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Abstract: Deep convolutional neural networks (CNNs) have been widely used to obtain high-level 
representation in various computer vision tasks. However, in the field of remote sensing, there are 
not sufficient images to train a useful deep CNN. Instead, we tend to transfer successful pre-trained 
deep CNNs to remote sensing tasks. In the transferring process, generalization power of features in 
pre-trained deep CNNs plays the key role. In this paper, we propose two promising architectures 
to extract general features from pre-trained deep CNNs for remote scene classification. These two 
architectures suggest two directions for improvement. First, before the pre-trained deep CNNs, we 
design a linear PCA network (LPCANet) to synthesize spatial information of remote sensing images 
in each spectral channel. This design shortens the spatial “distance” of target and source datasets 
for pre-trained deep CNNs. Second, we introduce quaternion algebra to LPCANet, which further 
shortens the spectral “distance” between remote sensing images and images used to pre-train deep 
CNNs. With five well-known pre-trained deep CNNs, experimental results on three independent 
remote sensing datasets demonstrate that our proposed framework obtains state-of-the-art results 
without fine-tuning and feature fusing. This paper also provides baseline for transferring fresh pre-
trained deep CNNs to other remote sensing tasks. 

Keywords: convolutional neural network; remote scene classification; general feature; principle 
component analysis; deep learning 

 

1. Introduction 

Remote sensing image processing achieves great advances in recent years, from low-level tasks, 
such as segmentation, to high-level ones, such as classification [1–7]. However, the task becomes 
incrementally more difficult as the level of abstraction increases, going from pixels, to objects, and 
then scenes. Classifying remote sensing images according to a set of semantic categories is a very 
challenging problem, because of high intra-class variability and low inter-class distance [5–9]. 
Different objects may appear at different scales and orientations in a given class, and the same objects 
may be found in images belonging to different classes. By constructing a holistic scene representation, 
the bag-of-visual-words (BOW) model becomes one of the most popular approaches for solving the 
scene classification problem in the remote sensing community [10]. In addition, many variant 
methods based on the BOW model have been developed for improving the discriminative ability of 
the “visual words” [11–13]. Nevertheless, the representations generated from BOW are still in mid-
level form and not sufficiently powerful for scene classification. Therefore, more representative and 
higher-level representations are desirable and will certainly play a dominant role in scene-level tasks. 
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Deep learning algorithm attempts to learn high-level features corresponding to high level of 
abstraction. The deep convolutional neural network (CNN) [14], which is acknowledged as the most 
successful and widely used deep learning model, is now the dominant method in the majority of 
recognition and detection tasks. Its recent impressive results for computer vision applications bring 
dramatic improvements beyond the state-of-the-art records on a number of benchmarks [15–18]. In 
remote sensing field, the use of deep learning is rapidly growing. A considerable number of works 
propose deep strategies for spatial and spectral feature learning [3,19–21]. Vakalopoulou et al. [3] 
propose an automated building detection framework from very high resolution remote sensing data 
based on deep convolutional neural networks. In [19], deep convolutional neural networks are 
employed to classify hyperspectral images directly in spectral domain. In addition, Makantasis et al. 
[20] propose a deep learning based method that exploits a CNN to encode pixels’ spectral and spatial 
information and constructs high-level features of hyperspectral data in an automated way. 
Furthermore, Hamida et al. [21] design a lightweight CNN architecture to process spectral and spatial 
information of hyperspectral data, and provide a less costing solution while ensuring an accurate 
classification of the hyperspectral data. In theory, considering the subtle differences among categories 
in remote scene classification, we may attempt to form high-level representations for remote sensing 
images from CNN activations. However, the acquisition of large-scale well-annotated remote sensing 
image datasets is costly, and it is easy to over-fit when we try to train a high-powered deep CNN 
with small datasets in practice [22]. On the other hand, even though we have obtained large enough 
remote sensing datasets, learning billions parameters in these deep CNNs is very time-consuming. 

ImageNet (http://www.image-net.org/challenges/LSVRC/) is a large-scale dataset, which offers 
a very comprehensive database of more than 1.2 million categorized natural images of 1000+ classes 
[23]. Deep CNN models trained upon this dataset serve as the backbone for many segmentation, 
detection and classification tasks on other datasets. Moreover, some very recent works have 
demonstrated that the representations learned from deep CNNs pre-trained on large datasets such 
as ImageNet can be transferable to image classification task [24]. Some works also start to apply them 
to remote sensing field, and obtain state-of-the-art results for some specific datasets [22,25,26]. Penatti 
et al. [25] evaluate the generalization power of experimentally CNNs trained for recognizing 
everyday objects for the classification of remote sensing images. Castelluccio et al. [22] explore the 
use of pre-trained deep CNNs for the classification of remote scenes. The pre-trained networks are 
fine-tuned on the target data, to avoid overfitting problems and reduce design time. In [26], features 
from various successfully pre-trained deep CNNs are transferred for remote scene classification. Via 
extracting CNN features from different layers, the proposed framework results in remarkable 
performance even with a simple linear classifier. However, the generalization power of deep features 
learned from deep CNNs fades evidently when the features of remote sensing images become 
different in space and spectrum with that of natural images in the ImageNet dataset [22,25]. 
Therefore, a foreseeable question is that how can we further enhance the generalization power of pre-
trained deep CNNs for remote sensing imagery. 

PCA network (PCANet) is a simple but effective neural network, which mainly comprises three 
components: cascaded principal component analysis (PCA), binary hashing, and block-wise 
histograms [27]. In the PCANet model, there are no nonlinear operations in its early stages, until the 
very last output layer. Moreover, filters learning in the PCANet does not involve regularized 
parameters or require numerical optimization solvers. Namely, it is unsupervised. In our 
experiments, we apply a simple and shallow linear PCANet to the remote sensing images before 
transferring the pre-trained deep CNNs to them. We find that features learned from this framework 
improve the remote scene classification performance. To our surprise, this framework works well 
even in the condition that the remote sensing images are very different in space and spectrum with 
the natural images from ImageNet dataset that is used to pre-train the deep CNNs. Inspired by this, 
we evaluate the performance of this framework for remote scene classification in different conditions, 
and explore the way in which the LPCANet synthesizes spatial and spectral information of remote 
sensing images and enhances the generalization power of pre-trained deep CNNs. 
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Therefore, in our work, we propose a framework to obtain general features from the pre-trained 
deep CNNs for remote scene classification and attempt to form a baseline for transferring pre-trained 
deep CNNs to remote sensing images with various spatial and spectral information. By applying a 
shallow LPCANet to the remote sensing images, we generate features with particular spatial and 
spectral form, which serve as inputs of the pre-trained deep CNN. Then, we remove the output layer 
of the pre-trained deep CNN and see the remainder of it as a fixed feature extractor. The obtained 
features of the image scenes are fed into a simple classifier for the scene classification task. We 
propose two scenarios to test the performance of the LPCANet on extracting general features for pre-
trained deep CNNs in space and spectrum, respectively: 

(1) By applying a shallow LPCANet to each spectral channel of the remote sensing images, we test 
the performance of LPCANet on extracting general features for pre-trained CNNs in spatial 
information. 

(2) Furthermore, we introduce quaternion algebra to LPCANet and design the linear quaternion 
PCANet (LQPCANet) to further extract general features for pre-trained CNNs from spectral 
information and test its performance for different remote sensing images. 

We conduct extensive experiments with different pre-trained deep CNNs such as CaffeNet [17], 
GoogLeNet [28] and ResNet [29]. Based on various pre-trained deep CNNs, we evaluate our 
proposed framework on different remote sensing datasets that vary in space and spectrum. The 
results show that our proposed framework can enhance the generalization power of pre-trained deep 
CNNs and learn better features for remote scenes. With “unsupervised settings”, our proposed 
framework achieves state-of-the-art performance on some public remote scene datasets. 

Our proposed framework hardly contains any deep or new techniques, and our study so far is 
mainly empirical. However, a thorough report on such a baseline system has tremendous value for 
transferring pre-trained deep CNNs to remote sensing images that vary in space and spectrum. Our 
main contributions are summarized as follows: 

(1) We thoroughly investigate how the LPCANet and LQPCANet synthesize spatial and spectral 
information of the remote sensing imagery and how can them enhance generalization power of 
pre-trained deep CNNs for remote scene classification. 

(2) For future study, our proposed framework can serve as a simple but surprisingly effective 
baseline for empirically justifying advanced designs of transferring pre-trained deep CNNs to 
remote sensing images. We can take any pre-trained deep CNN as a starting point and improve 
the network further with our proposed method. 

(3) Our proposed features learning framework is under the “unsupervised settings”, which is an 
encouraging orientation in deep learning, and is more promising for remote sensing tasks 
compared with supervised or semi-supervised method. 

The rest of the paper is organized as follows. Section 2 provides the whole framework of our 
proposed method. Section 2.1 presents successful pre-trained deep CNNs nowadays and the 
development of them. Section 2.2 introduces LPCANet and its quaternion representation, which form 
the foundation of our proposed two architectures explained in Section 2.3. Experiments are presented 
in Section 3 and we conclude the paper in Section 4 with some remarks in Section 5. 

2. Enhancing the Generalization Power of Pre-Trained Deep CNNs for Remote Scene 
Classification 

2.1. Pre-Trained Deep Convolutional Neural Networks 

According to the biological template discovered by Hubel and Wiesel in 1959, the visual cortex 
of our brain is organized in layers [30]. The lower layers extract basic features of images, such as 
spots, lines, and corners. The higher layers combine these basic features to form templates that are 
more complex. Inspired by this, Fukushima [31] first proposed the convolutional neural networks in 
1980, which was then refined by LeCun in 1989 [32]. Thanks to fast growth of affordable computing 
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power, especially graphical processing units (GPUs), and the diffusion of large datasets of labeled 
images for training, a seminal deep convolutional neural network called AlexNet won the 2012 
ImageNet Large Scale Visual Recognition Challenge (ILSVRC-2012) [33], and brought increasing 
interest for deep CNNs in the last few years. The typical architecture of a deep CNN is composed of 
multiple cascaded layers with various types. The convolutional layers convolve input feature maps 
with a set of weights (also called kernels or filters) to generate new feature maps. The deeper 
convolutional layers are able to learn features that are more abstract by combining lower-level ones 
learned in former layers. After convolutional layer, a non-linear activation function, such as sigmoid 
unit, is applied to improve generalization of learned feature maps. The pooling layers perform 
downsampling operation on local regions of feature maps to reduce the dimension of input feature 
maps and provide translation invariance at the same time. The fully-connected layers finally follow 
several stacked convolutional and pooling layers, and the last fully-connected layer is a Softmax layer 
that computes the scores for each defined class. The parameters of CNNs are typically trained with 
classic stochastic gradient descent based on the backpropagation algorithm. With well trained 
parameters, CNNs transform the input images to high-level feature maps in a feedforward manner. 

Based on the typical deep CNN, AlexNet replaces the sigmoid unit with the rectified linear unit 
(ReLU), which allows much faster training. On the other hand, it uses dropout technique to alleviate 
the effect of over-fitting [15]. Moreover, CaffeNet further places the non-linear activation functions 
after pooling layers [17]. Very recently, there are two major directions, in which a lot of efforts are 
made to update the typical deep CNN, and drive it to achieve better performance in computer vision 
tasks.  

The first direction is to make CNNs deeper. VGG-VD networks developed by Simonyan et al. 
[18] are very deep CNN models, which won the runner-up in ILSVRC-2014. Known as two successful 
very deep CNN models, VGG-VD16 and VGG-VD19 demonstrate that the depth of the network plays 
a significant role in improving classification accuracy. Furthermore, MSRA-Net is designed deeper 
by replacing the 5 × 5 filters with two series 3 × 3 filters [34]. It achieves better performance and 
reduces computational complex at the same time. 

The other direction is to renovate the typical layers in deep CNNs. Network in Network (NIN) 
[35] replaces the linear convolutional layer with multilayer perceptron called MLPconv layer. In 
addition, instead of fully-connected layers, it uses global average pooling to obtain output features. 
GoogLeNet is the CNN architecture that won the ILSVRC-2014 competition, which contains 24 layers 
[28]. Inspired by “Network in Network” idea, it uses the inception modules as shown in Figure 1, 
which employs filters of different sizes at each layer and reduces the number of parameters at the 
same time. Furthermore, the inception module is modulated in the CNN architecture of Inception V3 
[36], in which two series 3 × 3 filters are used to take place of the 5 × 5 filters. Moreover, 1 × n and n × 
1 convolutional kernels derived from n × n operation reduce parameters in the network and 
economize the computational cost. Figure 2 depicts the changes of inception module in the 
architecture of Inception V3. Derived from the architecture of Inception V3, Inception V4 network 
benefits from new inception module, which is more complex and deeper [37]. 

 
Figure 1. Inception module in GoogLeNet. 
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Figure 2. Changes of inception module in the architecture of Inception V3; n × n denotes the n × n 
convolutional operation. 

By integrating the two directions discussed above, deep residual network (ResNet) [29] that won 
the 1st place in the ILSVRC-2015 reformulates the layers in it as learning residual functions with 
reference to layer inputs, instead of learning unreferenced functions such as convolutional operation. 
At the same time, it is easy to optimize, and can gain accuracy from increased depth. ResNet achieves 
great success on the ImageNet dataset with a depth of up to 152 layers—8× deeper than VGG nets. 
Based on ResNet, identity mapping residual net further optimizes the residual learning framework, 
and achieves better performance with considerable margin [37]. 

In summary, Figure 3 briefly demonstrates the evolution of CNNs’ structure. Not strictly 
separated, the two channels in Figure 3 are used to depict the two mainstream ideas in which typical 
deep CNN is updated to achieve successful performance. 

 
Figure 3. Evolution of the structure of convolutional neural networks. 

However, these successful deep CNNs discussed above do not achieve good performance as we 
expected, when we directly apply them to remote sensing images. In fact, almost all successful deep 
CNNs are trained on daily natural image datasets, such as ImageNet [23], because huge amounts of 
labeled daily images are available online. In the field of remote sensing, limited training data in 
remote sensing datasets brings overfitting when we attempt to train a deep CNN, and the deep CNN 
trained by limited training data dose not generalize well to test data. 

An effective solution, recently explored in [22,25,26], is to transfer deep features trained on 
ImageNet dataset to remote sensing images. This solution derives from that, in the lower layers of a 
deep CNN, features learned from both the daily nature images and remote sensing images are alike, 
such as blobs and edges. These features are general enough to be useful in both the two kinds of 
datasets, and thus the high-level features in deep CNNs computed from daily nature images may be 
powerful representations for remote sensing images. However, this transferring operation depends 
on an important principle: the “distance” of the source dataset on which the deep CNN is trained and 
the target dataset to which the deep features are transferred should be small enough. In this paper, 
we define “distance” as the degree of difference in spatial and spectral information between source 
and target datasets. In order to reduce the “distance” between remote sensing images and daily 
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nature images, we design LPCANet and LQPCANet to synthesize the spatial and spectral 
information of remote sensing images respectively. By doing this, the generalization power of CNN 
pre-trained on ImageNet is enhanced for remote scene classification. 

2.2. LPCANet and Its Quaternion Representation 

In this section, we design the structure of LPCANet, which derives from the PCANet [27]. We 
try to synthesize spatial information of remote sensing images through it. On the other hand, we 
introduce the quaternion algebra into LPCANet, and further synthesize spectral information of 
remote sensing images. Stage of hashing and histograms in PCANet is replaced by stages of 
weighting and hashing in LPCANet and LQPCANet to guarantee the linear property throughout all 
the operations in them. By doing this, the principle features of remote sensing images are learned and 
then sent to deep CNNs, which are pre-trained on large-scale datasets such as ImageNet [23]. The 
structure of LPCANet (LQPCANet) is depicted in Figure 4, within which the quaternion PCA filters 

are shown in broken lines. Suppose that we have N input remote sensing images { } =1
N

i i
I  of size  

m × n × 3 and corresponding labels for training. Then, the input images { }× ×

=
∈ 3

1

Nm n
i i

I  can be 

concatenated as follows: 

× ×= ∈ 1 2[ ,  , , ] m Nn 3
NI I I I  (1) 

In the following, we describe the structure of LPCANet in detail. 

 

 
Figure 4. Structure of two-stage linear PCA network (linear quaternion PCA network). 

2.2.1. Learning PCA and QPCA Filters Bank from Remote Sensing Images 

A. Learning PCA Filters Bank from Each Spectral Channel of Remote Sensing Images 

Assuming that the patch size (or two-dimensional filter size) is k1 × k2, where k1 and k2 are odd 
integers and satisfy 1 ≤ k1 ≤ m, 1 ≤ k2 ≤ n. With zero-padded boundary, we use a patch of size k1 × k2 to 
slide each pixel of the ith remote sensing image × ×∈ 3m n

iI  in each spectral channel respectively, 
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and collect all overlapping patches of the ith image in each spectral channel. Then, we subtract patch 
mean from each patch and reshape each k1 × k2 matrix into a column vector, which is then 

concatenated to obtain matrix × = ∈   1 2
,1 ,2 ,, , , k k mnj jj j

i i i i mnP p p p , where = 1, 2, 3j  denotes the 

distinct spectral channel. Repeating the above process, we can construct the same matrix for all input 
images. Putting them together, we obtain 

× = ∈ =   1 2
1 2, , , , 1, 2,3k k Nmnj j j j

N jP P P P  (2) 

Assuming that the number of PCA filters is L, the PCA algorithm minimizes the reconstruction 
error of jP  in Frobenius norm as follows: 

( ) ( )×∈
− =

 1 2

2

min ,  s.t. ,  =1,2,3
k k L

T Tj j j j j j
L

F
j

U
P U U P U U I  (3) 

where LI  is an identity matrix of size L × L. By using eigenvalue decomposition method, the solution 

of Equation (3) is the L leading principal eigenvectors of ( )Tj jP P , which are arranged in decreasing 

magnitude order and can be shown as × = ∈ =   1 2
1 2, , , , 1, 2,3k k Lj j j j

L jU u u u . Therefore, the PCA 

filters learned from each spectral channel of remote sensing images can be obtained by 

( ) ×= ∈ = = 1 2
1 2,mat ,  1, 2, , ,  1, 2,3 k kj j

l k k l l L jV u  (4) 

where ( )1 2,mat j
k k lu  is a function that maps ∈ 1 2k kj

lu  to a matrix ×∈ 1 2k kj
lV . This filters bank 

captures the main variation of all of the mean-removed training patches. In Section 2.2.2, we will use 
the learned filters bank to extract the feature maps from each spectral channel of remote sensing 
images by convolutional operation. 

B. Learning QPCA Filters Bank from Remote Sensing Images. 

By applying quaternion algebra to the input remote sensing images { }× ×
=

∈ 3
1

Nm n
i i

I , we can 

obtain the representation of remote sensing images in quaternion domain. As to the ith remote 
sensing image × ×∈ 3m n

iI , it can be represented as follows: 

( ) ( ) ( ) ( ) ( )= + +1, 2, 3,, , , , + ,i i i i ix y R x y C x y i C x y j C x y kI  (5) 

where ( ),iR x y , ( )1, ,iC x y , ( )2, ,iC x y  and ( )3, ,iC x y  are real values of the pixel at position ( ),x y , and 

1 ≤ x ≤ m, 1 ≤ y ≤ n. i, j and k are three imaginary units, which represent the spectral channels and obey 
the following rules: 

= = = = − = − = = − = = − =2 2 2 1,  ,  ,  i j k ijk ij ji k jk kj i ki ik j  (6) 

Furthermore, we set ( ) ≡, 0iR x y . Then, the ith remote sensing image can be further represented 

as a pure quaternion: 

( ) ( ) ( ) ( )= +1, 2, 3,, , , + ,i i i ix y C x y i C x y j C x y kI  (7) 

In addition, we set the patch size as k1 × k2, and collect all the quaternion patches around each 
pixel of the ith remote sensing image. Then we subtract patch mean from each quaternion patch and 
reshape each k1 × k2 matrix into a column vector, which is a hypercomplex vector and belongs to 

1 2Hk k . H  denotes the field of quaternion numbers. Then we concatenate these column vectors to 

obtain matrix × = ∈  1 2
,1 ,2 ,, , , Hk k mn

i i i i mnQ q q q . Thus, for all input remote sensing images, we 

obtain: 
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× = ∈  1 2
1 2, , , Hk k Nmn

NQ Q Q Q  (8) 

Assume that the number of QPCA filters is L. We can obtain the L leading principal eigenvectors 
of TQQ  by conducting the quaternion eigenvalue decomposition method for covariance matrix of 
Q . The L leading principal eigenvectors can be then mapped as the L QPCA filters: 

×′∈ = 1 2H ,  1, 2, ,k k
l l LV  (9) 

By using the QPCA filters bank to convolve the remote sensing images, we not only synthesize 
the special information of them, but also their spectral information. Moreover, Non-commutatively 
under multiplication is an important characteristic of the quaternion algebra. After the QPCA 
operation, the relative relationship of spectral channels is enhanced, and the distinct meaning of each 
spectral channel is weakened. 

2.2.2. Encoding Feature Maps by Convolutional Operation 

By respectively convolving the learned PCA and QPCA filters bank with the ith input remote 
sensing image, we obtain the feature maps as denoted in Equations (10) and (11): 

= ∗ = = = 1,
, ,  1, 2, , ,  1, 2, , ,  1, 2, 3j jj

i l i l i N l L jI I V  (10) 

′= ∗ = = 1
, ,  1, 2, , ,  1, 2, ,i l i l i N l LI I V  (11) 

where ∗  denotes two-dimensional (2-D) convolution, and the superscript 1 denotes the first layer of 
feature maps encoded by convolutional operation. The boundary of iI  is zero-padded before 

convolving with lV  or ′lV  in order to ensure that 1
,i lI  and iI  have the same size. Therefore, after 

convolving with PCA filters bank, the ith input remote sensing image iI  is transformed into L 

feature maps in each spectral channel as { } { }
=

= =1,1,
, 1

,  1, 2, 3
Ljj

i i l l
jI I . On the other hand, after 

convolving with QPCA filters bank, the ith input remote sensing image iI  is transformed into L 

quaternion feature maps { } { }
=

=1 1
, 1

L
i i l l

I I .  

For the N input remote sensing images { } =1
N

i i
I , we can obtain the set of feature maps { }

=
1

1

N
i i

I  

after convolutional operation above. Then, the feature maps { }
=

1
1

N
i i

I  can be concatenated as follows: 

× ×= ∈     1 1 1 1 1 1 1
1,1 1, 2,1 2, ,1 ,[   ,   ,   ,   ] m NLn 3

L L N N LI I I I I I I  (12) 

2.2.3. Feature Maps Weighing and Pooling 

We weight the feature maps encoded by convolutional operation in order of importance that the 
principal features are arranged. Then, we pool the weighted feature maps to further enhance shift 
invariance of the features. 

The weighting process can be depicted as follows: 

−

=
= 1 1

,
1
2

L
L l

i i l
l

T I  (13) 

where L is the number of PCA or QPCA filters in Section 3.1, and the superscript 1 denotes the first 
weighting layer. When the value of l is smaller, the feature map 1

,i lI  is more important, and we attach 

it with a larger weight −2L l . After weighting operation, the features in first weighting layer can be 

denoted as { }× ×
=

= ∈1 1 3
1

Nm n
i i

T T . 
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Assume that the size of pooled feature map is ′ ′×m n , and we divide the ith “image” 1
iT  into 

′ ′m n  blocks. Let { }′ ′ ′ ′=  ,1,1 , , , ,, , , ,i i i x y i m nR R RR  be the partition of “image” 1
iT , where ′x  and ′y  

denote the location of corresponding pooling region and 1 ≤ x' ≤ m', 1 ≤ y' ≤ n'. We perform mean 
pooling in each block as follows: 

′ ′′ ′ ∈=
, ,, , mean

i i x yi x y s R ir s  (14) 

where ′ ′, ,i x yr  denotes the pooled features at location ( )′ ′,x y , and is  is the features of “image” 1
iT  

within pooling region ′ ′, ,i x yR . The pooled filter responses { }′ ′=  ,1,1 , , , ,, , , ,i i i x y i m nr r rr  generated 

from pooling regions { }′ ′ ′ ′=  ,1,1 , , , ,, , , ,i i i x y i m nR R RR  reduce the variance of the non-pooled 

representation.  

Finally, the pooled features { }′ ′× ×
=

= ∈ 3
1

Nm n
i i

r r  can be seen as input images of the pre-trained 

deep CNNs. 

2.2.4. Multi-Stage Architecture 

If a deeper architecture is found to be beneficial for the specific task, we can stack the above 
process to build a multi-stage architecture of the LPCANet or LQPCANet. As depicted in Figure 4, 
the two-stage LPCANet or two-stage LQPCANet contains two convolution layers (C1 and C2), two 
weighting layers (W1 and W2) and a pooling layer. The output of the last layer is fed to pre-trained 
deep CNNs to obtain semantic features for classification. 

In Figure 4, the PCA filters bank 1V  and the QPCA filters bank ′1V , both of which contain 1L  

filters, can be obtained from I . In layer C1, 1V  or ′1V  is convolved with I  to get the sets of 
feature maps 1I . Further, these feature maps are weighted to obtain 1T  in layer W1, and the number 
of feature maps is decreased at the same time. The filters bank 2V  and ′2V , both of which contain 

2L  filters, are generated from 1T . Then, layer C2 executes convolutional operation, which uses 

kernel 2V  or ′2V  to get the sets of feature maps 2I . 2I  is further weighted as described in Section 
3.3 to obtain 2T  in layer W2. Finally, we pool the feature maps 2T  to obtain the final feature maps 
r , which are generated as the input “images” of pre-trained deep CNNs. 

One or more additional stages can be stacked like C1-W1-C2-W2-C3…, which can also be 
depicted in form of feature maps as − − − − − −1 1 2 2I I T I T r . What should be noted is that the 
whole process in the multi-stage architecture of LPCANet or LQPCANet is linear. That is to say, we 
do not change the basic structure of original images when we synthesize the spatial and spectral 
information of them. 

2.3. Methodology of Enhancing the Generalization Power of Pre-Trained Deep CNNs for Remote Scene 
Classification 

The difference between remote sensing images and daily nature images mainly lies in following 
two aspects. Firstly, they are usually different in spatial information. As shown in Figure 5, both of 
the two images denote airport and contain airplanes, runways and lawns. Nevertheless, the spatial 
information of them is very different in scale and direction. Moreover, compared with the daily 
optical image, there is more noise information in the remote sensing image that drawbacks the scene 
classification task. Secondly, they may be different in spectral information. Although the two images 
in Figure 6 both denote farmland, and they are almost same in spatial arrangement. The spectral 
channels of the left image are red-green-blue, and the spectral channels of the right image are green–
red–infrared. As mentioned previously, to extract general features for CNNs pre-trained by 
ImageNet dataset, we should reduce the “distance” between daily nature images and remote sensing 
images. In this section, as illustrated in Figure 7, we propose two architectures to enhance the 
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generalization power of pre-trained deep CNNs for remote scene classification. In the Experimental 
Section, we further evaluate their effectiveness. 

(a) (b)

Figure 5. Airport in: (a) daily nature image; and (b) remote sensing image. 

(a) (b)

Figure 6. Farmland in: (a) optical image (red-green-blue); and (b) remote sensing image (green–red–
infrared). 

(a) 

(b) 

Figure 7. Illustration of the two proposed architectures to enhance the generalization power of pre-
trained deep CNNs for remote scene classification. In (a) Architecture (I), we use linear PCA 
networkto synthesize the spatial information of remote sensing imagery in each spectral channel. In 
(b) Architecture (II), after represent the remote sensing imagery as pure quaternion, we use linear 
quaternion PCA network to further synthesize the spectral information of them. 
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2.3.1. Architecture (I): Synthesizing Spatial Information of Remote Sensing Images to Extract 
General Features for Pre-Trained Deep CNNs 

In Architecture (I), firstly, after dividing the remote sensing image into a series of spectral 
channels, we apply LPCANet to the “gray” image in each spectral channel. As mentioned in Section 
2.2, for remote scene classification task, LPCANet filters out irrelevant details and noise in the remote 
sensing image, and preserves the main structure of it at the same time. Secondly, for all the spectral 
channels, the output images of the LPCANets are rearranged into a synthesized image, which is input 
of the pre-trained deep CNN. By synthesizing spatial information of the remote sensing image, the 
“distance” between the daily nature image and the remote sensing image is reduced. Then, the pre-
trained deep CNN is treated as a fixed feature extractor. In a feedforward way, it extracts a global 
feature representation of the synthesized image. Finally, with the global representation, we 
implement remote scene classification by a linear SVM classifier. In addition, we should consider 
some practical details as following: 

1. Thus far, almost all successful pre-trained structures of deep CNNs are based on the ImageNet 
dataset. This results in the constraint that the number of spectral channels of input images should 
be and only be three when we use the pre-trained deep CNNs to extract global representation 
from them. This constraint limits the application range of pre-trained deep CNNs and causes 
inevitable information loss when the number of input images’ spectral channels is more than 
three. 

2. Data augmentation is a practical technique to improve the performance of deep CNNs by 
reducing overfitting in the training stage. However, in this paper, we use the pre-trained deep 
CNNs in a feedforward way without training on the remote sensing dataset. Because training a 
deep CNN on a small dataset helps little. Moreover, we usually cannot obtain the labels of 
remote sensing images in some case. Different from data augmentation, which enhances the 
generalization power of deep CNNs in supervised framework, LPCANet synthesizes the spatial 
information of remote sensing images and enhances the generalization power of pre-trained 
deep CNNs in an unsupervised manner. 

3. Compared with other remote sensing images such as SAR images, we prefer to apply 
Architecture (I) to optical remote sensing images. Because the spectral channels of daily natural 
images in the ImageNet dataset and optical remote sensing images in the target dataset are both 
red-green-blue, and the “distance” between them is relatively small. 

2.3.2. Architecture (II): Further, Synthesizing Spectral Information of Remote Sensing Images to 
Extract General Features for Pre-Trained Deep CNNs 

As discussed above, in the condition that the spectral information of remote sensing images is 
different from that of images in ImageNet dataset, the “distance” of spectral information between 
them is relatively large, and the performance of remote scene classification fades evidently when we 
directly transfer pre-trained deep CNNs to remote scene classification. LPCANet in Architecture (I) 
can only synthesize spatial information of remote sensing images in each spectral channel. It cannot 
handle the difference of spectral information between the source and target datasets. Therefore, 
inspired by quaternion algebra and the relationship of elements in quaternion representation, we 
represent remote sensing images in quaternion domain, and design the LQPCANet to synthesize 
spectral information of them. Derive from LPCANet, LQPCANet in Architecture (II) further reduces 
the “distance” between source dataset and target dataset, and enhances the generalization power of 
pre-trained deep CNNs for remote scene classification. Firstly, remote sensing images are 
represented in the form of pure quaternion. Secondly, they are pre-processed by LQPCANet. Then, 
the synthesized images are put into the pre-trained deep CNN to obtain global feature representation, 
which is finally used to perform the task of remote scene classification with a linear SVM classifier. 
The practical details of Architecture (II) are listed as following: 

1. Considering the constraint of the number of spectral channels that is discussed in Section 2.3.1, 
we should also obey this constraint in Architecture (II). Because the number of spectral channels 
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of input images is fixed as three, in any case we apply pre-trained deep CNNs to extract global 
representation from them. Thus, the pure quaternion that contains three imaginary units is used 
to represent remote sensing images in practice. 

2. LQPCANet processes the pure quaternion representation of remote sensing images, rearranges 
the order of their spectral channels, and only maintains the relative relationship of them. 
Therefore, there is not some distinct spectral channel that we should represent it with some 
corresponding imaginary unit, when we transform the remote sensing images into pure 
quaternion form. 

3. Experiments and Results 

The main objective of this paper is to evaluate the two proposed architectures in enhancing the 
generalization power of deep pre-trained CNNs for remote scene classification. Therefore, we 
organize the experiments for Architecture (I) and Architecture (II), respectively, with various deep 
pre-trained CNNs and various remote sensing datasets. 

3.1. Experimental Setup 

In this section, we carry out a number of experiments based on Architecture (I) and Architecture 
(II) respectively. To evaluate their effectiveness in enhancing the generalization power of deep pre-
trained CNNs for remote scene classification, we conduct experiments on three remote sensing 
datasets. These three datasets are different in spatial and spectral information. We compare the 
performance of our proposed framework with the state-of-the-art results in these three datasets. We 
must note that except learning the classifier, all the experiments based on Architecture (I) and 
Architecture (II) are unsupervised. 

The three publicly available datasets used in our experiments are as follows: 

1 UC Merced Land Use Dataset (http://vision.ucmerced.edu/datasets/landuse.html). Derived from 
United States Geological Survey (USGS) National Map, this dataset contains 2100 aerial scene 
images with 256 × 256 pixels, which are manually labeled as 21 land use classes, 100 for each 
class. Figure 8 shows one example image for each class. As shown in Figure 8, this dataset 
presents very small inter-class diversity among some categories, such as “dense residential”, 
“medium residential” and “sparse residential”. More examples and more information are 
available in [38]. 

2 WHU-RS Dataset (http://www.tsi.enst.fr/~xia/satellite_image_project.html). Collected from 
Google Earth, this dataset is composed of 950 aerial scene images with 600 × 600 pixels, which 
are uniformly distributed in 19 scene classes, 50 for each class. The example images for each class 
are shown in Figure 9. We can see that images in both this dataset and UC Merced dataset are 
optical images (RGB color space). They are same in spectral information. However, compared 
with the images in UC Merced dataset, images in this dataset contain more detail information in 
space. The variation of scale and resolution of objects in a wide range within the images makes 
this dataset more complicated than the UC Merced dataset. 

3 Brazilian Coffee Scenes Dataset (www.patreo.dcc.ufmg.br/downloads/brazilian-coffee-dataset/). 
Taken by the SPOT sensor in the green, red, and near-infrared bands, over four counties in the 
State of Minas Gerais, Brazil, this dataset is released in 2015, and includes over 50,000 remote 
sensing images with 64 × 64 pixels, which are labeled as coffee (1438) non-coffee (36577) or mixed 
(12989) [25]. Figure 10 shows three example images for each of the coffee and non-coffee classes 
in false colors. To provide a balanced dataset for the experiments, 1438 images of both coffee and 
non-coffee classes are picked out, while images of mixed class are all discarded. Note that this 
dataset is very different from the former two datasets. Images in this dataset are not optical 
(green–red–infrared instead of red–green–blue). 
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(a) (b) (c) (d) (e) (f) (g)

   
(h) (i) (j) (k) (l) (m) (n)

   
(o) (p) (q) (r) (s) (t) (u)

Figure 8. One example image for each class of the UC Merced Land Use Dataset: (a) Agricultural; (b) 
Airplane; (c) Baseball diamond; (d) Beach; (e) Buildings; (f) Chaparral; (g) Dense residential; (h) 
Forest; (i) Freeway; (j) Golf course; (k) Harbor; (l) Intersection; (m) Medium residential; (n) Mobile 
home park; (o) Overpass; (p) Parking lot; (q) River; (r) Runway; (s) Sparse residential; (t) Storage 
tanks; and (u) Tennis court. 

   
(a) (b) (c) (d) (e) (f) (g)

   
(h) (i) (j) (k) (l) (m) (n)

  

  

(o) (p) (q) (r) (s)   

Figure 9. One example image for each class of the WHU-RS Dataset: (a) Airport; (b) Beach; (c) Bridge; 
(d) Commercial; (e) Desert; (f) Farmland; (g) Football field; (h) Forest; (i) Industrial; (j) Meadow; (k) 
Mountain; (l) Park; (m) Parking lot; (n) Pond; (o) Port; (p) Railway; (q) Residential; (r) river; and (s) 
Viaduct. 

   
(a) (b) (c) (d) (e) (f) 

Figure 10. Example images of the Brazilian Coffee Scenes dataset in false colors: (a–c) coffee class; and 
(d–f) non-coffee class. 
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Following the same experimental protocol of very recent researches [22,25,26], we implement 
our experiments with five-fold cross-validation. Considering the UC Merced dataset, each of the five 
folds contains 420 images. As to the WHU-RS dataset, each of the five folds has 190 images. For the 
Brazilian Coffee Scenes dataset, four folds have 600 images each and the fifth has 476 images. Then, 
we carry out results in terms of average accuracy and standard deviation among the five folds. On 
the other hand, we use five well-known pre-trained deep CNNs (AlexNet [15], CaffeNet [17], VGG-
VD16 [18], GoogLeNet [28], and ResNet [29]), described in Section 2.1, to test the effectiveness of our 
proposed Architecture (I) and Architecture (II) in the experiments. As we analyzed before, the 
operations in both LPCANet (as well as LQPCANet) and pre-trained deep CNN are unsupervised, 
and all the experiments are in unsupervised framework except learning the classifier. 

3.2. Experimental Results of Architecture (I) 

We evaluate Architecture (I) in enhancing the generalization power of the five well-known pre-
trained deep CNNs for remote scene classification. In Architecture (I), we consider a shallow 
LPCANet that just has one-stage network. For the LPCANet, we set the PCA filter size as k1 = k2 = 8, 
the number of filters as L = 8, and the pooling range as 8 × 8 without overlapping for local features. 
The PCA filter banks require that k1k2 ≥ L. Note that a larger range for pooling operation provides 
greater translation invariance in the extracted features r . Then, with nearest-neighbor interpolation 
algorithm, we use the function of “imresize” in Matlab to resize the pooled features map r  to  
227 × 227 for AlexNet and CaffeNet, and 224 × 224 for VGG-VD16, GoogLeNet and ResNet. Finally, 
we use a linear SVM as classifier, and implement experiments on the three former proposed remote 
sensing datasets. These datasets are different in spatial and spectral information in order to test the 
effectiveness of Architecture (I) in different conditions. Remote sensing images in UC Merced and 
WHU-RS datasets are both optical. Thus, they are same in spectral information with these images in 
ImageNet dataset that used to pre-train these deep CNNs. Architecture (I) is mainly designed for this 
case, and we carry out most experiments for this case. On the other hand, remote sensing images in 
the Brazilian Coffee Scenes dataset are not optical (green–red–infrared). In this case, the spectral 
information between source and target datasets is different. We briefly introduce the experiment 
results of Architecture (I) on this dataset. Architecture (II) is mainly designed for this case, and we 
will discuss it in Section 3.3 in detail.  

With various pre-trained deep CNN models and remote sensing datasets, the remote scene 
classification performances are shown in Table 1. In Table 1, Ac and SD denote accuracy and standard 
deviation, respectively. For better comparison, we further show the accuracy of remote scene 
classification on UC Merced and WHU-RS datasets in Figure 11. 

Table 1. Remote scene classification results of five well-known pre-trained deep CNNs on three 
different remote sensing datasets. 

Pre-Trained  
Deep CNN 

UC Merced WHU-RS Brazilian Coffee Scenes 
Off-the-Shelf Architecture (I) Off-the-Shelf Architecture  (I) Off-the-Shelf Architecture (I) 
Ac (%) SD Ac (%) SD Ac (%) SD Ac (%) SD Ac (%) SD Ac (%) SD 

AlexNet 94.51 0.94 95.43 0.79 94.57 0.61 95.53 0.36 85.14 1.26 85.23 1.13 
CaffeNet 94.12 1.05 95.26 0.67 94.67 0.75 95.47 0.69 84.97 1.54 85.12 1.08 

VGG-VD16 94.43 0.68 95.59 0.72 94.76 0.72 96.22 0.58 84.12 0.97 84.06 0.84 
GoogLeNet 94.57 0.98 95.94 0.59 94.68 1.01 96.14 0.55 84.06 1.16 84.09 0.98 
ResNet-50 74.14 5.89 78.32 5.26 75.12 5.36 80.35 5.19 60.54 7.22 60.37 6.93 

ResNet-101 72.36 5.96 77.92 5.79 72.85 5.09 78.46 4.48 59.39 6.68 58.92 6.27 
ResNet-152 72.48 4.35 77.78 4.13 72.81 4.42 78.52 4.21 59.62 6.81 59.42 6.14 
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(a) (b)

Figure 11. Accuracy of remote scene classification on: (a) UC Merced dataset; and (b) WHU-RS 
dataset. 

In the condition of Off-the-shelf, pre-trained deep CNNs are directly used as feature extractors 
in an unsupervised manner. By removing the last fully-connected layer, the rest parts of pre-trained 
deep CNNs extract high dimensional feature vectors of remote sensing images. These feature vectors 
are considered as final image representation that followed by a linear SVM classifier. In fact, this 
framework almost achieves the best performance to date on optical remote sensing datasets [26]. 
Compared with training deep CNNs with remote sensing images from scratch, transferring pre-
trained deep CNNs for remote scene classification shows obvious advantages [22]. Because limited 
training data of remote sensing dataset brings overfitting seriously, and training from scratch cannot 
make full use of the deep architecture. 

However, in Table 1 and Figure 11, we can see that the performances of AlexNet, CaffeNet, VGG-
VD16 and GoogLeNet are almost same. There is obvious bottleneck for directly transferring pre-
trained deep CNNs to optical remote scene classification. Moreover, the experiment results overturn 
our intuition that these CNNs with deeper structure or sophisticated units perform better. In fact, 
GoogLeNet takes no obvious advantage over AlexNet and CaffeNet, and VGG-VD16 even obtains 
worse performance than AlexNet. The reason may be that the parameters in deeper layers are more 
specific for the dataset (ImageNet dataset in this paper) used to pre-train the deep CNNs, and these 
parameters lack generalization power. In addition, to our surprise, the most successful deep CNNs 
to date, ResNets fail to obtain a good experiment result, no matter their layers are 50, 101 or 152. This 
phenomenon indicates that not all successful deep CNNs pre-trained on ImageNet dataset are 
suitable for transferring to remote scene classification. In ResNets, shortcut connections bring fewer 
parameters and make the network much easier to optimize. At the same time, the directly connection 
between input and output brings poor generalization ability when we transfer them for other tasks. 

By extracting general features from LPCANet, we propose Architecture (I) to obtain better 
performance when transferring pre-trained deep CNNs for remote scene classification. As we can see 
in Table 1 and Figure 11, the remote scene classification accuracy breaks the bottleneck and increases 
in condition of Architecture (I). Taking a close look into the experiment results, we find that compared 
with Off-the-shelf, the margin increased by Architecture (I) becomes larger when we apply it to 
deeper or more sophisticated CNNs such as VGG-VD16 and GoogLeNet. This gives evidence to the 
conclusion that Architecture (I) can enhance the generalization power of pre-trained deep CNNs and 
make better use of them. In addition, smaller standard deviation of classification accuracy in 
condition of Architecture (I) suggests that Architecture (I) is more stable when transferring pre-
trained deep CNNs for remote scene classification. Taking pre-trained CaffeNet for example, Figure 
12 shows the detail changes of an optical remote sensing image in condition of Off-the-shelf and 
Architecture (I). 
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(a)

 
(b)

Figure 12. Reconstruction of deep CNN activations from different layers of CaffeNet in condition of: 
(a) Off-the shelf; and (b) Architecture (I). The method presented in [39] is used for visualization. 

Abbreviated as “conv” and “fc”, reconstructions of convolutional feature maps in the former 
network layers and that of fully connected layers are shown in Figure 12. Figure 12a shows that the 
representations of convolutional layers are still photographically similar with the remote sensing 
image to some extent, although they becomes fuzzier and fuzzier from “conv1” to “conv5”. In 
addition, the fully connected layers rearrange the information from lower layers to generate 
representations that are more abstract. They compose of parts (e.g., the wings of airplanes) similar 
but not identical to the ones found in the original image. In Figure 12b, LPCANet filters out irrelevant 
details and noise in remote scenes, and preserve the main structure of them at the same time. Based 
on PCA filters, convolutional operation and weighting operation retain the mainly discrimination 
ability of remote scenes. On the other hand, the pooling operation enhances the inter-class invariance. 
As a result, the synthesized image maintains the semantic features of remote scenes with less noise, 
and become less different with daily optical images in spatial information. Comparing the 
reconstructed images in fully connected layers in Figure 12a,b, we find that there are more parts in 
various positions and scales in Figure 12b. Moreover, like wings of airplane, these parts are more 
discriminative with less blurs. This experiment result further confirms that Architecture (I) can 
enhance the generalization power of pre-trained deep CNNs and improve their performance for 
remote sensing images. 

To intuitively reflect the distribution of global features learned in condition of Off-the-shelf and 
Architecture (I), we use the t-SNE algorithm [40,41] to visualize these high-dimensional global 
features by giving each datapoint a location in a 2-D map. For both conditions, the degree of 
perplexity and the number of training iterations in the t-SNE algorithm are set as 30 and 1000. We 
show these 2-D embedding points with different colors corresponding to their actual scene categories. 
Figure 13 reveals the separability of global features learned by pre-trained CaffeNet when we apply 
experiment on UC Merced dataset in above two conditions. Notably, the 2-D features from both of 
the two conditions naturally tend to form clusters. In addition, compared with Off-the shelf, 
Architecture (I) leads to better separability of global features. 
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(a) (b)

Figure 13. 2-D feature visualization of image global representations learned from UC Merced dataset 
in condition of: (a) Off-the-shelf; and (b) Architecture (I). The t-SNE algorithm proposed in [40,41] is 
used to visualize the high-dimensional representations. 

Data augmentation is a practical technique for training an effective deep CNN. However, when 
we transfer a pre-trained deep CNN for remote scene classification, we treat the pre-trained deep 
CNN as a fixed feature extractor and do not change the parameters in it. Then, all the extracted 
features are used to train the classifier. Therefore, data augmentation just affects the classifier, and 
has no impact on the parameters in pre-trained deep CNNs. For two typical classifiers, we test data 
augmentation in framework of Architecture (I) on UC Merced dataset by simply rotating the original 
remote sensing images by 90 degrees, 180 degrees and 270 degrees. We find that the technique of data 
augmentation indeed works. However, it contributes little as shown in Table 2. 

Table 2. Classification accuracy (%) with and without data augmentation in framework of 
Architecture (I) on UC Merced dataset. 

Pre-Trained Deep CNN 
Linear SVM Softmax 

With Aug Without Aug With Aug Without Aug 
AlexNet 95.85 95.43 96.01 95.78 
CaffeNet 95.81 95.26 96.08 95.74 

VGG-VD16 96.15 95.59 96.26 95.90 
GoogLeNet 96.67 95.94 96.95 96.03 
ResNet-50 79.22 78.32 79.54 78.58 
ResNet-101 78.64 77.92 79.52 78.65 
ResNet-152 78.83 77.78 79.30 78.59 

To further verify the effectiveness of LPCANet in Architecture (I), in Figure 14, we directly apply 
PCA algorithm to every single image in UC Merced dataset before the block of pre-trained deep 
CNN. This simple architecture, called Architecture (S), is designed for comparison. Without 
augmentation, Table 3 shows the experiment results on UC Merced dataset. We can see that the 
classification accuracy fades in condition of Architecture (S) compared with the conditions of 
Architecture (I) and Off-the-shelf. This gives evidence that simply applying PCA algorithm to remote 
sensing images may lose some discriminative spatial information, and cannot obtain general features 
for pre-trained deep CNNs. The experiment results further confirm the effectiveness of our proposed 
Architecture (I). 
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Figure 14. Illustration of the Architecture (S). 

Table 3. Classification accuracy (%) of Architecture (S), Architecture (I) and Off-the-shelf on UC 
Merced dataset. 

Pre-Trained Deep CNN Architecture (S) Architecture (I) off-the-Shelf 
AlexNet 92.25 95.43 94.51 
CaffeNet 92.37 95.26 94.12 

VGG-VD16 92.71 95.59 94.43 
GoogLeNet 93.16 95.94 94.57 
ResNet-50 72.85 78.32 74.14 
ResNet-101 70.79 77.92 72.36 
ResNet-152 70.92 77.78 72.48 

Various state-of-the-art methods have been proposed recently for remote scene classification, 
and most of them have been tested on the UC Merced dataset, following the same experimental 
protocol, with five-fold cross validation. Thus, in Table 4 we compare our best result achieved via 
Architecture (I) with these methods on the UC Merced dataset. With straightforward and simple 
framework, our proposed Architecture (I) outperforms all the methods with a minimum gap of 
almost 1.5%. We must note that our proposed method just provides basic framework to directly 
transfer pre-trained deep CNNs for remote scene classification in an unsupervised manner, and do 
not use target dataset to train the parameters in the pre-trained CNNs. Therefore, our proposed 
method achieves no better result than the GoogLeNet + Fine-tune approach in [22]. The effectiveness 
of fine-tuning approach is much dependent on the amount of images in remote sensing dataset, and 
the computation time of it is more demanding compared with our proposed Architecture (I). In fact, 
in Table 1, we can see that, with pre-trained CaffeNet in Architecture (I), the experiment result on UC 
Merced dataset has almost achieved the performance of fine-tuning approach in [22]. In addition, if 
the task of remote scene classification permits sufficient computation time, with sufficient remote 
sensing images, we can further fine-tune the parameters of pre-trained deep CNNs in Architecture (I). 

In the Brazilian Coffee Scenes dataset, remote sensing images are not optical (green–red–
infrared). In addition, as shown in Figure 10, the spatial information of these images is very simple. 
In Table 1, the relatively poor performance comes from the difference in spectral information when 
we transferring pre-trained deep CNNs to remote scene classification on this dataset. As we analyzed 
before, LPCANet in Architecture (I) changes no spectral information of remote sensing images. In 
addition, when spatial information of remote sensing images is simple, the effect of LPCANet in 
Architecture (I) is weakened in decreasing the “distance” between target dataset and source dataset. 
For this dataset, experiment results in Figure 15 indicate that Architecture (I) helps little and even 
make things worse when the spectral information of remote sensing images is very different from 
these images in source dataset. 
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Table 4. Classification accuracy (%) of reference and proposed methods on the UC Merced dataset. 

Method Year Reference Accuracy
SCK 2010 [38] 72.52 

SPCK++ 2011 [42] 77.38 
BRSP 2012 [43] 77.80 
UFL 2014 [5] 81.67 

CCM-BOVW 2014 [11] 86.64 
mCENTRIST 2014 [44] 89.90 

MSIFT 2014 [45] 90.97 
COPD 2014 [46] 91.33 

Dirichlet 2014 [47] 92.80 
VLAT 2014 [13] 94.30 

MCMI-based 2015 [48] 88.20 
PSR 2015 [12] 89.10 

UFL-SC 2015 [49] 90.26 
Partlets 2015 [50] 91.33 

Sparselets 2015 [51] 91.46 
Pre-trained CaffeNet 2015 [25] 93.42 

FBC 2016 [52] 85.53 
LPCNN 2016 [53] 89.90 

MTJSLRC 2016 [54] 91.07 
SSBFC 2016 [55] 91.67 

CTS 2016 [56] 93.08 
SRSCNN 2016 [57] 95.10 

LGF 2016 [58] 95.48 
Architecture (I) — — 96.95 

 
Figure 15. Accuracy of remote scene classification on Brazilian Coffee Scenes dataset. 

3.3. Experimental Results of Architecture (II) 

As discussed before, Architecture (I) obtains poor performance on Brazilian Coffee Scenes 
dataset, in which the spectral information of remote sensing images is very different from that of 
images in ImageNet dataset used to pre-train the deep CNNs. Therefore, we propose Architecture 
(II) to handle the difference of spectral information between source and target datasets, and further 
enhance the generalization power of pre-trained deep CNNs for remote scene classification. With the 
same experiment parameters in Section 3.2, we report remote scene classification results in Table 5 
for Architecture (II), Architecture (I) and Off-the-shelf on the three proposed remote sensing datasets. 
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Table 5. Classification accuracy (%) of Architecture (II), Architecture (I) and Off-the-shelf on different 
remote sensing datasets. 

Pre-Trained Deep CNN 
UC Merced WHU-RS Brazilian Coffee Scenes

Ar(II) Ar(I) OTS Ar(II) Ar(I) OTS Ar(II) Ar(I) OTS
AlexNet 95.14 95.43 94.51 95.31 95.53 94.57 87.55 85.23 85.14 
CaffeNet 94.90 95.26 94.12 95.15 95.47 94.67 87.64 85.12 84.97 

VGG-VD16 95.32 95.59 94.43 96.07 96.22 94.76 88.14 84.06 84.12 
GoogLeNet 95.76 95.94 94.57 95.89 96.14 94.68 88.46 84.09 84.06 
ResNet-50 77.06 78.32 74.14 79.15 80.35 75.12 68.85 60.37 60.54 

ResNet-101 76.65 77.92 72.36 78.38 78.46 72.85 68.26 58.92 59.39 
ResNet-152 76.89 77.78 72.48 78.10 78.52 72.81 68.44 59.42 59.62 

In Table 5, Ar(II), Ar(I) and OTS denote Architecture (II), Architecture (I) and Off-the-shelf 
respectively. From the experiment results, we find that Architecture (II) is superior to Architecture 
(I) and Off-the-shelf with a substantial gain on Brazilian Coffee Scenes dataset for all the pre-trained 
deep CNNs. On the other hand, Architecture (II) is slightly inferior to Architecture (I) on the UC 
Merced and WHU-RS datasets. Nevertheless, the remote scene classification accuracy of Architecture 
(II) is higher than that of Off-the-shelf in any case. These experiment results confirm what we 
discussed in Section 2.3.2. LQPCANet in Architecture (II) rearranges the spectral information of 
remote sensing images in Brazilian Coffee Scenes dataset and reduce the “distance” between source 
dataset and target dataset in the transferring process. As a result, Architecture (II) makes better use 
of the high-level features in pre-trained deep CNNs and enhances their generalization power when 
the spectral information is different between source and target datasets. 

Taking a close look into Figure 10, we observe that remote sensing images in Brazilian Coffee 
Scenes dataset are composed of simple edges. Namely, the spatial information of these images is very 
simple, and we should pay more attention to the discrimination of inter-class variability instead of 
the invariance of intra-class variability. On the contrary, as shown in Figures 8 and 9, the invariance 
of intra-class variability is more important for remote scene classification on UC Merced and WHU-
RS datasets. Therefore, we further test the effectiveness of pooling operation in LQPCANet in 
Architecture (II). With different pooling ranges in Architecture (II), the remote scene classification 
accuracies on different datasets are reported in Figure 16. These pooling ranges are set according to 
the size of images in specific remote sensing dataset to guarantee the non-overlapping pooling 
operation. In addition, when we apply different pooling ranges in the experiments, the difference of 
classification accuracies is not obvious. Thus, in the condition of each pooling range, we iterate the 
experiment 10 times and show the average result in Figure 16. 

 
(a) (b) (c) 

Figure 16. Accuracy of remote scene classification on: (a) UC Merced dataset; (b) WHU-RS dataset; 
and (c) Brazilian Coffee Scenes dataset in condition of various pooling ranges in LQPCANet in 
Architecture (II). 

Figure 16 shows that the pooling range in LQPCANet may affect the performance of 
Architecture (II). When the remote sensing images are composed of sophisticated objects, a relatively 
larger pooling range in Architecture (II) enhances the invariance of intra-class variability and brings 
better performance in remote scene classification. On the contrary, a relatively smaller pooling range 
contributes more when the remote sensing images consist of simple edges or blobs such as images in 
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Brazilian Coffee Scenes dataset. Moreover, inspired by Figure 16, we may prefer to design a relatively 
larger pooling range in the LPCANet when we apply Architecture (I) to UC Merced and WHU-RS 
datasets in Section 3.2. 

Furthermore, we visualize the global representations of remote sensing images in Brazilian 
Coffee Scenes dataset. These global representations are encoded via pre-trained CaffeNet in 
Architecture (II), Architecture (I) and Off-the-shelf respectively. High-dimensional image features are 
embedded on a 2-D space by using the t-SNE algorithm [40,41]. For all conditions, the degree of 
perplexity and the number of training iterations in t-SNE algorithm are set as 30 and 1000. As shown 
in Figure 17, with same pre-trained deep CNN, Architecture (II) leads to the best separability of global 
representations in the case that spectral information is different between source and target datasets. 
As a result, Architecture (II) enhances the generalization power of pre-trained deep CNN and brings 
better performance for remote scene classification on Brazilian Coffee Scenes dataset. 

 
(a) (b) (c) 

Figure 17. 2-D feature visualization of image global representations learned from Brazilian Coffee 
Scenes dataset in condition of: (a) Off-the-shelf; (b) Architecture (I); and (c) Architecture (II). The t-
SNE algorithm proposed in [40,41] is used to visualize the high-dimensional representations. 

On the Brazilian Coffee Scenes dataset, we further compare the performance of Architecture (II) 
with several well-known methods. The comparison is relatively insufficient as shown in Table 6. 
Because this dataset is newly released in 2015 [25], and there are not sufficient researches on it. We 
find that our proposed Architecture (II) performs well without training or fine-tuning the parameters 
in pre-trained CNNs. In [22], training deep CNNs from scratch with Brazilian Coffee Scenes dataset 
achieves classification accuracy up to 91.83%. However, training a deep CNN from scratch is very 
time-consuming and this depend much on the scale of target dataset. Comparing the method of 
directly transferring pre-trained GoogLeNet for remote scene classification (84.02%) with 
Architecture (II) that contains the same pre-trained GoogLeNet (88.46%), we give evidence that 
Architecture (II) indeed enhances the generalization power of pre-trained CNNs for remote scene 
classification when the spectral information is different between source and target datasets. 

Table 6. Classification accuracy (%) of reference and proposed methods on the Brazilian Coffee Scenes 
dataset. 

Method Year Reference Accuracy
BIC 2015 [25] 87.03 

BOVW 2015 [22] 80.50 
Pre-trained CaffeNet 2015 [22] 85.02 

Pre-trained GoogLeNet 2015 [22] 84.02 
Architecture (II) — — 88.46 

4. Discussion 

From the extensive experiments above, our two proposed architectures, which contain LPCANet 
and LQPCANet, respectively, have been proven to be effective for remote scene classification. As 
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discussed in [22,25,26], deep CNNs pre-trained on everyday objects can be successfully transferred 
to remote sensing domain. To some degree, this transferring strategy achieves the state-of-the-art 
performance for remote scene classification. The major factor that affects this transferring process is 
proven to be the generalization power of pre-trained deep CNNs [59–61]. However, the difference of 
spatial and spectral information between source and target datasets brings bottleneck for the 
generalization power of pre-trained deep CNNs as shown in our experiments. Based on transferring 
pre-trained deep CNNs, Castelluccio et al. [22,25] further improve the performance of remote scene 
classification by fine-tuning and feature fusing respectively. Nevertheless, they do no efforts about 
the remote sensing images for the transferring process. In our proposed Architecture (I), the 
LPCANet is used to filter out noise and enhance the edges in remote sensing images. On the other 
hand, LQPCANet in Architecture (II) further rearranges the relative relationship of spectral channels 
for remote sensing images. The two proposed architectures in our paper enhance the generalization 
power of pre-trained deep CNNs for remote scene classification and break the bottleneck mentioned 
above. Moreover, our method can be seen as a starting point, and be further improved by fine-tuning 
or feature fusing. Specifically, several practical observations from the experiments and some 
limitations of our study are summarized as follows: 

• In Tables 1 and 5, we can see that the performances of pre-trained AlexNet, CaffeNet, VGG-
VD16 and GoogLeNet are almost same in remote scene classification in condition of Off-the-
shelf. There is obvious bottleneck for directly transferring pre-trained deep CNNs to the task of 
remote scene classification. Our proposed two architectures improve the performance of pre-
trained CNNs in an unsupervised manner and provide a better starting point for further method 
(such as fine-tuning and feature fusing) to get better performance for remote scene classification. 

• To our surprise, the most successful deep CNNs to date, ResNets, fail to obtain good experiment 
result when we transfer it for remote scene classification, no matter their layers are 50, 101 or 
152. This phenomenon indicates that not all successful deep CNNs are suitable for transferring 
to the task of remote scene classification.  

• The selection of our two proposed architectures depends on the target dataset in the transferring 
process, namely the remote sensing dataset when we transfer pre-trained deep CNNs for remote 
scene classification. When the spectral information of source and target datasets are the same, 
we use Architecture (I), and we prefer to Architecture (II) when their spectral information is 
different. 

• Compared with directly transferring pre-trained deep CNNs for remote scene classification, our 
method provides a new way to optimize the transferring process. When we transfer any 
successful deep CNN explored in future for remote scene classification, we can make it a step 
further with our proposed method.  

• The transferring strategy in our paper is limited by the spectral channels of input images for the 
deep CNNs pre-trained by everyday optical images. For remote sensing images whose spectral 
channels are more than three, their spectral dimensions must be reduces to three to fit the pre-
trained deep CNNs transferred to them. With no doubt, this operation brings spectral 
information loss. 

• In the remote sensing field, the scale of remote sensing datasets will be larger and larger. On the 
other hand, the structure of deep CNN will be optimized, and the parameters in it will be less 
and less. Therefore, in our proposed framework we could get more and more useful information 
from remote sensing datasets, obtain better generalization power of pre-trained deep CNNs and 
run into less overfitting.  

Based on our study, the future research directions of transferring pre-trained deep CNNs for 
remote scene classification may be as follows. Firstly, different from empirically choosing parameters 
in LPCANet and LQPCANet in this paper, how to regulate their parameters to obtain better 
performance remains to be learned. Secondly, instead of placing LPCANet or LQPCANet before pre-
trained deep CNNs, would replacing some convolutional layers in pre-trained deep CNNs with 
LPCANet or LQPCANet work? Finally, as we discussed above, when transferring the most successful 
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ResNet for remote scene classification, it does not works as we expected. Thus, we should find the 
proper structure of deep CNNs that are more suitable to transfer to remote sensing field. 

5. Conclusions 

In this paper, we have presented a framework to enhance the generalization power of pre-
trained deep CNNs for remote scene classification. To handle the difference of spatial and spectral 
information between remote sensing images and images in pre-training dataset, two promising 
architectures are proposed to reduce the “distance” between them.  

The two main conclusions of this work are that: (1) For the difference in spatial information 
between remote sensing dataset and pre-training dataset, Architecture (I) enhances the generalization 
power of pre-trained deep CNNs in it and achieve better performance in remote scene classification. 
Linear PCA network in Architecture (I) synthesize spatial information of remote sensing images in 
each spectral channel, and reduces the spatial “distance” between source and target datasets; (2) 
When remote sensing dataset and the source dataset are different in spectral information, remote 
sensing images are represented as pure quaternion in linear quaternion PCA network, which further 
synthesizes spectral information of them. As a result, Architecture (II) enhances the generalization 
power of the pre-trained deep CNN in it, and improves the classification accuracy of remote scenes. 
Experiments on three datasets with different properties have provided insightful information. 
Architecture (I) outperforms the Off-the-shelf method with a gain up to 1.37% on UC Merced dataset 
and 1.46% on WHU-RS dataset. Architecture (II) outperforms the Off-the-shelf method with a gain 
up to 4.4% on Brazilian Coffee Scenes dataset. Moreover, the effect of our proposed architectures 
becomes more evident when the “distance” between source and target datasets becomes larger. 

We believe our proposed method in this work can serve as a good baseline for people to transfer 
pre-trained deep CNNs to other remote sensing datasets with more advanced processing 
components or more sophisticated structures. 
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