ** RY-RECI 0.57 ** RY-RETCARI 0.51 ** RY-RECI 0.81 **

RY-NDRE 0.43 ** RY-RETVI 0.56 ** RY-RETCARI/REOSAVI 0.51 ** RY-REMCARI 0.79 **
WV2-NDPI 0.63 ** WV2-NDPI 0.65 ** WV2-RECI 0.62 ** WV2-NDPI 0.82 **
WV2-MTCI 0.60 ** WV2-MTCI 0.64 ** WV2-NDPI 0.61 ** WV2-MTCI 0.82 **
WV2-RETVI 0.54 ** WV2-RETVI 0.61 ** WV2-MTCI 0.61 ** WV2-RECI 0.82 **
WV2-RECI 0.53 ** WV2-RECI 0.60 ** WV2-NDRE 0.61 ** WV2-CI 0.81 **

WV2-NDRE 0.52 ** WV2-NDRE 0.59 ** WV2-REOSAVI 0.61 ** WV2-REMCARI 0.81 **
Index NNI Index NNI Index NNI Index NNI
F2-CI 0.35 ** F2-TCARI 0.34 ** F2-CI 0.58 ** F2-CI 0.32 **

F2-TCARI/OSAVI 0.32 ** F2-TCARI/OSAVI 0.33 ** F2-GNDVI 0.57 ** F2-TCARI 0.30 **
F2-RVI 0.31 ** F2-MCARI 0.33 ** F2-NDVI 0.48 ** F2-MCARI 0.29 **

F2-GNDVI 0.31 ** F2-MCARI/OSAVI 0.32 ** F2-RVI 0.47 ** F2-TCARI/OSAVI 0.29 **
F2-MCARI/OSAVI 0.29 ** F2-CI 0.30 ** F2-TCARI/OSAVI 0.44 ** F2-RVI 0.28 **

RY-MTCI 0.44 ** RY-REMCARI 0.35 ** RY-NDPI 0.61 ** RY-RETCARI/REOSAVI 0.37 **
RY-NDPI 0.44 ** RY-CCCI 0.34 ** RY-RECI 0.61 ** RY-MTCI 0.37 **
RY-RECI 0.38 ** RY-TCARI 0.34 ** RY-MTCI 0.61 ** RY-NDPI 0.35 **
RY-CCCI 0.36 ** RY-MTCI 0.33 ** RY-NDRE 0.60 ** RY-CCCI 0.35 **
RY-NDRE 0.36 ** RY-REMCARI/REOSAVI 0.33 ** RY-RETCARI/REOSAVI 0.60 ** RY-RETCARI 0.34 **

WV2-MTCI 0.41 ** WV2-NDPI 0.37 ** WV2-RECI 0.62 ** WV2-NDPI 0.37 **
WV2-RECI 0.41 ** WV2-REMCARI 0.36 ** WV2-NDPI 0.61 ** WV2-MTCI 0.35 **

WV2-NDRE 0.41 ** WV2-RETVI 0.36 ** WV2-MTCI 0.61 ** WV2-CCCI 0.35 **
WV2-NDPI 0.40 ** WV2-TCARI 0.34 ** WV2-NDRE 0.61 ** WV2-RECI 0.34 **
WV2-RETVI 0.38 ** WV2-TCARI/OSAVI 0.33 ** WV2-REOSAVI 0.61 ** WV2-REMCARI 0.33 **

** Correlation is significant at the p < 0.01 level; * Correlation is significant at the p < 0.05 level.
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The improvements of RE-based VIs over traditional ones (B, G, R, and NIR bands) were
also demonstrated in Figure 3. It is evident that most of the RE-based indices derived from the
WorldView-2 bands had the best performance, followed by the RapidEye RE-based indices, and the
FORMOSAT-2-based VIs had the worst performance. The slightly better performance of WorldView-2
RE-based indices relative to those of RapidEye might be attributed to the different RE band settings of
the two satellite sensors. Particularly, the RE-based Transformed Chlorophyll Absorption Reflectance
Index (RETCARI) and RETCARI/RE-based Optimized Soil Adjusted Vegetation Index (REOSAVI)
based on RapidEye bands underperformed than the same indices with WorldView-2 bands at the PI
stage, but the opposite was true at the HE stage (Figure 3).
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Figure 3. Comparison of different vegetation indices (VIs) calculated using FORMOSAT-2 (F2),
RapidEye (RY) and WorldView-2 (WV2) satellite data for the relationships with aboveground biomass
(AGB), plant N uptake (PNU), and N nutrition index (NNI) at the panicle initiation (PI) and heading
(HE) stages, respectively.

3.3. Stepwise Multiple Linear Regression Analysis

The SMLR analysis indicated that models using the simulated RapidEye and WorldView-2 bands
explained more variability than the ones using FORMOSAT-2 bands at the PI and SE stages (Table 7).
The regression results showed that the NIR1 band was the most important band for estimating these N
status indicators as it was selected in all the models except the FORMOSAT-2 AGB estimation model at
the SE stage. In addition, the RE bands of RapidEye and WorldView-2 were important for AGB, PNU,
and NNI estimations at the PI and SE stages (Table 7).
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Table 7. Stepwise multiple linear regression models based on simulated multi-spectral FORMOSAT-2 (F2), RapidEye (RY), WorldView-2 (WV2) wavebands for
estimating aboveground biomass (AGB) and plant N uptake (PNU), nitrogen nutrition index (NNI), and plant N concentration (PNC) at the panicle initiation (PI),
stem elongation (SE), heading (HE) and across stages. The wavebands were ranked by the enter order.

AGB PNU NNI PNC

PI SE HE All PI SE HE All PI SE HE All PI SE HE All

Based on F2 bands

R2 0.61 ** 0.51 ** 0.29 ** 0.82 ** 0.60 ** 0.66 ** 0.50 ** 0.81 ** 0.45 ** 0.30 ** 0.57 ** 0.36 ** 0.08 * 0.22 ** 0.51 ** 0.43 **
Band NIR1 R G NIR1 NIR1 NIR1 R NIR1 NIR1 NIR1 R NIR1 G R R NIR1

G B NIR1 G G G NIR1 G G NIR1 G B NIR1 R
B B B B G B B G B NIR1 G
R R R G

Based on RY bands

R2 0.68 ** 0.55 ** 0.29 ** 0.82 ** 0.66 ** 0.68 ** 0.50 ** 0.82 ** 0.46 ** 0.50 ** 0.59 ** 0.38 ** 0.07 * 0.20 ** 0.57 ** 0.43 **
Band NIR1 NIR1 G NIR1 NIR1 NIR1 R NIR1 R NIR1 R NIR1 G R NIR1 NIR1

RE RE NIR1 RE RE RE NIR1 RE NIR1 RE NIR1 RE B RE R
R G R B RE R RE R RE R NIR1 G
B B G

Based on WV2 bands

R2 0.76 ** 0.63 ** 0.31 ** 0.82 ** 0.71 ** 0.69 ** 0.52 ** 0.82 ** 0.52 ** 0.49 ** 0.61 ** 0.38 ** 0.09 ** 0.10 ** 0.56 ** 0.43 **
Band NIR1 NIR1 Y NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 NIR1 Y R R NIR2

RE RE NIR1 RE RE RE RE RE RE RE RE RE B NIR2 R
NIR2 G G R R G NIR2 R G RE

C R NIR2 Y
Y Y C

** Correlation is significant at the p < 0.01 level; * Correlation is significant at the p < 0.05 level.
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At the HE stage, the R2 values for all the SMLR AGB models were similar (0.29–0.31) based
on the three sensor datasets (Table 7). Better R2 values were achieved for PNU (R2 = 0.50–0.52),
PNC (R2 = 0.51–0.57) and NNI (R2 = 0.57–0.61) estimations at this stage than previous ones. The
SMLR models outperformed the VI-based models for estimating PNC; however, none of the models
performed satisfactorily at the PI and SE stages (Table 7). Compared to the best-performed VI models
for estimating all four N indicators, the SMLR models yielded higher R2 at the PI and SE stages, but
similar R2 at the HE stage and across the stages (Tables 5–7).

In general, AGB and PNU were best estimated at the early growth stage (PI) and across the stages
while NNI and PNC were best estimated at the later stage (HE). In most cases, the regression models
based on the simulated WorldView-2 bands had the highest performance for AGB, PNU, and NNI
estimations at a specific growth stage.

3.4. Partial Least Squares Regression Modeling

Table 8 presents the R2 and RMSE of Calibration (RMSEC) values of the PLSR models for the
four N indicators using the entire spectra of the three simulated satellite bands. According to the R2

and RMSEC values, the WorldView-2 band-based PLSR models significantly outperformed all the
FORMOSAT-2-based ones while the RapidEye-based PLSR models achieved slightly better results
than the FORMOSAT-2 ones. However, the performance gaps were much smaller at the HE stage and
across the three stages.

Table 8. Aboveground biomass (AGB), plant N concentration (PNC), plant N uptake (PNU), and
nitrogen nutrition index (NNI) modeling (calibration subset) by partial least square regression (PLSR)
analysis using the wavelengths based on the FORMOSAT-2(F2), RapidEye (RY), WorldView-2(WV2)
datasets at the panicle initiation (PI), stem elongation (SE), heading (HE) and across stages (All). All R2

values are significant (p < 0.01). RMSEC stands for the RMSE of calibration subset.

AGB PNC

PI SE HE All PI SE HE All

Based on F2 bands

R2 0.64 0.56 0.31 0.82 0.09 0.22 0.54 0.43
RMSEC 0.30 0.58 1.23 1.11 0.16 0.31 0.19 0.36

Based on RY bands

R2 0.71 0.57 0.30 0.82 0.11 0.23 0.56 0.44
RMSEC 0.26 0.57 1.24 1.11 0.16 0.31 0.18 0.36

Based on WV2 bands

R2 0.78 0.67 0.38 0.84 0.24 0.31 0.60 0.43
RMSEC 0.23 0.50 1.17 1.02 0.15 0.29 0.17 0.36

PNU NNI
PI SE HE All PI SE HE All

Based on F2 bands

R2 0.62 0.68 0.50 0.81 0.46 0.50 0.58 0.36
RMSEC 7.76 9.61 25.50 18.32 0.08 0.10 0.15 0.15

Based on RY bands

R2 0.69 0.69 0.50 0.82 0.49 0.52 0.59 0.36
RMSEC 7.02 9.44 25.44 18.05 0.08 0.10 0.15 0.15

Based on WV2 bands

R2 0.75 0.78 0.55 0.83 0.55 0.56 0.62 0.43
RMSEC 6.24 7.87 24.22 17.56 0.07 0.09 0.15 0.14

Similar to the SMLR analysis, AGB and PNU were best estimated at the PI stage and across the
stages by the PLSR method, whereas NNI and PNC were best estimated at the HE stage. The PLSR
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and SMLR methods had similar performance for the AGB and PNU estimations while better R2 and
RMSEC values were found in the PLSR models for NNI and PNC estimations in most cases. Especially
for the PNC estimation, the PLSR models based on the WorldView-2 bands explained significantly
more variability (R2 = 0.24–0.31) compared to the counterparts of SMLR models (R2 = 0.09–0.10) at the
PI and SE stages.

In addition, the calculated VIP values revealed that for AGB and PNU estimation, the NIR bands,
especially the NIR1 centered at 830 nm was the most important one in the PLSR models in most cases
(Figures 4 and 5). In contrast, for PNC estimation, the VIP scores indicated that the most important
band changed from G band (for FORMOSAT-2 and RapidEye) at the PI stage to R band at the SE
stage, and finally to NIR1 band at the HE stage (Figure 6a–c). For NNI estimation, the NIR1 band was
consistently important (Figure 6d–f). The R band at the PI stage (Figure 6d), G band at the SE stage
(Figure 6e) and both G and R bands at the HE stage were important for NNI estimation. The RE band
showed relatively high VIP values at the SE stage for both AGB and PNU estimations and at the PI
stage for PNC estimation. The Y band of WorldView-2 demonstrated its importance at the HE stage
for AGB, PNU, and NNI estimations. Notably, the Y band had high VIP values for PNC estimation
from PI thru HE stages. The C band of WorldView-2 also had VIP values close to or above “1” for AGB
and PNU estimations at the SE stage (Figures 4–6).

3.5. Validation of the Estimation Models

The validation results of the three types of models were summarized in Table 9. The VI-based PNC
model validation for the PI stage was excluded since no significant relationship was identified. For
AGB and PNU estimations, the RapidEye and WorldView-2 band-based VI models had significantly
higher R2 than those based on FORMOSAT-2 bands while the validation results of the former two
types of models were more comparable at the PI and SE stages (Table 9). The SMLR and PLSR
validation models showed similar results. However, the FORMOSAT-2-based SMLR and PLSR models
had significantly higher R2 and lower RMSE and REr compared to the counterparts of VI models.
For PNC estimation, the WorldView-2 band-based PLSR models had significantly higher R2 than those
of FORMOSAT-2-based models at the PI and SE stages (Table 9). In most cases, the SMLR and PLSR
models showed better performance for estimating the four N indicators than the VI models.
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Table 9. Comparison of the validation results for the best performed vegetation indices (VIs), the stepwise multiple linear regression (SMLR) models, and the partial
least squares regression (PLSR) models for biomass (AGB), plant N uptake (PNU), nitrogen nutrition index (NNI), and plant N concentration (PNC) estimations at the
panicle initiation (PI), stem elongation (SE) and heading (HE) stages. RMSEP stands for the RMSE of validation subset.

AGB PNU

PI SE HE PI SE HE

F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2

Best performed VI-based models

R2 0.36 0.76 0.64 0.57 0.73 0.75 0.26 0.28 0.32 0.37 0.73 0.62 0.66 0.78 0.72 0.47 0.46 0.45
RMSEP 0.39 0.24 0.29 0.67 0.53 0.70 1.27 1.25 1.23 9.33 6.16 7.27 10.92 8.71 9.73 23.77 24.06 24.20
REr (%) 36.56 22.73 27.40 36.90 29.08 38.35 21.46 21.13 20.66 35.75 23.61 27.88 26.43 21.08 23.54 24.91 25.22 25.36

SMLR-based models

R2 0.69 0.77 0.85 0.65 0.77 0.82 0.39 0.39 0.39 0.73 0.78 0.84 0.76 0.78 0.76 0.49 0.50 0.49
RMSEP 0.27 0.23 0.19 0.62 0.53 0.45 1.19 1.19 1.18 6.27 5.56 4.74 9.83 9.28 9.36 23.04 22.98 23.14
REr (%) 25.56 21.95 17.81 33.90 28.87 24.78 19.98 19.99 19.83 24.03 21.30 18.16 23.79 22.45 22.66 24.14 24.08 24.25

PLSR-based models

R2 0.65 0.77 0.84 0.76 0.79 0.78 0.38 0.39 0.33 0.70 0.77 0.81 0.76 0.77 0.72 0.50 0.49 0.47
RMSEP 0.28 0.23 0.19 0.55 0.52 0.48 1.18 1.18 1.23 6.49 5.59 5.12 9.76 9.34 9.92 23.07 23.14 23.54
REr (%) 26.79 21.62 18.10 30.27 28.45 26.17 19.91 19.93 20.72 24.88 21.43 19.64 23.63 22.59 24.01 24.18 24.26 24.68

NNI PNC

PI SE HE PI SE HE

F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2 F2 RY WV2

Best performed VI-based models

R2 0.37 0.45 0.41 0.28 0.32 0.27 0.43 0.41 0.38 - - - 0.13 0.02 0.24 0.26 0.24 0.20
RMSEP 0.08 0.07 0.08 0.11 0.10 0.11 0.17 0.18 0.18 - - - 0.33 0.34 0.31 0.25 0.26 0.27
REr (%) 8.41 7.79 8.14 10.31 10.06 10.94 16.28 16.81 17.29 - - - 13.77 14.44 13.1 15.67 16.17 16.67

SMLR-based models

R2 0.55 0.52 0.44 0.28 0.25 0.30 0.46 0.48 0.46 0.12 0.11 0.09 0.25 0.21 0.37 0.30 0.36 0.30
RMSEP 0.07 0.07 0.07 0.11 0.11 0.11 0.17 0.16 0.17 0.19 0.20 0.20 0.30 0.31 0.29 0.24 0.23 0.24
REr (%) 7.18 7.28 7.86 10.34 11.05 10.44 15.81 15.48 15.89 7.92 7.94 7.97 12.58 12.98 12.36 15.19 14.48 15.17

PLS-based models

R2 0.62 0.56 0.54 0.28 0.27 0.24 0.48 0.47 0.44 0.14 0.21 0.34 0.25 0.30 0.48 0.36 0.35 0.30
RMSEP 0.06 0.07 0.07 0.11 0.11 0.11 0.16 0.16 0.17 0.19 0.19 0.17 0.30 0.29 0.25 0.23 0.23 0.25
REr (%) 6.68 7.00 7.14 10.53 10.70 10.81 15.44 15.64 16.12 7.85 7.62 6.96 12.64 12.27 10.56 14.43 14.65 15.41
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4. Discussion

4.1. Impacts of Growth Stages on N Status Monitoring

The AGB increased notably while the PNC decreased steadily over the growth stages in this
study (Table 4), which conformed to many previous studies [43,44,63,64]. Because PNU is a product of
AGB and PNC, plants with high PNC and low AGB at earlier growth stages may have similar PNU
as those with low PNC and higher biomass at later growth stages [47]. Thus, the growth stage is an
important reference factor, which must be taken into account when using PNU as an indicator for
crop N diagnosis.

Our VI models revealed that rice AGB and PNU were best estimated at the early growth stage
while the opposite was true for NNI and PNC. Similarly, Yu et al. (2013) [65] found the VIs performed
better for estimating rice PNC after the HE stage. Li et al. (2014) [66] also noted that PNC was better
estimated at later growth stages for maize. This is because that before the HE stage, the N accumulation
rate is lower than that of biomass; therefore, the later dominates canopy reflectance [65,67]. After the
HE stage, the increase in AGB gains slower, and plant N starts to dominate canopy reflectance [65].
Huang et al. (2015) [3] proposed an indirect approach to estimate NNI at the PI stage based on the AGB
and PNU values derived from FORMOSAT-2 satellite images for guiding topdressing N application at
the SE stage. This indirect method might be tested using RE-based VI models derived from RapidEye
and WorldView-2 images in the future.

4.2. Importance of the Red Edge and Other Bands for N Status Estimation

The use of canopy spectra for N assessment mostly depends on the close relationship between
N and chlorophylls in the cell metabolism [68]. The R band-based VIs like NDVI, RVI, and OSAVI
are the most common indices in N status estimation. However, the R band can be easily influenced
by soil background reflectance at early growth stages when vegetation coverage is small. The NDRE
and RECI indices significantly improved the estimation results compared to NDVI and RVI in our
research (Tables 5 and 6). This is because the RE reflectance is highly correlated with chlorophyll
content [69,70], and is responsive to variation in LAI or biomass [30,71]. In addition, it is insensitive to
background effects [72]. Our results also confirmed the findings by Li et al. (2014) [66], who found that
the NDRE and RECI improved the PNC and PNU estimations of summer maize. They also proved
that the broader bandwidth led to decreased performance of NDVI and RVI while no significant effect
was identified for NDRE and RECI.

The RE-based index, MTCI, had the best performance in this study. According to Li et al. (2014) [66],
the broad band MTCI performed slightly better than the narrow ones. In our study, the broadband
MTCI calculated using the simulated RapidEye and WorldView-2 bands was among the top five
indices for AGB, PNU, and NNI estimation models. MTCI was also proven to be highly correlated with
the PNC in maize [66] and in rice [65]. It would not saturate at high N treatments [66,68]. Nevertheless,
the relationship between MTCI and PNC might be more influenced by soil background at early stages
relative to CCCI [66].

The two RE-based indices, CCCI and NDPI, are both two-dimensional indices [59]. The CCCI
is calculated based on NDVI and NDRE, while the NDPI is based on NDVI and RECI.
Ramoelo et al. (2012) [23] evaluated the CCCI for wheat canopy N content estimation using simulated
RapidEye bands, and proved the CCCI performed well for estimating N status indicators.
Li et al. (2014) [66] simulated the WorldView-2 wavebands and reported that the CCCI and NDPI
improved the estimation results. In our study, the CCCI and NDPI based on RapidEye, and NDPI
based on WorldView-2 bands yielded high r2 for AGB (Table 5), PNU (Table 6), and NNI (Table 6)
estimations, similar to previous research. However, the CCCI based on WorldView-2 bands yielded
slightly lower r2 than that of RapidEye at early stages. Different RE band settings might lead to the
discrepancies of model results. In particular, the RE band of WorldView-2 ranges from 705 to 745 nm,
peaking at 725 nm, while the RE band of RapidEye is set to 690–730 nm, peaking at 710 nm. As the crop
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develops, the RE position moves to longer wavelength due to higher crop biomass and plant pigment
content. Thus, at early growth stages, the RE-based indices using both satellite bands yielded similar
r2, while the RE indices of WorldView-2 achieved slightly higher r2 for AGB and PNU estimations
than the ones of RapidEye at the HE stage (Tables 5 and 6).

The G band-based GNDVI and CI performed slightly better than the R band-based NDVI and
RVI. These results confirmed previous findings by Carter (1993) [73] and Carter and Knapp (2001) [74],
who found that G and RE spectra were sensitive to a wider range of chlorophyll levels than R reflectance.
Bausch et al. (2010) [27] also reported that G band-based VIs improved N status evaluation compared
with R band-based indices. Yu et al. (2013) [65] found two “hot zones” related to N status: RE bands
(700–760 nm) paired with RE to NIR spectral region (700–1100 nm) and G bands (500–590 nm) paired
with RE to NIR region (700–1100nm), which confirmed the importance of RE, NIR, and G bands for N
status estimation.

The NIR1 waveband explained the most variability compared with other wavebands. This was
also observed in wheat LAI estimation using PLSR analysis by Herrmann et al. (2011) [75], who
revealed different VIP values of NIR band between wheat and potato. For rice LAI, leaf dry weight,
leaf N concentration, and leaf N density estimations, PLSR models demonstrated that the bands
>760 nm and at 687 nm were most important [38]. The RE band (707 nm) was only important for leaf
N concentration as the third latent variable [38]. In our study, the VIP scores indicated it was important
to include the RE band at the PI stage for PNC estimation and at the SE stage for AGB and PNU
estimations. The Y band of WorldView-2 demonstrated high importance for PNC estimation from
PI thru HE stages. In addition, the Y band was significant for estimating all four N status variables
at the HE stage whereas the C band was valuable for AGB and PNU estimations at the SE stage.
Such results demonstrated the value of having the additional C and Y bands in WorldView-2 sensor
for crop N status monitoring. While WorldView-2 data with extra spectral bands have higher potential
for improving N status monitoring, considering the cost factor, RapidEye data might be more practical
than WorldView-2 data for large-scale studies.

4.3. Limitations of This Study

Physically based canopy reflectance models were not applied in this study because they are
complex to design, parameterize, and implement, especially in wet rice paddies. Furthermore, those
models can only be inverted to retrieve canopy parameters that are directly involved in physical
processes of radiative transfer, such as photosynthetic pigments, instead of N [35]. The VI, SMLR, and
PLSR models generated from this study were not validated using actual satellite images. We were
able to obtain several FORMOSAT-2 images during our sampling period, but they cannot be used for
validation purpose due to their relatively coarse resolution (8 m) and the relatively small size of our
experimental fields in this research. However, in our previous research, we have demonstrated the
application of using FORMOSAT-2 satellite imagery for monitoring rice N status in this region [3].
Given the frequent cloudy and rainy days during the growing season in major rice planting regions, it
is difficult to obtain satellite images within a narrow time window. We could not find any archived
RapidEye and WorldView-2 images that matched our field sampling dates for this remote study site.
Some new remote sensing technologies, such as all-weather dual-polarimetric TerraSAR-X satellite
data [76] and low-altitude remote sensing based on unmanned aerial vehicles (UAVs) [13], may be
incorporated to overcome the limitations.

5. Conclusions and Future Outlooks

This study simulated the band settings of FORMOSAT-2, RapidEye, and WorldView-2 satellite
images to evaluate the potentials of using satellite remote sensing with RE and additional bands to
improve estimation of rice N status. The major findings are summarized as follows:
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For VI analysis, the best-performed RE-based VIs explained 53%–64% AGB variability and
62%–65% PNU variability, compared to 30%–40% AGB and 39%–52% PNU variability using the CI at
the PI and SE stages.

For the NNI estimation, the NPDI based on WorldView-2 bands and MTCI based on RapidEye
bands explained 14%–26% more variability than FORMOSAT-2-based indices.

The SMLR analysis indicated the NIR1 band was most important for estimating all four N status
indicators. In addition, the RE band improved AGB, PNU, and NNI estimations at all the three stages,
especially at the early PI and SE stages.

The PLSR analysis confirmed the significance of NIR band for PNU estimation at all stages. It also
revealed that it was important to include RE band for AGB and PNU estimation at the SE stage and for
PNC estimation at the PI stage. Similar to the RE band, the C band of WorldView-2 was also valuable
for AGB and PNU estimations at the SE stage. Notably, the Y band of Worldview-2 was found to be
significant at the later stage (HE) for estimations of all four N status variables. Especially for PNC
estimation, Y band showed consistent importance at all three growth stages.

Both the SMLR and PLSR models, especially those based on the WorldView-2 bands, improved
the estimations of all variables in most cases compared to the VI approach.

The PLSR method had slightly better performance than the SMLR approach for NNI and PNC
estimations in most cases.

Biomass and PNU were best estimated at the PI and across the stages while NNI and PNC were
best assessed at the HE stage.

Overall, the analyses based on the simulated WorldView-2 data showed the best results for
estimating rice N status, followed by the ones based on the RapidEye data.

In conclusion, this study demonstrated the values of having the RE as well as the additional
visible and NIR bands for rice N status monitoring. The VI and linear regression methods used have
been proven suitable. Satellite remote sensing with high spatial and temporal resolution provides
a promising technology for large-scale crop N monitoring. In the future, the potential of shortwave
infrared (SWIR) bands for N status monitoring can be further investigated using WorldView-3 data
with eight SWIR bands. Other methods such as artificial neural networks (ANNs) and support vector
machines (SVMs) can be tested in order to reveal possible nonlinear relationships in the data. Moreover,
airborne or UAV-based hyperspectral images should be explored in future studies as some most
important reflectance features related to N content can only be measured by hyperspectral sensors.
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