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Abstract: With the rapid advances in sensors of remote sensing satellites, a large number of high-
resolution images (HRIs) can be accessed every day. Land use classification using high-resolution 
images has become increasingly important as it can help to overcome the problems of haphazard, 
deteriorating environmental quality, loss of prime agricultural lands, and destruction of important 
wetlands, and so on. Recently, local feature with bag-of-words (BOW) representation has been 
successfully applied to land-use scene classification with HRIs. However, the BOW representation 
ignores information from scene labels, which is critical for scene-level land-use classification. 
Several algorithms have incorporated information from scene labels into BOW by calculating a 
class-specific codebook from the universal codebook and coding a testing image with a number of 
histograms. Those methods for mapping the BOW feature to some inaccurate class-specific 
codebooks may increase the classification error. To effectively solve this problem, we propose an 
improved class-specific codebook using kernel collaborative representation based classification 
(KCRC) combined with SPM approach and SVM classifier to classify the testing image in two steps. 
This model is robust for categories with similar backgrounds. On the standard Land use and Land 
Cover image dataset, the improved class-specific codebook achieves an average classification 
accuracy of 93% and demonstrates superiority over other state-of-the-art scene-level classification 
methods. 

Keywords: scene-level land use classification; Bag-of-words (BOW); improved class-specific codebook; 
kernel collaborative representative based classification combined with SPM; two-step classification 
 

1. Introduction 

With the development of remote sensing sensors, satellite image sensors can offer images with 
a spatial resolution of a level of decimeter. We call these images high-resolution remote sensing 
images (HRIs). HRIs are fundamental in land-use classification since they can provide detailed 
ground information and complex spatial structural information for land-use classification [1]. 
However, due to complex arrangements of the ground objects and multiple types of land-cover  
[2,3], scene-level land-use classification of HRIs is a challenging task [4]. 

In order to recognize and analyze scenes from HRIs, various scene classification methods have 
been proposed over the years. As mentioned in [5], the scene classification methods can be classified 
into three kinds, namely: methods using low-level visual features, methods relying on mid-level 
visual representations and methods based on high-level vision information. 

Low-level methods describe one image with a feature vector from low-level visual attributes 
such as Scale Invariant Feature Transform (SIFT) [6], Local Binary Pattern (LBP) [7], Color Histogram 
(CH) [8] and GIST [9]. Low-level methods deliver better performance on images with uniform 
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structures and spatial arrangements but it is difficult to recognize images with the high-diversity and 
non-homogenous spatial distributions.  

Mid-level approaches attempt to develop a global scene representation through the statistical 
analysis of the extracted local visual attributes. One of the most popular mid-level approaches is the 
bag-of-words (BOW) [10] model. This method simply counts occurrences of local features in an image 
without considering their spatial relationships. 

In addition, to encode higher-order spatial information between low-level local visual words for 
scene modeling, topic models are developed to take into account the semantic relationship among 
the visual words. These methods include: Latent Dirichlet Allocation (LDA) [11] and probabilistic 
Latent Semantic Analysis (PLSA) [12]. One main difficulty of such methods without modification lies 
in the fact that they may lack the flexibility and adaptability to different scenes [3].  

High-level methods are usually based on popular deep learning. In general, deep learning 
methods [13,14] use a multi-stage global feature learning architecture to adaptively learn image 
features and often cast the scene classification as an end-to-end problem. Existing available pre-
trained deep Convolution Neural Network (DCNN) architecture are Overfeat [15], CaffeNet [16] and 
GoogLeNet [17]. However, those traditional unmodified DCNN architecture may need a large 
number of annotated samples to train a large-scale neural network. 

Recently, the BOW model initially in the field of text analysis has been successfully applied to 
scene-level land-use classification using HRIs [18,19]. However, the traditional BOW model has 
shown the following drawbacks in the remote sensing domain: 

(1) Some extracted keypoints are unhelpful for land-use classification, which may have a negative 
effect on computational efficiency and image representation [20]. 

(2) The traditional BOW model uses a universal codebook for all categories without incorporating 
information of specific scene labels into it [21], which may result in misclassification in categories 
with similar backgrounds. 

(3) Existing methods incorporating information of labels into BOW model code a testing image with 
a number of class-specific image representations in each category rather than just one specific 
representation [21], leading to a large error in mapping universal BOW representation to some 
inaccurate categories. 

In order to solve the first problem, we can use keypoint selection to remove redundant 
keypoints. Figure 1 shows original extracted SIFT keypoints in (a) and selected keypoints with 
presented modified keypoint selection method in my text in (b). As we can see, keypoints in (a) are 
redundant and some of them occur in many other images, after selecting keypoints, we get condensed 
keypoints that are more helpful for land-use classification. 

In the field of keypoint selection or descriptor selection, many experiments have been done to 
enhance classification performance. Dorko and Schmid [22] introduced a novel method where local 
descriptors are first divided into several groups using Gaussian Mixture Model (GMM). Then, a 
Support Vector Machine (SVM) classifier is trained for each group to determine the most 
discriminative groups. Vidal-Naquet and Ullman [23] proved that using a linear classifier to select 
informative keypoints delivers better performance. Agarwal and Roth [24] extracts informative parts 
from images and images can be represented by those parts. Chin et al. [25] proposed the SAMME 
algorithm to extend the popular AdaBoost algorithm [26] to multiclass problems in order to learn 
and select the most representative descriptors. However, methods above haven’t focused on the BOW 
scenario. Lin [27] proposed a two-step iterative keypoint selection method designed for bag-of-word 
feature, but his initial seed keypoint will have an effect on later keypoint selection results. Therefore, 
we replace choosing one seed point with a keypoint filter by response value of keypoints. 

Traditional BOW model uses a universal codebook for all categories, which may result in 
misclassification in similar categories as shown in Figure 2. As we can see, these images in (a), (b) and 
(c) are with similar backgrounds, so their image vocabularies and representations are similar and 
difficult to distinguish. 
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(a) (b) 

Figure 1. (a) Original Scale-Invariant Feature Transform (SIFT) features extracted from images (b) 
keypoint selection results using modified keypoint selection method presented in this text. 

(a) (b) (c) 

Figure 2. Similar categories that traditional bag-of-words (BOW) may misclassify (a) Forest and river 
(b) Forest and chaparral (c) Freeway and airport. 

Several studies have concentrated on incorporating scene label information into the codebook 
to improve classification performance. Perronnin [21] creates specifically tuned vocabularies for each 
image category using the maximum a posteriori (MAP) criterion. Umit [28] proposes a method based 
on the class-specific codebook derived from Self-Organizing Maps (SOM). Li [29] proposed a method 
of generating a codebook for each class using piecewise vector quantized approximation (PVQA) on 
considering the difference between categories. However, these methods delivering better 
performance in Computer Vision are not suitable for land-use classification of HRIs, since HRIs can 
provide more complex appearance and spatial arrangements and scene categories in HRIs are largely 
affected and determined by human and social activities. Therefore, we need to capture the 
characteristics in each category and we propose a class-specific codebook base on Mutual Information 
(MI) to evaluate the importance of each vocabulary for each category. The category with the highest 
MI value in one vocabulary will be assigned to this vocabulary in a class-specific codebook.  

Existing methods incorporating information of categories code the testing image with a group 
of histograms. One histogram of the testing image can be classified by the SVM classifier and the label 
of class with the largest number of predicting results from SVM will be the final output. The error 
items of existing methods are illustrated in the left part of Figure 3. Mapping error here means error 
in mapping universal histograms to class-specific codebook of inaccurate categories, namely the 
differences between the class-specific histogram of the category and the class-specific histogram of 
true labels. Mapping error may lead to inaccurately representing the information of scene labels, 
which may cause misclassification. Therefore, we predict the relatively accurate results of one testing 
image using a kernel collaborative representation based classification (KCRC) method [30] instead of 
blind mapping, as shown on the right-hand side of Figure 3. 
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Figure 3. Differences between error terms of existing methods incorporating scene labels and our 
proposed method. 

However, the predicting results of KCRC may still be unreliable since information in HRIs is 
more detailed in surface features and complexity of scenes than images in Computer Vision. 
Therefore, we perform classification in two steps to increase classification performance. Firstly, we 
use KCRC combined with Spatial Pyramid Matching (SPM) to predict two true labels of the testing 
image instead of just one predicted label. Then we map universal histograms to these two class-
specific codebooks. These two class-specific histograms will be respectively put into Support Vector 
Machine (SVM) [31] for outputting confidence in each label. Then the label with the largest sum of 
confidence will be the final classification result. 

Inspired by the aforementioned work, we incorporate a proposed class-specific codebook into a 
BOW model for scene-level land-use classification. The main contributions of this paper are 
summarized below： 

(1) We modify an iterative keypoint selection algorithm with the filter by keypoints’ response 
values, which enables us to reduce the computational complexity by filtering out 
indiscriminative keypoints and select representative keypoints for better image representation. 

(2) We propose a class-specific codebook designed for HRIs based on feature selection using MI to 
allocate vocabularies in the universal codebook for each category in order to expand differences 
between locality-constrained linear coding (LLC) codes of various land use categories. 

(3) In the testing period, we classify the testing image in two steps. We introduce the KCRC 
algorithm to obtain two comparatively accurate predicting results of testing samples to make 
sure the testing sample may be mapped to their unique class-specific codebook and decrease the 
prediction error by putting these two class-specific histograms respectively into SVM classifiers 
to output the confidence in each label. The testing image will be assigned to the label with the 
largest sum of confidence. 

The rest of the paper is organized as follows: In Section 2, we describe the overall process of the 
proposed approach and details of proposed approach. In Section 3, several experiments and results 
are presented to demonstrate the effectiveness and superiority of the proposed algorithms. In  
Section 4, a discussion about the proposed method is conducted. Conclusions and suggestions for 
future work are summarized in Section 5. 

2. Materials and Methods  

In this section, we present a scene classification method of HRIs based on an improved class-
specific codebook as shown in Figure 4, which can be divided into four main steps.  

In the first step, dense Scale-Invariant Feature Transform (SIFT) descriptors [18] are extracted 
from training images in each local patch of Spatial Pyramid Matching(SPM)[32] and are selected 
using a modified iterative keypoint selection method to remove keypoints that are unhelpful for 
classification. 

In the second step, we use the selected keypoints to generate a universal codebook with “k-
means” and get BOW representations in each local patch of SPM by LLC [33]. 
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In the third step, for each category in the training set, we calculate an MI value between each 
vocabulary and each category to obtain a matrix about MI. Assuming the MI value of one category 
exceeds that of other categories in a particular vocabulary, then we add this vocabulary to class-
specific codebook of that category. Repeating the above procedure, we finally get a unique class-
specific codebook in each category.  

Finally, we perform classification in two steps on testing datasets. Firstly, we use a KCRC 
combined with the SPM method to predict two true labels of testing sample and the testing sample 
are mapped to these two class-specific codebooks. Then we represent the testing image with two 
class-specific histograms. These two class-specific histograms will be respectively put into a Support 
Vector Machine (SVM) to compute the confidence in each label. Then the label with the largest sum 
of confidence will be the final classification result. 

Details of those specific principles and implementation processes are provided in the subsequent 
sub sections. 

Training images

SIFT Feature Extraction

Patches in SPM

Testing image

Patches in SPM

Universal Codebook

Training Test

Keypoint Selection

LLCSPM+ Universal histogram

Class-specific 
histograms

SVM Training

Universal histogram+ 

SVM classifier

KCRC combined with 
SPM

predicting label 
procedure

Category 1

Category 2

Category i

Class-specificCodebook

Category n

Class-specific 
histogram i

Minimum error
label i

Class-specific 
histogram j

Second Minimum error
label j

Category 1 confidence: a Category 1 confidence: A + 

Category2 confidence: b Category 2 confidence: B

Category n confidence: n Category n confidence: N

+ 

+ 

Maximum condfidence 
sum

Output result

Category j

 
Figure 4. Overview of the improved class-specific BOW model for land-use scene classification. 
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2.1. Iterative Keypoint Selection with the Filter by Keypoints’ Response Values 

The central idea of iterative keypoint selection method [27] is illustrated in Figure 5. In one 
iteration, we identify the discriminative descriptors and filter out unrepresentative ones with a 
distance measure since keypoints with similar descriptors appear to be close. The iteration repeats 
until no unrepresentative descriptors are filtered out. 

 

Figure 5. Central idea of removing keypoints (a) Clustered keypoints with “k-means” in SIFT feature 
space. (b) Original keypoints in one cluster (c) Selected keypoints with a distance threshold. 

The key problem of iterative keypoint selection is to how to choose discriminative keypoints. 
Lin randomly chose one keypoint as the initial keypoint. Thus, the location of the initial keypoint will 
have an effect on the selection results.  

In order to solve the problem of initial keypoint selection, we use response value with 
neighboring keypoints to reflect the saliency of keypoints. We remove keypoints with lower contrast 
than a threshold θ according to Equation (1). 

2 1

2

1( )
2

TD D D
D X D

X XX
θ

−∧ ∂ ∂ ∂= + <
∂ ∂∂

 (1) 

where D is the value of Difference of Gaussian (DOG) function [6] in the location of keypoints and 
( , , )X x y σ=  is the offset of keypoints. 
Filter of response value can not only avoid the problem of initial keypoint selection but also 

remove some unreliable keypoints which are not different from neighboring keypoints since we just 
need a critical keypoint for image representation. This step can help to offer discriminative results for 
the later iterative keypoint selection. 

Then filtered keypoints are clustered using “k-means” in the SIFT feature space. Keypoints 
closest to the cluster center are regarded as representative keypoints. Keypoints whose Euclidean 
distance in SIFT feature space are within a threshold T of those representative keypoints will be 
removed. This is the first iteration of selection. 

The selection results of the first iteration will be used as the initial keypoints in the second 
iteration and the procedure will be the same as in the first iteration. The iteration repeats until no 
keypoints will be filtered out or remaining keypoints are inadequate to be clustered. 

The proposed keypoint selection can not only improve computational efficiency but also remove 
keypoints that are unhelpful for classification to enhance classification performance in HRIs land-use 
classification.  
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2.2. LLC Coding  

Traditional SPM solves the following constrained least square fitting problem using Vector 
Quantization (VQ) coding [32] in Equation (2): 

0 1

2

1
argmin

. . 1, 1, 0,

C

i iC
i

i i il l

x Bc

s t c c c i
=

−

= = ≥ ∀

  
(2) 

where an image is represented by a set of extracted dense SIFT descriptors X, namely 

[ ]1 2, ,..., D C
CX x x x R ×= ∈ , 1 2[ , ,..., ] D M

MB b b b R ×= ∈  is a codebook containing m vocabularies and

1 2[ , ,..., ]CC c c c=  is the VQ codes calculated from X. 
However, VQ coding may lead to vector quantization error due to the hard-assignment strategy. 

In order to solve this problem, the restrictive cardinality constraint 0 1i l
c =  in Equation (3) can be 

relaxed by using a sparsity regularization term in ScSPM [34]. Moreover, it is a standard sparse 
coding (SC) problem how to code each SIFT descriptor ix  with a soft-assignment strategy. The SC 
problem can be solved in Equation (4): 

1

2

1

arg min
C

i i i l
c i

x Bc cλ
=

− +
 (3) 

As suggested by J. Wang [31], sparsity is not as essential as locality since locality must result in 
sparsity but not vice versa. The LLC coding can be solved in Equation (4): 

2 2

1
min

. .1 1,

C

i i i i
c

i

T
i

x Bc d c

st c i

λ
=

− +

= ∀

 

 (4) 

where   means multiplication of each element in matrix id  and ic , and 
M

id R∈  is the locality 
adaptor assigning distinctive freedom to each vocabulary in codebook according to its similarity to 
the SIFT descriptor ix  in Equation (5).  

( , )exp( )i
i

dist x B
d

σ
=  (5) 

where 1( , ) [ ( , ),..., ( , )]Ti i i Mdist x B dist x b dist x b=  and ( , )i jdist x b  is the Euclidean distance between 
the SIFT descriptor 

ix  and vocabulary jb , σ is used for adjusting the weight decay speed for the 
locality adaptor. Then the max-pooling strategy is applied to the coding results C to get the final LLC 
coding. 

For each local patch extracted by SPM, we get the LLCSPM coding with Equation (6). Then we 
fuse the LLC coding with the weight in SPM to form a longer LLCSPM coding to represent the image. 

1 4 1 16
0 1 1 2 2

1 1 1 1 1
LLC = LLC , LLC ,..., LLC , LLC ,..., LLC

4 4 4 2 2
 
  

 
(6) 

where j
iLLC  represents the LLC code in the j th patch on the i-th level of SPM. 

LLC combined with SPM not only incorporates spatial information into BOW model but also 
demonstrates the lowest vector quantization error. 

2.3. Generation of Class-Specific Codebook Using MI  

The class-specific codebook is obtained through the vocabulary selection from the universal 
codebook for each category using class-specific data in training set. The class-specific codebook has 
two interesting properties [21]. It needs fewer training samples to estimate parameters of the specific 
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category since during vocabulary selection we have made some assumptions on the a priori location 
of parameters in the whole parameter space. Moreover, the class-specific codebook maintains some 
correspondence with the universal codebook since it is derived from the universal codebook. 

After obtaining the universal codebook and universal histogram with the above methods, we 
can obtain a class-specific codebook and class-specific histogram as shown in Figure 6. Assume that 
we need to generate a class-specific codebook in two categories, forest and river. As we can see in Fig 
6, if the number of visual words is equal to 2, the vocabularies in the universal codebook are assigned 
to only one of the two categories respectively according to their MI value. If the MI value of forest is 
above that of river, then this vocabulary marked with the green color will be assigned to forest and 
vice versa. Each vocabulary can only belong to one specific category. Finally, we will get a class-
specific codebook and the number of red bars is the vocabulary that belongs to the class-specific 
codebook. The red bar represents the class-specific histogram derived from the universal histogram. 

 
Figure 6. Procedure of generating class-specific histogram. 

The green bar means the MI value of this vocabulary tops that of the same vocabulary in all other 
vocabularies and the red bar means the class-specific histogram derived from the universal 
histogram. 

As we can see, the universal histograms of river and forest are similar, which may result in 
misclassification. However, we chose the most representative vocabulary from the universal 
codebook for each category and only one vocabulary can exist in just one class-specific codebook. 
That is to say, vocabularies best representing this class-specific codebook will exist in this class-
specific codebook. Thus, the class-specific codebook can better reflect the information of this category. 
Mapping the universal histogram to the class-specific codebook means value will exist in 
vocabularies that belong to this class-specific codebook. Values in other vocabularies of this codebook 
will be 0. The dimension of universal histograms is the same as that of class-specific histograms, but 
the class-specific histogram is more discriminative since it reflects information belonging to its own 
labels rather than information about the whole image. Details of the generation of the class-specific 
codebook will be illustrated as follows. 

The MI value between each vocabulary and each category reflects contributions of each 
vocabulary to each category. MI value can be calculated as Equation (7). 

( | )
( | ) log( )

( )
i j

i j
i

P b c
MI b c

P b
=

 
(7) 
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where ib  is the i-th vocabulary in the universal codebook and jc  is the j-th category in scene 

labels. ( | )i jP b c  reflects the possibility that ib  exists in training samples of jc  and ( )iP b  is the 
possibility of ib  existing in the training set. 

As illustrated above, we calculate MI values between each vocabulary and each category to 
obtain a matrix concerning MI values as Equation (8) shows:

 
1 1 1 2 1

2 1 2 2 2

1 2

( | ), ( | ),..., ( | )
( | ), ( | ),..., ( | )

( | ), ( | ),..., ( | )

n

n

M M M n

MI b c MI b c MI b c

MI b c MI b c MI b c

MI b c MI b c MI b c

 
 
 
 
 
 

  

 
(8) 

For each row in the Equation (8), we can obtain a maximum, such as ( | )i jMI b c . Then we add 
ib  to the class-specific codebook of jc . After traversal of all vocabularies in the universal codebook, 

we will finally get the class-specific codebook in each category. 

2.4. KCRC Combined with SPMPpredicting Method and Two-Step Classification 

As shown in Figure 3, in methods related to the class-specific codebook, bag-of-features are 
usually mapped to each category to get histograms in each category for classification. If bag-of-
features are mapped to inappropriate class-specific codebooks, the predicting results might be 
incorrect and this class-specific histogram will be useless for classification. In order to overcome the 
limitations, we present a KCRC combined with the SPM algorithm to obtain two accurate predicting 
outcomes for the testing sample. Details of KCRC method are illustrated as follows. 

Assuming 21
,1 ,2 ,[ , ,..., ] i

i

M n
i i i i nX x x x R × ×= ∈  is the LLC codes combined with SPM in the training 

sample of i-th class, where , ( 1, 2,..., )i j ix j n=  is a vector with a dimension of 21 M× , namely 3 levels 
of spatial pyramid, from the j-th training samples in the i-th class. 21

0
My R ×∈  is the LLC codes of a 

testing sample and training samples are [ ]1 2, ,..., CX X X X=  with C categories. Then the testing 
sample can be represented by a linear combination of training samples 0 0y w X= , where 

0 ,1 ,2 ,[0,...,0, , ,..., ,0,..,0]
i

T
i i i nw w w w= . 

KCRC method can effectively discover nonlinear structures such as changes of illumination, 
spectral noise [35] and large attitude by mapping the samples into a higher dimensional space and 
operating traditional CRC [36] method in this high-dimensional space. Denote 

1,1 1,2 ,[ ( ), ( ), ..., ( )]
cc nx x xφ φ φΦ =  as the mapped samples from the original feature space to a high-

dimensional space and we employ the Gaussian radial basis function (RBF) kernel 
2
2( , ) exp x yk x y σ− −=  

for better fitting the SVM RBF kernel classifier. 
The KCRC combined with the SPM Algorithm can be illustrated as follows： 
LLC codes combined with SPM are calculated for each training sample and the testing sample. 

0y  is the testing sample and X are the training samples. 

The objective function of the KCRC algorithm 
2 2

0 2 2
argmin ( )w y w wλ= Φ −Φ +  can be directly 

solved in Equation (9) 

1
0( ) ( )T Tw I yλ φ−= Φ Φ + Φ (9) 

where  
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1,1 0

1,2 0
0 1,1 1,2 , 0

, 0

( , )
( , )

( ) ( ), ( ),..., ( ) ( )

( , )

c

c

T
c n

c n

k x y

k x y
y x x x y

k x y

φ φ φ φ φ

 
 
  Φ = ⋅ =   
 
  



 
(11) 

The regularized residuals 0( )ir y  in each category can be calculated by Equation (12) 
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0
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i
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(14) 

and 

0 0 ,1 0 ,2 0 .( ) ( , ), ( , ),..., ( , )
i

T
i i i i ny k y x k y x k y xφ  Φ =   (15) 

The predicted label will be two with the lowest and the second lowest residuals. 

0 0,
arg min ( ) arg min ( )i ii i i y

y r y y r y
≠

= ∪ =  (16) 

Since the KCRC method may produce inaccurate predicted labels, we use two labels rather than 
one predicted label to avoid misclassification with the most similar category. Therefore, we classify 
the testing image in two steps. The procedure of first classification is shown from Equations (9) to 
(16) using KCRC above. 

Then, during the period of the second classification, LLC codes in each testing sample will be 
mapped to the class-specific codebook of both predicted labels to generate two class-specific 
histograms. Each class-specific histogram will be respectively put into SVM classifiers to output the 
confidence of each label. The label with the largest sum of confidence will be the final result. 

3. Experiments and Results 

3.1. Experimental Data and Setup 

The first dataset is a ground truth dataset consisting of 21 scene categories [18] named University 
of California, Merced (UC_MERCED) dataset. This dataset was manually extracted from aerial 
orthoimagery and downloaded from the United States Geological Survey (USGS) National Map. The 
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21 classes include agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense 
residential, forest, freeway, golf course, harbor, intersection, medium density residential, mobile 
home park, overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis courts. 
Each category contains 100 images of size 256 × 256 pixels with a resolution of 30 cm in the RGB color 
space. Sample images in each category of this dataset are shown in Figure 7. 

Agriculture        airplane                baseball                 beach                        building         chaparral            dense  residential

 

forest                    freeway                golf course              harbor              intersection        medium residential   mobile homepark

overpass            parking lot              runway                 river                      storage tanks     sparse residential   tennis court  
Figure 7. Examples of ground truth data in the UC_MERCED dataset. 

The second dataset used in our experiments is the High-resolution Satellite Scene Dataset in 
Wuhan University (WHU-RS) satellite scene dataset [37]. This dataset is a new publicly available 
dataset wherein all the images are collected from Google Earth (Google Inc. Mountain View, CA, 
USA). It consists of high resolution satellite scenes of 19 categories including airport, beach, bridge, 
commercial, desert, farmland, football field, forest, industrial, meadow, mountain, park, parking, 
pond, port, railway station, residential, river and viaduct. There are 50 images of size 600 × 600 pixels 
for each class. Sample images of each class in this dataset are shown in Figure 8. 

Airport                 beach                             bridge                    commercial               desert                         farmland

Football field       forest                             industrial                   meadow               mountain                         park

Parking                 pond                      port                       railway                 residential               river                        viaduct  
Figure 8. Examples of ground truth data in the WHU-RS dataset.  
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In this paper, we randomly choose 20 images from each class for training and the rest for testing 
in the WHU-RS dataset and 50 images for training in the UC_MERCED dataset. In order to measure 
the performance of the proposed algorithm, we use four comparison approaches in different 
experiments, namely, the BOVW without keypoint selection [20], BOVW with the proposed keypoint 
selection method, existing methods incorporating the traditional class-specific codebook [21] and 
existing methods without the class-specific codebook. Dense SIFT features are extracted for each 
image and a three-level pyramid was applied for LLCSPM. Contrast experiments were made on 
thresholds of response value, distance threshold and different number of clusters to get the optimal 
keypoint selection parameter settings. We used the public LIBSVM package [38] and the classical 
radial basis function (RBF) kernel [39] was selected for multiclass classification with the same SVM 
parameters. For RBF Kernels, the penalty coefficient C and the kernel parameter γ  were selected 
using a grid search by cross validation. The criterion for searching C and γ  is as follows: 

{ } { }5 4 4 5 5 4 4 52 , 2 ,..., 2 , 2 , 2 , 2 ,..., 2 , 2C γ− − − −∈ ∈   

The optimal parameter settings we finally get is 4, 0.5C γ= = . The experiment is run 5 times 
and the final accuracy will be average classification accuracy. The computer environment is based on 
Intel Core i7-3770 with 8GB of RAM. 

3.2. Results of the Keypoint Selection Algorithm 

It is well-known that the state-of-the-art keypoint selection algorithms are IB3 [40], DROP3 [41], 
ICF [42] and Iterative Keypoint Selection (IKS) [27], as mentioned in Section 2.1. Since IKS is an 
efficient algorithm in keypoint selection, it is used for comparison with the modified keypoint 
selection algorithm in both datasets to demonstrate the superiority of the modified method. 

Table 1 shows the average number of Remaining keypoints by the first step and both steps of 
modified keypoint selection and baseline method IKS along with their standard deviation. As we can 
see, there is a large number of keypoints that must be selected from the training set, 1,513,532 and 
939,657 keypoints over WHU-RS and UC_MERCED land-use classification, respectively. IKS obtains 
a slightly higher selection rate in UC_MERCED and WHU-RS classification. 

Table 1. Number of average remaining keypoints in our method and IKS and their standard 
deviation. 

Method WHU-RS Dataset UC_MERCED Dataset 
BOW without keypoint selection 1,513,532 ± 21,888 939,657 ± 17,339 

Filter with response value (First step) 862,745 ± 16,411 554,310 ± 13,517 
Proposed Keypoint Selection Method 635,497 ± 14,227 403,857 ± 11,259 

IKS 575,168 ± 29,110 356,952 ± 10,403 

However, as can be seen in Table 2, a lot less time is needed to complete the vector quantization 
and the highest classification is achieved in both datasets with modified keypoint selection method 
since the algorithm removes indiscriminative keypoints. The first step, the filtering of keypoints with 
response values, obtains less computational time and a little bit higher classification accuracy. 
Although a large number of keypoints can be selected by IKS, IKS requires a lot more computational 
time with a little increase in classification accuracy.  

Table 2. Comparison in average computational time for vector quantization and classification 
accuracy along with their standard deviation for both datasets. 

Method 
Dataset 

BOW without 
Keypoint Selection 

Filter with 
Response Value 

Proposed Keypoint 
Selection Method 

IKS 

UC_MER 
CED 

time 252 ± 1.9 min 222 ± 2.8 min 135 ± 2.5 min 478 ± 3.3 min 
accuracy 0.715 ± 0.0036 0.736 ± 0.0033 0.7780 ± 0.0028 0.721 ± 0.0045 

WHU-RS 
time  387 ± 4.5 min 316 ± 3.3 min 221 ± 2.9 min 630 ± 5.1min 

accuracy 0.686 ± 0.0029 0.698 ± 0.0032 0.754 ± 0.0036 0.695 ± 0.0033 
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3.3. Results of the Two-Step Classification Method 

KCRC has demonstrated promising performance in classification, but it still needs to be 
improved. Figures 9 and 10 display the testing samples in respectively two datasets which are 
predicted incorrectly with KCRC combined with SPM method but classified correctly in our two-step 
classification approach. 

As we can see in Figure 9, in most testing samples that KCRC has misclassified, the category 
may be misclassified into categories of their backgrounds. Therefore, our proposed algorithm is more 
robust for those images with backgrounds of similar color or texture such as port surrounded by 
grass, river surrounded by forests and bridge on the river and so on. Similarly, in Figure 10, we can 
see buildings with forests, fields with grass on and also rivers surrounded by forests.  

 
Figure 9. Two Example images of categories misclassified with KCRC method but classified 
accurately with two-step classification method in WHU-RS dataset. 

 
Figure 10. Two Example images of categories misclassified with KCRC method but classified 
accurately with two-step classification method in UC_MERCED dataset. 
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Table 3 shows the average classification accuracy of both datasets and their standard deviation 
under conditions of KCRC and two-step classification. As we can see, KCRC shows excellent 
classification performance with a classification accuracy of about 85% but it stills misclassifies about 
15% of the testing samples. As shown in Table 3, two-step classification has a positive effect on 
classification results. In some testing samples where KCRC has misclassified, about 11% of testing 
samples, our proposed algorithm demonstrates better performance although nearly 1.9% of testing 
samples that KCRC has correctly classified are misclassified with our two-step classification method. 

Figure 11 displays the classification accuracy in each category with three different contrast 
methods mentioned in Section 3.1 using the UC_MERCED land-use dataset. As can be seen, the 
proposed algorithm outperforms the other two methods in almost all categories by at least 3% and 
BOW incorporating traditional class-specific codebook performs the second best followed by 
methods without a class-specific codebook. However, in some categories, such as forest and storage 
tanks, our proposed algorithm demonstrates a slightly lower classification accuracy than the 
traditional BOW model incorporating the class-specific codebook. 

Table 3. Classification results of both datasets with KCRC and our proposed algorithm. 

Different Conditions UC_MERCED Dataset WHU-RS Dataset 

Total testing samples 1050 570 
KCRC right 0.843 ± 0.0036 0.851 ± 0.0033 

KCRC wrong but proposed right 0.116 ± 0.0029 0.109 ± 0.0028 
KCRC right but proposed wrong 0.019 ± 0.0013 0.019 ± 0.0015 

 
Figure 11. Classification accuracy per class for classifiers using UC_MERCE dataset. The class labels 
are assigned as follows: 1 = Agricultural, 2 =airplane, 3 = baseball diamond, 4 = beach, 5 = buildings, 6 
= chaparral, 7 =dense residential, 8 = forest, 9 = freeway, 10 = golf course, 11 = harbor, 12 = intersection, 
13 = medium residential, 14 = mobile home park, 15 =overpass, 16 = parking lot, 17 = river, 18 = 
runway, 19 = sparseresidential,20 = storage tanks, and 21 = tennis court. 

Similarly, as we can see in Figure 12, the proposed approach yields the highest classification 
accuracy in most categories followed by the BOW model incorporating traditional class-specific 
codebook. However, in some categories including desert, meadow, port and river, the two-step 
classification method demonstrates a slightly lower classification accuracy. 
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Figure 12. Classification accuracy per class for classifiers using WHU-RS dataset. The rows and 
columns of the matrix denote the actual and predicted classes, respectively. The class labels are 
assigned as follows: 1 = airport, 2 = beach, 3 = bridge, 4 = commercial, 5 = desert, 6 = farmland, 7 = 
football field, 8 = forest, 9 = industrial, 10 = meadow, 11 = mountain, 12 = park, 13 = parking, 14 = pond, 
15 = port, 16= railway station, 17 = residential, 18 = river, 19 = viaduct. 

Figure 13 further shows the confusion matrix for the two-step classification algorithm using 
WHU-RS land-use dataset. As we can see, almost all categories perform well with an accuracy close 
to 1 except for desert, industrial and port with an accuracy below 0.85. Desert categories are confused 
with farmland, meadow scenes and industrial scenes are confused with commercial, park and 
residential scenes and port scenes are confused with beach, bridge and river scenes.. These three 
categories are misclassified into more than one category. 

 
Figure 13. Confusion matrix for the proposed algorithm using WHU-RS land-use dataset. 

Similarly, Figure 14 shows the confusion matrix using UC_MERCED land-use classification with 
the proposed method. As can be seen, only classification accuracy in tennis court, storage tanks and 
building category are below 0.9. In this dataset, these three categories are also misclassified into 
several categories. For example, buildings are confused with dense and medium residential areas and 
storage tanks are misclassified into airplanes, buildings and tennis courts.  
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Figure 14. Confusion matrix for the proposed algorithm using UC_MERCED land-use dataset. 

3.4. Comparison with the State-of-the-Art 

In order to prove the superiority of the proposed improved class-specific codebook, we compare 
its classification performance on both datasets with the state-of-the-art performance reported in the 
literature such as LDA [11], Improved Fisher Kernel [43], Vector of Locally Aggregated Descriptors 
(VLAD) [44] and promising GoogLeNet [17] under similar experimental setup. 

As shown in Table 4, the proposed method achieves about 1.2% higher in classification accuracy, 
as compared with the best performance in GoogLeNet, which is famous as a deep learning method. 
Compared with other state-of-the-art methods except the high-level GoogLeNet method, our 
proposed method achieves more than 12% higher classification accuracy. 

The superior performance, as compared with the current state-of-the-art results on both datasets, 
demonstrates the effectiveness of the proposed method for HRIs scene-level land-use classification. 

Table 4. Compare classification accuracy of proposed method with state of art methods. 

Method 
Dataset 

LDA IFK VLAD GoogLe Net Proposed Method 

UC_MERCED 0.642 ± 0.0019 0.826 ± 0.0028 0.778 ± 0.0036 0.925 ± 0.0049 0.938 ± 0.0058 
WHU-RS 0.708 ± 0.0015 0.835 ± 0.0025 0.805 ± 0.0033 0.923 ± 0.0045 0.937 ± 0.0057 

4. Discussion 

4.1. Influence of Parameters in Keypoint Selection Algorithm 

Three parameter settings, threshold of response value, distance threshold and the number of 
clusters k in “k-means”, will all have an effect on the computational time and classification accuracy. 
Therefore, contrasting experiments with different parameter settings have been made to find the 
optimal parameter settings. The main aim of the optimal parameter setting is to achieve higher 
classification accuracy with less computational time. 

Figures 15–20 show the computational time and classification accuracy obtained by different 
parameter settings in the proposed keypoint selection algorithm. 

The response value of keypoints ranges from 0.02 to 0.065, so I chose a threshold of response 
value from 0.025 to 0.055 with an interval of 0.005. Figures 15 and 16 show that, if threshold of 
response value is equal to 0.025, the computational time reaches the minimum while the best 
performances in classification accuracy are obtained when threshold is 0.04 in both datasets. 
However, as we can see in these two pictures, changes in classification accuracy are much more 
significant and drastic compared with those in computational time. Therefore, we only take 
classification accuracy into consideration. As can be seen in Figure 16, keypoints with a response 
value below 0.04 are unstable and not useful for image representation, so removing these key points 
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can help to improve classification accuracy. In the later experiment, 0.04 is selected as the threshold 
of response value since it performs best in classification with the highest classification accuracy for 
SVM.  

 
Figure 15. Computational time for vector quantization with different thresholds of response value. 

 
Figure 16. Classification accuracy with different thresholds of response value. 

As can be seen in Figures 17 and 18, with distance threshold from 5 to 26 with an interval of 3 
since 26 is enough to remove redundant keypoints and number of clusters from 2 to 8, we get the 
average computational time and classification accuracy. As we can see in Figures 17 and 18, when 
the number of cluster k is equal to 4 and distance threshold is 14, we can get the highest classification 
accuracy from SVM while when k is equal to 2 and distance threshold is 26, computational time is 
the lowest. Similarly, in Figures 15 and 16, the variation yields much more significant changes in 
classification accuracy than computational time and the threshold corresponding to the lowest 
computational time performs badly in terms of classification accuracy. Therefore, we choose 4 
clusters and a distance threshold of 14, although they take 30 more minutes to achieve the highest 
classification accuracy for SVM. 

Similarly, in Figures 19 and 20, we can reach a similar conclusion to Figures 17 and 18 according 
to the parameter setting achieving the highest classification accuracy, 4 clusters and distance 
threshold of 14, although 30 more minutes are spent for better performance in accuracy. 
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Figure 17. Classification accuracy with different distance thresholds and number of clusters over 
WHU-RS dataset. 

 
Figure 18. Computational time for generating BOW features with different distance thresholds and 
number of clusters over WHU-RS dataset. 

 
Figure 19. Computational time for generating BOW features with different distance thresholds and 
the number of clusters over UC_MERCED dataset. 
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Figure 20. Classification accuracy with different distance thresholds and number of clusters over 
UC_MERCED dataset. 

4.2. Influence of the Size of Vocabulary 

Different sizes of visual vocabularies were tested on different sizes from 100 to 600 at intervals 
of 100 since the number of visual words has an effect on classification accuracy. 

As can be seen in Figures 21 and 22, the classification accuracy of different methods changes 
with different sizes of visual vocabularies. When the number of visual vocabularies in all methods 
increases, classification accuracy improves gradually since a larger class-specific codebook may lead 
to more detailed image representation. Our proposed algorithm demonstrates a relatively high 
classification accuracy over all codebook sizes since each category has its unique class-specific 
codebook, leading to significant difference. The overall accuracy is improved in our proposed 
algorithm by at least 8% more than for existing methods incorporating the traditional class-specific 
codebook mentioned in Section 3.1. As we can see, if the visual vocabulary size is over 300, the 
classification performance improves little, which means a visual vocabulary size of 300 is detailed 
enough for image representation. Therefore, we choose 400 as the optimal visual vocabulary size for 
our proposed method. 

 
Figure 21. Classification accuracy with a different number of visual words in WHU-RS datasets. 
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Figure 22. Classification accuracy with a different number of visual words in UC_MERCED land-use 
dataset. 

4.3. Influence of Number of Training Samples 

A different number of training samples were tested from 10% to 80% of the size of training 
samples in one category at intervals of 10% since the number of training samples has an effect on 
classification accuracy. 

As can be seen in Figures 23 and 24, classification accuracy improves gradually with the increase 
of the number of training samples since a larger number of training samples may lead to more 
accurate caculated MI value. A smaller number of training samples may not fully represent the 
characteristic of the category, leading to inaccurate assignment of some vocabularies.Therefore, a 
small number of training samples may result in a relatively inaccurate class-specific codebook in 
those partly represented categories. As we can see, if the number of training samples is above 50, the 
classification accuracy improves a little but larger numbers may cost a lot more time. Therefore, we 
choose 50 training samples for the UC_MERCED dataset. Similarly, in Figure 24, if the number of 
visual words is below 20, the classification accuracy increases gradually and we choose 20 training 
samples for WHU-RS dataset. 

 
Figure 23. Overall accuracies using different number of training samples in UC_MERCED dataset. 
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Figure 24. Overall accuracies using different number of training samples in WHU-RS dataset. 

4.4. Influence of Two-Step Classification 

As shown in Fig 9 and 10, testing samples for the KCRC method may misclassify one test sample 
into its most similar category. Our proposed method results in two labels in KCRC, one is the label 
with minimum residual and the other is the label with the second minimum residual.  

It is more accurate to map universal histogram to class-specific codebooks in these two categories 
rather than map universal histogram to each category. Two class-specific histograms can be 
respectively put into the SVM classifier for confidence in each label. Then we do a decision-level 
fusion to obtain the final classification result. Categories achieving high confidence under both class-
specific histograms will be more likely to be the classification result. 

For example, the categories of forest and river may have similar backgrounds like trees, which 
occupy a comparatively large area in one image. Therefore, residuals of forest and river are very 
close, which may easily result in misclassification. Our proposed method output forest and river as 
two possible labels. Assuming the testing sample belongs to river, the confidence of river is high in 
the river class-specific histogram and relatively high in the forest class-specific histogram. 

As can be seen in Figures 11–14, the two-step classification method demonstrates a little lower 
accuracy in some categories. There may exist two reasons for this. On one hand, due to insufficient 
SIFT descriptors extracted from images in these categories, approximately below 100 descriptors, the 
number of existing visual vocabularies in training images of these two categories is smaller than that 
in other categories. Therefore, the number of visual words in the class-specific codebook of those two 
categories is limited and the descriptive ability of these class-specific codebooks is relatively low, thus 
leading to misclassification. On the other hand, these categories may be similar to at least two other 
categories. Therefore, both predicted labels are not the true label. Therefore, the output confidence 
by SVM in both predicted labels is relatively high while the confidence of the true label is relatively 
low, which may lead to inaccurate classification. 

4.5. Strengths and Limitations 

A two-step classification method based on a class-specific codebook is proposed in this study. 
This method has been successfully applied to two datasets of HRIs. The main advantage of the 
proposed approach is the improvement of computational efficiency in the vector quantization step 
and increased classification accuracy in the testing samples with similar backgrounds. Experimental 
results show that this method can achieve an overall classification accuracy of 93.7% and outperforms 
other state-of-the-art scene-level classification methods. 

However, it is noted that some state-of-the-art methods outperform the proposed method in 
some categories. These categories are short of SIFT features or similar to at least two categories. In 
future works, we plan to fuse local and global features to decrease the effect of insufficient local 
descriptors and seek better decision-level fusion methods. 
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5. Conclusions 

Compared with existing BOW methods based on class-specific codebook, our proposed method 
demonstrates higher classification accuracy than state-of-the-art methods and less computational 
time compared with methods without keypoint selection. Unlike previous studies that have focused 
on mapping a universal histogram to each class-specific codebook, we propose a method that 
classifies the testing image in two steps, predicting two labels of one testing image, and maps the 
universal histogram to the class-specific codebook in these predicted categories. According to the 
largest sum of confidence output by the SVM classifier, we can get the final classification results. 

The experiments showed the following: 

(1) Modified keypoint selection method is a useful and efficient way to select the discriminative 
keypoints from extracted descriptors. This method demonstrates lower computational cost and 
higher classification accuracy. 

(2) We proposed a method for generating class-specific codebook using MI. Vocabularies in the 
universal codebook will exist in only one specific class-specific codebook. This class-specific 
codebook will better reflect the information of a specific category. 

(3) By classifying the testing image in two steps, we can decrease the error caused by KCRC. 
Mapping universal histograms to relatively true labels can help to enlarge the differences 
between different categories. The proposed two-step classification method outperforms the 
state-of-the-art methods, in terms of the classification accuracy. 

The following research can be taken into consideration in the future. First, descriptors extracted 
from some images are insufficient for generation of a descriptive class-specific codebook. Therefore, 
we need to increase the number of visual vocabularies in the class-specific codebook in these 
categories to enhance descriptive ability. Second, in order to better characterize both local fine details 
and global structures in images, experiments can be made on fusion of local and global features. Last 
but not least, we need to seek for better decision-level methods in order to classify testing samples 
with several similar categories. 
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