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Abstract: The image intensities of low-backscattering areas in synthetic aperture radar (SAR) images
are often seriously contaminated by the system noise floor and azimuthal ambiguity signal from
adjacent high-backscattering areas. Hence, the image intensity of low-backscattering areas does
not correctly reflect the backscattering intensity, which causes confusion in subsequent image
processing or interpretation. In this paper, a method is proposed to estimate the normalized radar
cross-section (NRCS) of low-backscattering area by utilizing the differences between noise, azimuthal
ambiguity, and signal in the Doppler frequency domain of single-look SAR images; the aim is to
eliminate the effect of system noise and azimuthal ambiguity. Analysis shows that, for a spaceborne
SAR with a noise equivalent sigma zero (NESZ) of −25 dB and a single-look pixel of 8 m × 5 m,
the NRCS-estimation precision of this method can reach −38 dB at a resolution of 96 m × 100 m.
Three examples are given to validate the advantages of this method in estimating the low NRCS and
the filtering of the azimuthal ambiguity.

Keywords: SAR; ocean; NRCS; Doppler spectrum; azimuthal ambiguity

1. Introduction

Areas with low normalized radar cross-section (NRCS) appear dark in synthetic aperture radar
(SAR) images. It is frequently seen in ocean SAR images, such as those of oil spills, organic films,
low wind areas, fronts, upwelling, current shear zones, and dark strips of internal waves and
swells [1,2]. Among land targets, the backside of mountains and flat ground such as airport runways are
also typical low-backscattering targets. The signal intensities of low-backscattering areas in SAR images
are often close to or even less than the noise floor of the SAR system. Taking the ocean surface as an
example; the mean NRCS of the ocean surface for the L, C, and X bands ranges from −15 dB to −25 dB
at moderate wind speeds and incident angles. However, the NRCS of low-backscattering areas on the
ocean surface is much lower than the mean NRCS of the ocean surface. The NRCS of low-backscattering
areas of the ocean surface is often less than −30 dB, whereas the noise equivalent sigma zero (NESZ)
of most spaceborne SAR systems ranges from −20 dB to −30 dB. Hence, the backscattering signal
intensities of low-backscattering areas in ocean SAR images are often less than the noise floor of SAR
systems. The NESZ values of typical spaceborne SAR systems are listed in Table 1 [3,4].
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Table 1. Noise equivalent sigma zero (NESZ) values of typical spaceborne synthetic aperture radar
(SAR) systems.

Satellite Mode NESZ (dB)

ERS-1/2 −21 to −24

Envisat

Image −20 to −22
Wave −20 to −22

Alternating Polarization −19 to −22
Wide Swath −21 to −26

Global Monitoring −32 to −35

Radarsat-1 <−21

Radarsat-2

Standard −31
Fine −28
Wide −23

ScanSAR narrow −23
ScanSAR wide −23

JERS-1 <−20.5

ALOS/PALSAR

Fine (Swath Width 70 km) <−23
Fine (Swath Width 60 km) <−25

Polarimetry <−29
ScanSAR <−25

TerraSAR-X

Spotlight (HS) −23
Spotlight (LS) −23

Stripmap −22
ScanSAR −21

Another factor that can affect the image intensities of low-backscattering areas is the azimuthal
ambiguity effect of high-backscattering areas. It occurs because the Doppler frequency of the signal
reflected from the area illuminated by the azimuthal sidelobe of the antenna exceeds the pulse repetition
frequency (PRF). The azimuthal ambiguity signal of a target is located at a position with a certain
displacement relative to its real position. This displacement depends on the PRF, the velocity of the
platform and the Doppler centroid frequency of the SAR system. A typical value of the azimuthal
ambiguity of a spaceborne SAR is about −15 dB to −20 dB. If the NRCS of a high-backscattering
area is 15 dB to 20 dB higher than that of a low-backscattering area located at the position where the
azimuthal ambiguity signal from the high-backscattering area is present, the azimuthal ambiguity
signal could significantly affect the image intensity of the dark area. Azimuthal ambiguities are
especially frequent in land–water junctions, because the NRCSs of land targets are much higher than
that of the water surface.

Two analyses above indicate that, in order to estimate the certain value of the low areas’ NRCS,
the effect of the azimuthal ambiguity must be taken into consideration. Nevertheless, the standard
radiometric calibration algorithm for SAR images only takes the system noise into account and ignores
the azimuthal ambiguity effect, which is expressed in the following equation [5,6].

σcal = 10lg(I − N0)− K + 10lg

( R
Rre f

)3
sin α

sin αre f

Gre f

g(α)G

 (1)

where I, R, α, and G are the image intensity, slant range, elevation angle and system gain of a certain
image pixel respectively; g(α) is the two-way antenna gain at elevation angle α, N0 is the system noise,
K is the calibration constant, and Rre f , αre f , and Gre f are the slant range, elevation angle, and system
gain of the reference target, respectively.

However, an accurate system noise N0 is seldom provided in standard commercial spaceborne
SAR data products. Moreover, even if a sufficiently accurate N0 is provided, it is possible to obtain
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a meaningless NRCS of less than or equal to zero because the image intensity is a stochastic variable that
may be less than the system noise N0, especially when the NRCS of the target is relatively low. Hence,
in most practical NRCS calibration applications, the system noise is also ignored and Equation (1) is
simplified as follows [5–10].

σcal = 10lg(I)− K + 10lg

( R
Rre f

)3
sin α

sin αre f

Gre f

g(α)G

 (2)

When calibrated using Equation (2), the NRCS of low-backscattering areas inevitably includes
a significant contribution from the system noise and azimuthal ambiguity, which can cause confusion
in subsequent image processing and interpretation.

In this paper, a method of NRCS estimation for low-backscattering areas based on a spectrum
is proposed. This method requires to know the noise floor N0 and antenna patterns firstly. If N0 and
antenna patterns are unknown, we also can estimate them from a single-look complex SAR image.
This method can also eliminate the azimuthal ambiguity effect according to the shape of the Doppler
spectrum; avoiding a meaningless NRCS estimation by using the maximum likelihood (ML) estimation
method and the modified Newton’s iteration method.

The rest of this paper is organized as follows. Section 2 gives the details of the algorithms and
principles used in this method. In Section 3, three examples are presented to validate the advantages
of this method. In Section 4, an analysis of the estimation precision and simulations are stated. Finally,
some conclusions are presented in Section 5.

2. Spectral-Based NRCS Estimation Method for Low-Scattering Areas in SAR Images

2.1. The Principle of the Proposed Method

2.1.1. Analysis of Doppler Spectrum Composition

From the SAR imaging theory [4–11], it is well known that the shape of system noise, azimuthal
ambiguity, and the backscattering signal present different patterns in the Doppler spectrum of the SAR
raw signal (here, it is supposed that the range match filtering and range cell migration correction have
been done), i.e., the system noise power density is a certain constant in the Doppler spectrum, whereas
the shape of the Doppler spectrum of the backscattering signal and azimuthal ambiguity depend on
the antenna pattern: the backscattering signal and azimuthal ambiguity correspond to the main lobe
and side lobe respectively. The Doppler spectrum of the SAR raw signal can be expressed as:

E[pr( f , x0, y0)] =
n=∞

∑
n=−∞

σ
(

x0 + nDx, y0 + nDy
)

Pa( f − f0 + nFr) +
N0

Fr
(3)

In Equation (3)
[

x0 y0

]
are the center positions of the area where the Fourier transformation

apply, and x0 and y0 are the coordinates in the flight and look directions, respectively, E[ ] refers
to the mathematic expectation, f denotes the Doppler frequency, and pr( f ) denotes the azimuthal
power spectrum of the SAR raw signal. Pa( f ) is the power spectrum function of an ideal point target
with a 0 dB NRCS, the shape of which is determined by the two-way antenna azimuthal pattern.
Further, f0 is the Doppler centroid, Fr refers to the pulse repeat frequency of the SAR system, N0 is
the intrinsic noise floor of the SAR system, σ

(
x0 − nDx, y0 − nDy

)
is the mean NRCS of the pixels

located between
[

x0 − nDx − L/2 y0 − nDy

]
and

[
x0 − nDx + L/2 y0 − nDy

]
(L is the data

length for calculating the Doppler spectrum), Dx and Dy are the displacements in the flight and look
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directions, respectively, between the position of the azimuthal ambiguity signal and the real target
position. They can be written as:

Dx =
RλFr

2V
, Dy = −λ2 f0FrR

4V2 (4)

where R is the slant range of the target, λ is the radar wavelength, and V is the velocity of the
SAR platform.

In Equation (3), n = 0 corresponds to the signal reflected from the mainlobe of the antenna,
and n 6= 0 corresponds to the contribution from the azimuthal ambiguity effect. In general, among the
azimuthal ambiguity signals, only n = −1 and 1, which correspond to the azimuthal ambiguity from
the first azimuthal antenna sidelobes. Hence, Equation (3) can be simplified as:

E[pr( f , x0, y0)] ≈ σ(x0, y0)Pa( f − f0) + σ
(
x0 + Dx, y0 + Dy

)
Pa( f − f0 + Fr)

+σ
(

x0 − Dx, y0 − Dy
)

Pa( f − f0 − Fr) +
N0

Fr

(5)

Equation (5) indicates the shapes of the averaged power spectrum of the backscattering signal
are determined by the antenna pattern Pa( f ) and N0. To illustrate the shape difference of the power
spectrum between system noise, azimuthal ambiguity, and the backscattering signal more clearly,
a schematic diagram is given in Figure 1.
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Figure 1. Schematic of the Doppler spectrum of synthetic aperture radar (SAR) raw signal and its
various components.

Figure 1 is only a schematic diagram. When the image distribution is relatively uniform, the noise
is the main disturbance. When there is a strong target around it, the azimuthal ambiguity is mainly
from the strong target. From Figure 1, it is clear that the shapes of various components of the
power spectrum of the SAR raw signal, composed of the backscattering signal, azimuthal ambiguity,
and system noise, are very different. In general, the antenna pattern Pa( f ) and system noise N0 can
be acquired from the external and internal calibration of the SAR system. Therefore, it is possible to
eliminate the effect of the azimuthal ambiguity on the NRCS estimation by taking full advantage of
these differences. However, the azimuthal resolution of the SAR raw signal is too coarse for most
applications. To increase the azimuthal resolution, the azimuthal matching filter must be applied on
the SAR raw signal to convert it to a single-look complex image. However, the unweighted azimuthal
matching filter can be used, which only changes the phase of the Doppler spectrum without modifying
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the amplitude of the Doppler spectrum. Thus, the azimuthal power spectrum of the single-look
complex image has the same shape characteristic with that of the SAR raw signal. The relation between
the power spectra of single-look complex images and the SAR raw signal is given as:

ps( f , x0, y0) = pr( f , x0, y0)|H( f )|2 = pr( f , x0, y0) (6)

where H( f ) = exp
(

jπ
λR f 2

2V2

)
is the unweighted azimuthal matching filter, ps( f , x0, y0) and

pr( f , x0, y0) are the azimuthal power spectra of the single-look complex image and the SAR raw
signal, respectively.

The shape patterns shown in Figure 1 are the mathematics expectation of the power spectrum.
The real power spectrum of a small patch of the single-look complex images is in fact a stochastic
process. As the signal of a single-look complex image is a complex Gaussian process, the probability
density function of each sample of the power spectrum can be given by the well-known exponential
distribution that follows:

g(ps( f , x0, y0)) =
1

E[ps( f , x0, y0)]
exp

{
− ps( f , x0, y0)

E[ps( f , x0, y0)]

}
(7)

Equation (5) indicates that the backscattering signal σ(x0, y0) of a certain area contributes to three
spectra: ps( f , x0, y0), ps

(
f , x0 − Dx, y0 − Dy

)
, and ps

(
f , x0 + Dx, y0 + Dy

)
. Hence, the joint condition

probability density function of all the frequency points is:

g
(

ps( f , x0, y0) ps
(

f , x0 − Dx, y0 − Dy
)

ps
(

f , x0 + Dx, y0 + Dy
) ∣∣∣σ(x0, y0)

)
=

m
∏
i=1

1
E[ps( fi, x0, y0)]

exp
{
− ps( fi, x0, y0)

E[ps( fi, x0, y0)]

}
m
∏
i=1

1
E
[
ps
(

fi, x0 − Dx, y0 − Dy
)] exp

{
−

ps
(

fi, x0 − Dx, y0 − Dy
)

E
[
ps
(

fi, x0 − Dx, y0 − Dy
)]}

m
∏
i=1

1
E
[
ps
(

fi, x0 + Dx, y0 + Dy
)] exp

{
−

ps
(

fi, x0 + Dx, y0 + Dy
)

E
[
ps
(

fi, x0 + Dx, y0 + Dy
)]}

(8)

where m is the point number of the discrete Doppler spectrum.
Moreover, the image intensity is also a stochastic process related to the backscattering signal.

In general, if the image pitch is small enough, the probability density function of a multi-look image
intensity of an image pitch can be modeled by a gamma distribution as follows:

gp(I(x0, y0)) =



MM IM−1(x0, y0)[
Ecσ(x0, y0) + Elσ

(
x0 − Dx, y0 − Dy

)
+ ERσ

(
x0 + Dx, y0 + Dy

)]LΓ(M)

exp

(
− MI(x0, y0)

Ecσ(x0, y0) + Elσ
(

x0 − Dx, y0 − Dy
)
+ ERσ

(
x0 + Dx, y0 + Dy

)) I(x0, y0) > 0

0 I(x0, y0) ≤ 0

(9)

where M is the look number, I(x0, y0) is the mean image intensity of a certain area with the
center located at [x0, y0]. Ec, El , and ER are the main lobe, left side lobe, and right side lobe
factors, respectively:

Ec =

Fr/2∫
−Fr/2

Pa( f − f0)d f , El =

Fr/2∫
−Fr/2

Pa( f − f0 − Fr)d f , Er =

Fr/2∫
−Fr/2

Pa( f − f0 + Fr)d f (10)

To estimate higher resolution NRCS from the power spectrum, the single-look complex images
are divided into many small pitches and the Fourier transformation is applied on each image patch.
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After obtaining Pa( f ) and N0, the local NRCS can be further estimated from the Doppler spectrum.
In this step, L is selected according to the desired final resolution, but it cannot be significantly larger.

2.1.2. Methods and Solutions to Estimate the NRCS from the Doppler Spectrum

Suppose that a SAR single-look complex image has been corrected. For example, the range shift
caused by the azimuthal ambiguity has been compensated, and the image has been interpolated k times
in azimuth. Meanwhile, the azimuthal shift caused by the azimuthal ambiguity is X times larger than
emphL. The corrected image is divided into some small patches. The size of every patch is about
Rm × Ra (range multiplied by azimuthal). Choosing a row of azimuthal patches, and supposing that
the scattering coefficient of every patch is σ1, σ2, . . . , σT , respectively, the Doppler spectrum of the i-th
block is fi_m.

Estimating NRCS from Doppler spectrum is a typical Bayesian estimation problem [12,13], which
is expressed as the following equation.

σ̂i = argmax
σ(x0,y0)

[g (p( fi_1), p( fi_2), ..., p( fi_m), p( fi−X_1), p( fi−X_2), ...,

p( fi−X_m), p( fi+X_1), p( fi+X_2), ..., p( fi+X_m)|σi)gp(σ(x0, y0))
] (11)

The estimation equation of single patches can be expressed as:

σ̂(x0, y0) = argmax
σ(x0,y0)

[
g(p( f1), p( f2), ..., p( fm)|σ(x0, y0))gp(σ(x0, y0))

]
(12)

where σ̂(x0, y0) is the estimation of σ(x0, y0), fi (i = 1, 2, ...m) is the discrete frequency point, m is
the point number of the discrete Doppler spectrum, g(p( f1), p( f2), ..., p( fm)|σ(x0, y0)) refers to the
conditional probability density function of the Doppler spectrum, and gp(σ(x0, y0)) refers to the
a-priori probability density of σ(x0, y0).

Bayesian estimation is a global optimal estimation method. It increases the estimation precision at
the NRCS with high a-priori probability density, but decreases the estimation precision at the NRCS
with low a-priori probability density. In general, the a-priori probability density of the NRCS of a SAR
image can be expressed by models such as Gamma, inverse Gaussian, or other distribution models [14].
However, in these commonly used models, the probability densities of low-NRCS are relatively low,
which will lead to a less accurate estimation result for the low-backscattering areas. Hence, to acquire
a higher estimation precision for the low-backscattering areas, the commonly used NRCS distribution
models are not adopted, but it is assumed that the a-priori probability density of the NRCS is uniformly
distributed. Another point which should be considered is that the NRCS should be greater than zero.
Therefore, the a-priori probability density of the NRCS used in this paper is given as:

gp(σ) =

{
1 σ > 0

0 σ ≤ 0
(13)

The Equation (13) is used as the new a-priori probability density in proposed method, then the
NRCS is estimated by the maximum likelihood (ML) estimation method. The advantage of the
proposed method is that it can avoid meaningless estimation results less than or equal to zero.

Because the a-priori probability density given by Equation (13) is a discontinuous function, which
is not convenient for the solving of Equation (11), it is approximated by:

gp(σ) =
1
2
+

1
π

arctan(ασ) (14)

where, in order to match Equation (13), α should be more than 1016 and choose 1020 in this method.
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The estimation of Equation (12) can be obtained by solving the following equation:

∂ ln g
(

pn( f1) pn( f2) · · · pn( fm)
∣∣∣σn

)
∂σn

+
∂ ln g

(
pn−X( f1) pn( f2) · · · pn( fm)

∣∣∣σn

)
∂σn

+
∂ ln g

(
pn+X( f1) pn+X( f2) · · · pn+X( fm)

∣∣∣σn

)
∂σn

+
∂ ln gp(σn|)

∂σn
= 0

(15)

where pn( fi) is the i-th frequency of the n-th block.
Because the signal of a single-look complex image is a complex Gaussian process, the probability

density function of each sample of the Doppler spectrum can be given by the well-known exponential
distribution as follows:

g( p( f )|σ(x0, y0)) =
1

E[p( f )]
exp

{
− p( f )

E[p( f )]

}
(16)

Thus, the joint probability density function of all the frequency points is:

g(p( f1)p( f2) · · · p( fm)|σ(x0, y0)) =
m

∏
i=1

1
E[p( fi)]

exp
{
− p( fi)

E[p( fi)]

}
(17)

Inserting Equations (5), (16) and (17) into Equation (15), and considering that the Doppler
spectrum at different azimuthal locations has different components, thus, the following functions at
different azimuthal locations are derived.

When 2X < n ≤ T − 2X

−
m
∑

i=1

PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

] − m
∑

i=1

PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]
−

m
∑

i=1

PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

] +
m
∑

i=1

pn( fi)PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

]2

+
m
∑

i=1

pn−X( fi)PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]2 +
m
∑

i=1

pn+X( fi)PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0

(18)

where PC( fi) = Pa( fi − f0), PL( fi) = Pa( fi − f0 − Fr), and PR( fi) = Pa( fi − f0 + Fr); n refers to the
pixel location in the flight directions. T is the length of the azimuthal data. X is the number of the
azimuthal ambiguity.

When X < n ≤ 2X:

−
m
∑

i=1

PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

] − m
∑

i=1

PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]
+

m
∑

i=1

pn( fi)PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

]2 +
m
∑

i=1

pn+X( fi)PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0

(19)
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When 0 < n ≤ X:

−
m
∑

i=1

PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

] +
m
∑

i=1

pn+X( fi)PL( fi)[
σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0
(20)

When T − 2X < n ≤ T − X:

−
m
∑

i=1

PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

] − m
∑

i=1

PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]
+

m
∑

i=1

pn( fi)PC( fi)[
σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +

N0

Fr

]2 +
m
∑

i=1

pn−X( fi)PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0

(21)

When T − X < n ≤ T:

−
m
∑

i=1

PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

] +
m
∑

i=1

pn−X( fi)PR( fi)[
σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

= 0
(22)

Combining all the equations above, there are n equations. To solve all the unknown variables,
the Newton iterative method is adopted. The Jacobian matrix of the derived function is in the Appendix A.

To solve σ(x0, y0) from all equations above, σ
(
x0 − Dx, y0 − Dy

)
and σ

(
x0 + Dx, y0 + Dy

)
should

be first known. However, to obtain σ
(

x0 − Dx, y0 − Dy
)

or σ
(
x0 + Dx, y0 + Dy

)
, a known σ(x0, y0) is

also needed. This self-contradiction problem can be addressed by using an iterative strategy. In the
n-th iteration, Equation (17) is written as:

m
∑

i=1

Pa( fi − f0)[
σn(x0, y0)Pa( f − f0) + σn−1

(
x0 + Dx, y0 + Dy

)
Pa( f − f0 + Fr) + σn−1

(
x0 − Dx, y0 − Dy

)
Pa( f − f0 − Fr) +

N0

Fr

]
=

m
∑

i=1

p( fi)Pa( fi − f0)[
σn(x0, y0)Pa( f − f0) + σn−1

(
x0 + Dx, y0 + Dy

)
Pa( f − f0 + Fr) + σn−1

(
x0 − Dx, y0 − Dy

)
Pa( f − f0 − Fr) +

N0

Fr

]2

+
α

[1 + (ασn)][
π

2
+ arctan(ασn)]

(23)

where σn(x0, y0) is the estimation result in the n-th iteration. The initial guess of σ(x0, y0) is given as:

σ0(x0, y0) =



I(x0, y0)− I
(

x0 + Dx, y0 + Dy
)

A− I
(
x0 − Dx, y0 − Dy

)
A

1− 2A
− N0

, I(x0, y0) > I
(
x0 + Dx, y0 + Dy

)
A + I

(
x0 − Dx, y0 − Dy

)
A + (1− 2A)N0

σmin,
, I(x0, y0) ≤ I

(
x0 + Dx, y0 + Dy

)
A + I

(
x0 − Dx, y0 − Dy

)
A + (1− 2A)N0

(24)

where I(x0, y0) is the mean image intensity of the pixels between
[

x0 − L/2 y0

]
and[

x0 + L/2 y0

]
, A is the azimuthal ambiguity factor which is given by:

A =

−3Fr/2∫
−Fr/2

Pa(f)df (25)
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The convergence condition is given by:

∑
y0

∑
x0

|σn(x0, y0)− σn−1(x0, y0)|

Nx Ny
< σmin (26)

where σmin refers to a certain small NRCS value. Nx and Ny are the pixel numbers of the estimated
NRCS image in flight and look directions, respectively.

The aforementioned σ(x0, y0) is a relative backscattering intensity rather than an absolute NRCS.
If we have the K-constant needed in the radiometric calibration, the estimated relative backscattering
intensity σ(x0, y0) can be further converted to the absolute NRCS by replacing I − N0 in Equation (1)
with σ(x0, y0) estimated by this method, expressed as:

σcal(x0, y0) = 10lg[σ(x0, y0)]− K + 10lg

( R
Rre f

)3
sin α

sin αre f

Gre f

g(α)G

 (27)

2.2. Algorithm Flow Chart and Summary

The azimuthal matching filters of the standard imaging algorithm of commercial SAR products are
generally weighted filters, which does not satisfy the requirements of our method. Thus, our algorithm
begins with the SAR raw data product. In the first step, SAR imaging, an unweighted azimuthal
matching filter is used. The byproduct of SAR imaging is the Doppler centroids of each range cell,
which will be used in the second step. The method shifts the Doppler centroids of the single-look
complex images to a zero frequency position. This includes some substeps, such as fast Fourier
transform (FFT), inverse FFT, and spectrum shifting. In the last step, the single-look complex image
is divided into many subimage patches first. The size of the subimage patches is selected based on
the desired resolution. Then, an iteration strategy is used to estimate the signal intensities of each
subimage patch. In each iteration, the signal intensities are estimated on the basis of Equation (23),
which is solved by the Newton-iteration algorithm. Finally, the estimated relative backscattering
intensity σ(x0, y0) is converted to absolute NRCS using Equation (27).

The algorithm used in this method is summarized in Figure 2.
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3. Validation of the Proposed Estimation Method

In this section, three examples will be presented to demonstrate the advantages of this method in
low NRCS estimation and azimuthal ambiguity filtering.

3.1. Example 1: Qualitative Analysis for the Estimation Method in Low NRCS

The first example is an ocean image acquired by ERS-2 (European remote sensing satellite (ERS)
was the European Space Agency's first Earth-observing satellite) on 30 April 2005 in the South China
Sea as a qualitative analysis, which is shown in Figure 3. There are 4912 pixels in the look direction and
28,695 pixels in the flight direction in the single-look complex image used in this example. Frame 1 in
Figure 3 is a subimage for the comparison between a conventional SAR image and the corresponding
estimated NRCS image.Remote Sens. 2017, 9, 219  10 of 21 
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Figure 3. ERS-2 (European remote sensing satellite (ERS) was the European Space Agency's
first Earth-observing satellite) ocean SAR image of South China Sea collected on 30 April 2005,
at 02:28 UTC. Frame 1 is a subimage for the comparison between conventional SAR image and
the corresponding estimated NRCS image.

The first step is estimating the Doppler centroid f 0 for each range cell [11,15–19], and then shifting
the Doppler spectrum centroid of the single-look complex image to zero. Note that ocean currents can
lead to an additional local shift of the Doppler centroid [20–22]. However, the Doppler shift resulting
from the ocean current is generally less than 5% of the PRF, which can be neglected in the method
proposed in this paper. Examples of unshifted and shifted Doppler spectra are shown in Figure 4.

Remote Sens. 2017, 9, 219  10 of 21 

 

 
Figure 3. ERS-2 (European remote sensing satellite (ERS) was the European Space Agency's first 
Earth-observing satellite) ocean SAR image of South China Sea collected on 30 April 2005, at 02:28 
UTC. Frame 1 is a subimage for the comparison between conventional SAR image and the 
corresponding estimated NRCS image. 

The first step is estimating the Doppler centroid f0 for each range cell [11,15–19], and then shifting 
the Doppler spectrum centroid of the single-look complex image to zero. Note that ocean currents 
can lead to an additional local shift of the Doppler centroid [20–22]. However, the Doppler shift 
resulting from the ocean current is generally less than 5% of the PRF, which can be neglected in the method 
proposed in this paper. Examples of unshifted and shifted Doppler spectra are shown in Figure 4. 

 
Figure 4. Unshifted and shifted Doppler spectra. 

The second step is calculating Doppler spectra from the single-look complex image. In this 
example, each Doppler spectrum is a 128-point discrete spectrum that is averaged by 224 times in the 
flight direction and 10 times in the look direction. A total of 491 Doppler spectra from the entire SAR 
image are obtained. The azimuthal length used for calculating one Doppler spectrum is about 121 km 
(i.e., L = 121 km). 

Frame 1 in Figure 3 is chosen to compare the conventional SAR image with the corresponding 
estimated NRCS image. The result is shown in Figure 5. The pixel size of the single-look complex 
image is about 21 m (range direction) × 4.2 m (flight direction). Figure 5a is a multi-look SAR image, 
in which each pixel is averaged by 80 adjacent pixels of the single-look complex image (4 pixels in 
the look direction × 20 pixels in the flight direction). Figure 5b is the estimated NRCS image, in which 

-1000 -500 0 500 1000
1

2

3

4

5

6
x 1020

Doppler frequency (Hz)

D
op

pl
er

 s
pe

ct
ru

m

 

 
unshifted Doppler spectrum
shifted Doppler spectrum

Figure 4. Unshifted and shifted Doppler spectra.
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The second step is calculating Doppler spectra from the single-look complex image. In this
example, each Doppler spectrum is a 128-point discrete spectrum that is averaged by 224 times in the
flight direction and 10 times in the look direction. A total of 491 Doppler spectra from the entire SAR
image are obtained. The azimuthal length used for calculating one Doppler spectrum is about 121 km
(i.e., L = 121 km).

Frame 1 in Figure 3 is chosen to compare the conventional SAR image with the corresponding
estimated NRCS image. The result is shown in Figure 5. The pixel size of the single-look complex
image is about 21 m (range direction) × 4.2 m (flight direction). Figure 5a is a multi-look SAR image,
in which each pixel is averaged by 80 adjacent pixels of the single-look complex image (4 pixels in the
look direction× 20 pixels in the flight direction). Figure 5b is the estimated NRCS image, in which each
pixel is estimated from 80 pixels of the single-look complex image (in each estimation, the Doppler
spectrum is calculated from 20 pixels in the flight direction and averaged by 4 times in the look
direction). The pixel sizes of both images in Figure 5 are about 84 m × 84 m. The image intensities of
both images are shown by logarithmic grayscaling to display clear texture features of the dark area.
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Figure 5. Subimages of Frame 1 in Figure 3, (a) conventional SAR image; (b) estimated normalized
radar cross-section (NRCS) image.

The comparison of Figure 5a,b demonstrates that Figure 5b presents the features of the dark area
more clearly. To compare these two images qualitatively, the image intensity profiles along the white
lines are depicted in Figure 6.
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Figure 6. Image intensities along the white lines in Figure 5a (red dotted line) and Figure 5b (blue
solid line).
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In Figure 6, the signal intensity is normalized by the mean intensity of the entire image. The image
feature near the white line is an oceanic internal wave. Four peaks of the internal wave are marked
by dashed lines, and three troughs are marked by bold dashed lines. At the positions of the peaks,
the estimated NRCS intensity is very close to that of conventional SAR image intensity because the
SNR of the peaks is sufficiently high. As a comparison, at the positions of the troughs, the SAR signal
is buried by the noise floor (about −10 dB after normalization), making it hard to judge the exact
trough position. In contrast, the estimated NRCS can remove the effect of the noise floor to a large
extent, and the trough positions of the estimated NRCS are near the midpoint of the two adjacent
peaks, which indirectly validates the correctness of the proposed method.

3.2. Example 2: Quantitative Analysis for the Estimation Method in Low NRCS

This example is the atmospheric gravity waves’ image acquired by ERS-2 on 11 March 2006 in
the East China Sea as a quantitative analysis, which is shown in Figure 7. There are 4912 pixels in
the look direction and 28,695 pixels in the flight direction in the single-look complex image used in
this example.
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Figure 7. ERS-2 Ocean SAR image of the East China Sea collected on 11 March 2006, at 02:24 UTC.
The four white data lines a, b, c, and d are the profiles for comparison between the proposed method,
the SAR raw image intensity minus N0 and the optimal parameter estimation method of internal
waves [23].

In this example, the method of optimal parameter estimation of internal waves in SAR images [23]
and the proposed method in this paper will be used to deal with the internal wave in Figure 7.

The optimal parameter estimation is the latest method for estimating the parameter of internal
solitary waves. In this article, it is referred to as optimal parameter estimation. In order to verify
the feasibility of this method, we found a section at the other location of atmospheric gravity waves
(the red solid line region in Figure 7. The estimation result is shown in Figure 8, showing that the
optimum estimators are very close to the Cramér–Rao bound (CRB). Therefore, the estimation method
in the literature [23] is considered to fit the atmospheric gravity waves’ profile in Figure 7.

We selected four profiles from the atmospheric gravity waves in Figure 7, and at the position
of the trough, the SAR signal is buried by the noise floor at positions a and b are more obvious than
positions c and d. The estimation method in the literature [23], the proposed method and the SAR
Raw Image are used in the four profiles for comparison, The results of the comparison are shown
in Figure 9.
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Remote Sens. 2017, 9, 219  13 of 21 

 

We selected four profiles from the atmospheric gravity waves in Figure 7, and at the position of 
the trough, the SAR signal is buried by the noise floor at positions a and b are more obvious than 
positions c and d. The estimation method in the literature [23], the proposed method and the SAR Raw 
Image are used in the four profiles for comparison, The results of the comparison are shown in Figure 9. 

(a) (b)

(c) (d)

Figure 9. Image intensities along the four white lines in Figure 7. (a) the profile a in Figure 7; (b) the 
profile b in Figure 7; (c) the profile c in Figure 7; (d) the profile d in Figure 7; The green dashed line is 
the SAR raw image intensity minus N0; the black solid line is the proposed method in this paper; the 
red dot dash line is the optimal parameter estimation method of internal waves. 

In Figure 9, the signal intensity is normalized by the mean intensity of the entire image. The 
image feature near the white lines represent atmospheric gravity waves. At the position of the peak, 
the estimated NRCS intensity of all the profiles are very close to that of conventional SAR image 
intensity due to sufficiently high SNR of the peak. As a comparison, at the position of the trough, the 
SAR signal is buried by the noise floor (about −10 dB after normalization at positions a and b, and 
about −5 dB to −8 dB at positions c and d), making it hard to judge the exact trough position. In 
contrast, the estimated NRCS can remove the effect of the noise floor, which can reach −22 dB after 
normalization at positions a and b, and about −16 dB to −18 dB at positions of c and d. Position a is 
selected as an example through the method of optimal Parameter Estimation of Internal Waves in 
SAR images from the literature [23] to estimate the energy intensity value in the wave trough position, 
which is around −22 dB. From Figure 9, the estimation curve of signal intensity by the proposed 
method in this paper is very close to the method of optimal Parameter Estimation of Internal Waves 
in SAR images, which directly validates the accuracy of the proposed method. 
  

0 1200 2400
-35

-30

-25

-20

-15

-10

-5

0

range (m)

no
rm

al
iz

ed
 im

ag
e 

in
te

ns
ity

 (d
B

)

 

 

Proposed method

SAR Raw image minus N0

Optimal parameter estimation of  internal wav es

0 1200 2400
-35

-30

-25

-20

-15

-10

-5

0

range (m)

no
rm

al
iz

ed
 im

ag
e 

in
te

ns
ity

 (d
B

)

 

 

Proposed method

SAR Raw image minus N0

Optimal parameter estimation of  internal wav es

0 1200 2400
-35

-30

-25

-20

-15

-10

-5

0

range (m)

no
rm

al
iz

ed
 im

ag
e 

in
te

ns
ity

 (d
B

)

 

 

Proposed method

SAR Raw image minus N0

Optimal parameter estimation of  internal wav es

0 1200 2400
-35

-30

-25

-20

-15

-10

-5

0

range (m)

no
rm

al
iz

ed
 im

ag
e 

in
te

ns
ity

 (d
B

)

 

 

Proposed method

SAR Raw image minus N0

Optimal parameter estimation of  internal wav es

Figure 9. Image intensities along the four white lines in Figure 7. (a) the profile a in Figure 7; (b) the
profile b in Figure 7; (c) the profile c in Figure 7; (d) the profile d in Figure 7; The green dashed line
is the SAR raw image intensity minus N0; the black solid line is the proposed method in this paper;
the red dot dash line is the optimal parameter estimation method of internal waves.
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In Figure 9, the signal intensity is normalized by the mean intensity of the entire image. The image
feature near the white lines represent atmospheric gravity waves. At the position of the peak,
the estimated NRCS intensity of all the profiles are very close to that of conventional SAR image
intensity due to sufficiently high SNR of the peak. As a comparison, at the position of the trough,
the SAR signal is buried by the noise floor (about −10 dB after normalization at positions a and b,
and about −5 dB to −8 dB at positions c and d), making it hard to judge the exact trough position.
In contrast, the estimated NRCS can remove the effect of the noise floor, which can reach −22 dB after
normalization at positions a and b, and about −16 dB to −18 dB at positions of c and d. Position a
is selected as an example through the method of optimal Parameter Estimation of Internal Waves in
SAR images from the literature [23] to estimate the energy intensity value in the wave trough position,
which is around −22 dB. From Figure 9, the estimation curve of signal intensity by the proposed
method in this paper is very close to the method of optimal Parameter Estimation of Internal Waves in
SAR images, which directly validates the accuracy of the proposed method.

3.3. Example 3: Validation of the Azimuthal Ambiguity Analysis

The third example is a RADARSAT-1 (RADARSAT is a Canadian remote sensing Earth observation
satellite program overseen by the Canadian Space Agency) image of Vancouver, which is shown in
Figure 10. The SAR raw data of this example was obtained from the accompanying CD of literature [11].
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Figure 10. RADARSAT-1 (RADARSAT is a Canadian remote sensing Earth observation satellite
program overseen by the Canadian Space Agency) SAR image of Vancouver collected on 16 June 2002,
at 02:24 UTC.

There are 7940 pixels in the look direction and 19,425 pixels in the flight direction in the single-look
complex image of this example. As in the first example, each Doppler spectrum in this example is also
a 128-point discrete spectrum, which is averaged by 151 times in the flight direction and 30 times in the
look direction. A total of 264 Doppler spectra can be obtained from the entire single-look complex image.
The azimuthal length used for calculating one Doppler spectrum is about 109 km (i.e., L = 109 km).

Using Frame 2 in Figure 10 as an example, the conventional SAR image and the corresponding
estimated NRCS image are shown in Figure 11. The pixel size of the single-look complex image is
about 8 m (look direction) × 5.6 m (flight direction). Figure 11a is a multi-look SAR image, in which
each pixel is averaged by 192 adjacent pixels of the single-look complex image (12 pixels in the look
direction × 16 pixels in the flight direction). Figure 11b is an estimated NRCS image, in which each
pixel is estimated from 192 pixels of the single-look complex image (in each estimation, the Doppler
spectrum is calculated from 16 pixels in the flight direction and averaged by 12 times in the look
direction). The pixel sizes of both images are about 96 m × 90 m.
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The white frame in Figure 11a is contaminated by the azimuthal ambiguity signal from the strong
land targets to the right. As a comparison, the azimuthal ambiguity signal is filtered quite clearly in
the same position in Figure 11b.

Points A and B in Figure 11a are selected to illuminate the difference in the Doppler spectrum
between the signals contaminated and uncontaminated by the azimuthal ambiguity. The Doppler
spectra of points A and B are shown in Figure 12.
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Figure 12. (a) Doppler spectrum of point A in Figure 11a; (b) Doppler spectrum of point B in Figure 11b;
Blue solid and red dashed lines are the measured and modeled Doppler spectra, respectively.

The centroids of the Doppler spectra depicted in Figure 12a,b have been shifted to zero. The blue
solid lines are the measured Doppler spectra that is calculated directly from the single-look complex
image, and the red dashed lines are the Doppler spectra modeled by Equation (5), in which σ(x0, y0),
σ
(

x0 + Dx, y0 + Dy
)
, σ
(

x0 − Dx, y0 − Dy
)
, Pa( f ), and N0 are all known from the raw data. Point A is

an uncontaminated target, so its Doppler spectrum satisfies a typical Gaussian function quite well
(Figure 12a). The accordance between the measured and modeled spectra validates the accuracy
of the proposed method. As a comparison, point B is a target seriously contaminated by the
azimuthal ambiguity effect. The low-frequency and high-frequency parts of the Doppler spectrum
of B (Figure 12b) are very high; they correspond to the ambiguity signals from the right and left sides
of point B, respectively. The spectrum at low frequency is especially high. From Figure 11a, it is
known that the left and right sides of point B are all high-backscattering land targets, whereas point B
is a water area with a very low NRCS, and the target on the right is much stronger than on the left.
The NRCS distribution of Figure 11a agrees with the analysis of the Doppler spectrum of point B
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and the modeled spectrum satisfies the measured spectrum quite well, which further validates the
proposed method.

4. Discussion

As SAR imaging is more and more widely used, the radar echo is analyzed in the proposed
method, and the relative value of RCS is extracted from the Doppler spectrum, the estimated relative
backscattering intensity is converted to absolute NRCS using Equation (27). The comparison between
the proposed method and the traditional method is described in detail in Section 3. Three examples
show the feasibility and superiority of the proposed method. In the following, the estimation accuracy
of the proposed method and the traditional method is analyzed by simulation.

Because the normalized image intensity differs from the NRCS only with a constant offset,
the proposed method uses the normalized image intensity to be equivalent to NRCS. In this paper,
in order to simplify the calculation without the loss of equivalence, the normalized image intensity is
adopted in Figures 6, 8 and 9.

The Comparative Simulation Analysis of Estimation Accuracy for Different NRCS Estimation Methods

The simulations were performed under different signal-to-noise ratios (SNR) and azimuthal
ambiguity conditions. The parameters of the simulations are given in Table 2, which correspond to
low, intermediate, and high azimuthal ambiguity, respectively.

Table 2. Simulation parameters.

Simulation 1 Simulation 2 Simulation 3

σ(x0, y0)/N0 0.01–0.5 0.01–0.5 0.01–0.5
σ
(

x0 − Dx, y0 − Dy
)
/N0, σ

(
x0 + Dx, y0 + Dy

)
/N0 2 5 10

Simulation repeat number 400 400 400
Pixel number used for calculating one Doppler spectrum 80 80 80

Take the estimation precision of ML estimation into consideration; according to mathematical
statistics theory, the ML estimation can reach the Cramer–Rao bound [12,13]. That is the root-mean-
square (rms) of the estimation which can be expressed as:

rms[σ̂n] =
1√√√√√−E

∂2 ln g
(

pn−X pn pn+X In

∣∣∣σn

)
∂σ2

n


=

1√√√√√√√√√√√√

m
∑

i=1

P2
C( fi)[

σn−XPL( fi) + σnPC( fi) + σn+XPR( fi) +
N0

Fr

]2 +
m
∑

i=1

P2
R( fi)[

σn−2XPL( fi) + σn−XPC( fi) + σnPR( fi) +
N0

Fr

]2

+
m
∑

i=1

P2
L( fi)[

σnPL( fi) + σn+XPC( fi) + σn+2XPR( fi) +
N0

Fr

]2 +
N
σ2

n

(28)

where σ̂(x0, y0) is the ML estimation of σ(x0, y0), and rms[•] refers to the root–mean–square.
The rms of the modified method is shown in Figure 13. For comparison, the Cramer–Rao bound

of ML estimation and the simple estimation of I − N0, which is used in Equation (1), are also depicted
in Figure 13.
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Figure 13. The comparison of three kinds of estimation precision, rms of estimation error of modified
estimation method (black solid line), I − N0 (green dashed line), and Cramer–Rao bound of maximum
likelihood (ML) estimation (red dotted line), (a) for simulation 1; (b) for simulation 2; and (c) for
simulation 3.
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In Figure 13, the SNR (x-axis) refers to σ(x0, y0)/N0, and the estimation error (y-axis) is normalized
by N0. A comparison of Figure 13a, Figure 13b, and Figure 13c clearly shows that the estimation error
of the simple estimation I − N0 increases significantly with increasing azimuthal ambiguity, but the
results from the proposed method of estimation can almost maintain the same estimation precision
under various azimuthal ambiguity conditions. Even under low azimuthal ambiguity conditions
(Figure 13a), the estimation error of the proposed estimation method is also significantly less than
that of simple estimation I − N0. In Figure 13a–c, it indicates that the rms of the estimation error
of the proposed estimation method is very close to the Cramer–Rao bound with the increase in
SNR. This result validates that the proposed estimation method can significantly increase estimation
precision under a low SNR or low-scattering area in SAR images.

Take the low SNR condition into account, supposing σ(x0, y0) << N0; neglecting the contribution
from the azimuthal ambiguity effect, the rms of the estimation error of the proposed estimation method
can be obtained as:

rms[σ̂(x0, y0)] ≈ 0.8
N0

Fr

√
m
∑

i=1
P2

a ( fi − f0)

(29)

The Doppler power spectrum can often be obtained by incoherently averaging the spectra of
several uncorrelated signals. The estimation precision derived so far is also applicable in the case when
the number m is replaced by the overall number of pixels contributing to the estimation.

For example, assume that the NESZ of a spaceborne SAR is −25 dB, the single-look pixel size is
8 m (look direction) × 5 m (flight direction), and the number of pixels contributing to one estimation
is 240 (in each estimation, the Doppler spectrum is calculated from 20 pixels in the flight direction
and incoherently averaged by 12 times in the look direction); an NRCS estimation precision of about
−38 dB could be acquired in the low-backscattering area at a resolution of 96 m × 100 m.

5. Conclusions

The image intensities of SAR images of low-backscattering areas are often affected by the system
noise and azimuthal ambiguity effect. In this paper, a method is proposed for estimating the NRCS of
low-backscattering areas. The method can eliminate much of the effect of system noise and azimuthal
ambiguity. This method is based on the single-look complex image, and the azimuthal matching filter
in the imaging algorithm must be an unweighted filter. The parameters needed for this method can
all be estimated from the single-look complex image itself, which makes the method easy to apply.
An analysis on the estimation precision demonstrates that, for a typical spaceborne SAR with a NESZ of
−25 dB and a single-look pixel size of 8 m × 5 m, the NRCS estimation precision of low-backscattering
areas can reach −38 dB at a resolution of 96 m × 100 m.

Three examples are given for validation in Section 3. The first example is a SAR image that is
an oceanic internal wave. In the conventional SAR image, the troughs of the internal wave signal
intensity are buried by the noise floor, making it hard to judge the exact trough position. In contrast,
the NRCS estimated by the proposed method can recover the texture features of the low-scattering
area much better, and the recovered troughs of the internal wave are located near the midpoint of the
adjacent peaks. The result is a qualitative analysis for the estimation method in low NRCS. In addition,
the example in Section 3.2 is atmospheric gravity waves. The estimation values of signal intensity by
the proposed method in this paper are very close to the theoretical value of the signal intensity in the
low-scattering area of the original image. The result is a quantitative analysis for the estimation method
in low NRCS. The third example is a SAR image of a land-water junction, in which the water area
is seriously affected by the azimuthal ambiguity signals from high-backscattering land targets. As a
comparison, the azimuthal ambiguity signals are filtered out quite clearly in the NRCS image estimated
by the proposed method. The Doppler spectra of two points were analyzed, one contaminated and one
uncontaminated by the azimuthal ambiguity signal. Analysis proves that the Doppler spectra modeled
by the proposed method can satisfy the actual Doppler spectra calculated from the single-look complex
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image quite well. These three examples both indirectly and directly validate the feasibility of the
proposed method in this paper.

This proposed method can be applied to SAR image processing in low-scattering areas in the
ocean, such as internal waves, oil spills, low wind speed zones, upwelling, and so on. Conversely,
the proposed method can be applied to the data processing of the SAR satellite system with lower
NESZ, which can reduce the cost of satellites and improve the bandwidth, resolution, and other
indicators of the SAR system.
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Appendix A. The Jacobian Matrix of the Derived Function

When 2X < n ≤ T − 2X

J(n, n− 2X) =
m
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When X < n ≤ 2X
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When T − X < n ≤ T
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