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Abstract: Rapid urbanization and economic development inevitably lead to light pollution, which
has become a universal environmental issue. In order to reveal the spatiotemporal patterns and
evolvement rules of light pollution in China, images from 1992 to 2012 were selected from the Defense
Meteorological Satellite Program Operational Linescan System (DMSP/OLS) and systematically
corrected to ensure consistency. Furthermore, we employed a linear regression trend method
and nighttime light index method to demonstrate China’s light pollution characteristics across
national, regional, and provincial scales, respectively. We found that: (1) China’s light pollution
expanded significantly in provincial capital cities over the past 21 years and hot-spots of light
pollution were located in the eastern coastal region. The Yangtze River Delta, Pearl River Delta, and
Beijing–Tianjin–Hebei regions have formed light pollution stretch areas; (2) China’s light pollution
was mainly focused in areas of north China (NC) and east China (EC), which, together, accounted
for over 50% of the light pollution for the whole country. The fastest growth of light pollution was
observed in northwest China (NWC), followed by southwest China (SWC). The growth rates of east
China (EC), central China (CC), and northeast China (NEC) were stable, while those of north China
(NC) and south China (SC) declined; (3) Light pollution at the provincial scale was mainly located in
the Shandong, Guangdong, and Hebei provinces, whereas the fastest growth of light pollution was
in Tibet and Hainan. However, light pollution levels in the developed provinces (Hong Kong, Macao,
Shanghai, and Tianjin) were higher than those of the undeveloped provinces. Similarly, the light
pollution heterogeneities of Taiwan, Beijing, and Shanghai were higher than those of undeveloped
western provinces.
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1. Introduction

Light pollution was first identified by astronomers in the 1930s [1]. Nowadays, it has become a
widely discussed environmental issue following water pollution, air pollution, and noise pollution [2].
In 2001, 19% of the global land area suffered from light pollution, which is higher than the threshold
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value, and 21% of the world’s population are living in light-polluted environments [3]. At present,
with the rapid urbanization and economic development around the world, light pollution is expanding
at an unprecedented speed and to an unprecedented extent [2,4]. As the popularity of night lighting
facilities is increasing, humans gradually expand the scope of their activities at night. However,
studies have found that light pollution can also directly or indirectly affect animals [5–7] and ecological
environments [8–11], human health [12–14], and astronomical observation [1,15]. Since the Chinese
government implemented reform and the opening-up policy, unprecedented urbanization has taken
place across the country, resulting in huge power consumption and a large number of cities with lights
turned on all night. These places are referred to as ‘sleepless cities’. Almost every large city has been
threatened by light pollution due to the lack of policy guidance and regulations. However, the issue of
China’s light pollution has not yet been widely documented. Therefore, it is important to understand
the evolution of rules regarding China’s light pollution, in order to protect the ecological environment
and to improve the quality of life for urban residents.

Traditional field surveys are costly, inefficient and difficult to compare with historical data.
However, remote sensing using earth observation technology has the advantages of large scope, high
frequency, and long time series. In particular, remote sensing technology focused on nighttime light can
quickly generate regional and global satellite images of artificial light [16]. Historically, nighttime light
remote sensing has been widely used in the fields of social and economic parameter estimation [17–26],
urbanization monitoring [27–32], important event evaluation [33–35], and environment and health
effects [36–38]. Light pollution is affected by many factors, including population and economic growth,
nighttime light intensity, and atmospheric absorption [39,40]. Since nighttime light intensity can be
directly observed by nighttime light remote sensing technology, a variety of studies have documented
light pollution issues at regional and national scales by using nighttime light intensity as a proxy
index [2–4,7,9,39–43]. Nighttime light imagery from satellite observation gives information on light
pollution which represents not only the artificial light intensity, but also the other influencing factors,
such as human activity intensity and the level of social and economic activity.

The Defense Meteorological Satellite Program Operational Linescan System (DMSL/OLS)
provides the longest time series of nighttime light images in the world. Its use to map the world
atlas of brightness in the artificial night sky was proven as early as in 2001 [3]. The result of that
mapping showed that about two-thirds of the world’s population lives in light-polluted areas, with
the percentage of population in developed countries rising to 99% [3]. Time-series DMSP/OLS
nighttime light images and Geographic Information System (GIS) technologies were used to analyze
light pollution and the results showed that suburban areas were experiencing serious light pollution
during the rapid process of urbanization [39]. Nighttime light imagery was also applied to analyze
light pollution in Pakistan, and the research demonstrated that the area of light pollution rapidly
increased and the suburban areas were experiencing direct and indirect light pollution of artificial
lights [40]. Bennie et al. proposed a novel method to analyze the trends of light pollution across the
European continent and found that most countries with high economic levels were facing increasing
light pollution; however, in other countries, including Hungary, Slovakia, Moldova, and Ukraine,
the brightness of the light pollution was apparently decreasing [2]. Meanwhile, Han et al. employed
the same method to investigate the trends of China’s light pollution from 1992 to 2012. The research
suggested that light pollution growth was mainly located in the eastern coastal cities, while a falling
trend was observed in the industrial and mineral cities [41]. In order to investigate the relationship
between light pollution and land use type, Kuechly et al. selected Berlin as the study area and
confirmed that roads were the main source of light pollution at night [42]. Furthermore, ground
investigation from different directions and high-spatial-resolution space-borne measurements were
combined to understand the three dimensions of light pollution [43]. In terms of the further impact of
light pollution, Kyba and Hoelker confirmed the effect of night-sky scattered light on ecosystems and
biodiversity [44]. In addition, Bennie et al. evaluated global ecosystem types exposed to artificial light
with the combined DMSP/OLS images and land cover products. They found that the Mediterranean
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climate ecosystem was most affected and that the global ecosystem has been localized and fragmented
by artificial light [45].

In previous studies, light pollution has been explored in many regions, including Europe and
China. However, these studies focused on light pollution trends using the mean value of different time
series [41] and there is still a lack of a quantitative indicator methodology by which to measure light
pollution. Although an intercalibration method has been used to process time series nighttime light
imagery [2,41], the inter-annual and time series corrections have not been considered.

In this study, a systematic nighttime light calibration method was employed to improve
the consistency and comparability of DMSP/OLS nighttime light series imagery, and then four
nighttime light indices and linear regression methods were developed to analyze light pollution at
national, regional, and provincial scales, respectively. These methods can provide a reference for light
pollution in other regions, giving a research conclusion which can assist the government in objectively
understanding China’s light pollution process and, therefore, in making decisions on light pollution
environmental issues.

2. Materials and Methods

2.1. Study Area

China is located in East Asia, situated on the Pacific West Coast, with a land area of about
9.6 million square kilometers. Since the economic reform in 1978, China’s economy has sustained
growth for almost 40 years, becoming the world’s second largest economy in 2014 [46]. China also
has the largest population, reaching over 1.3 billion in 2010. More than half (54.7%) of the
Chinese population lived in the urban areas by the end of 2014, which has increased by 26%
since 1990. Meanwhile, with the population shifting from rural to urban areas, cities have experienced
unprecedented development [47]. Though China has made huge achievements over the past years,
it faces serious and numerous environmental pollution issues. Unlike other pollution types, light
pollution is seldom of high research interest in China; thus, it is necessary to further explore the
spatiotemporal pattern of China’s light pollution. According to the natural and socio-economic
situation at the provincial scale, the study area was divided into seven regions (Figure 1).
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2.2. Nighttime Light Imagery

Long-term time-series DMSP/OLS nighttime light satellite images from 1992 to 2012 were selected
as the experimental data to study light pollution in China. DMSP/OLS began in the 1970s and its
original purpose was to obtain the night cloud distribution information [48]. However, scientists
found that DMSP/OLS could also capture the nighttime light from urban areas under cloudless
conditions. The DMSP/OLS images in this study are version 4 and contain six sensors (Figure 2) which
were downloaded from the National Geophysical Data Center (NGDC) website of National Oceanic
and Atmospheric Administration (NOAA) [49]. The annual product of nighttime light contains
the frequency of the cloud-free product, average light product, and stable nighttime light product,
respectively. We selected 33 periods of global stable nighttime light product images as the study dataset,
as it removed background noises, like gas flaring, wildlife fire, and aurora. Therefore, the brightness in
imagery represents only the residential nighttime lights. This imagery consists of 30 arc-second grids,
spanning from −180 to 180 degrees longitude and from −65 to 75 degrees latitude. The data pixel
digital number (DN) ranges from 0–63 [50,51].
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Figure 2. DMSP/OLS nighttime light time-series satellite.

2.3. Nighttime Light Imagery Processing

Since DMSP/OLS nighttime light images were acquired by six satellites (F10, F12, F14, F15 and
F16) spanning 21 years without on-board calibration, it is necessary to correct nighttime light imagery
to improve data comparability and accuracy [48]. In order to obtain a research dataset for studying,
we have created a workflow to process the time-series nighttime light imageries (Figure 3), which
includes three steps; namely, model establishment, image correction, and image post-processing.
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2.3.1. Model Establishment

As six satellites without on-board calibration were used to generate the time series of nighttime
light imagery from 1992 to 2012, these images are inconsistent in digital number (DN) values [48] and
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cannot be applied to perform comparative analysis directly [52,53]. Thus, development of a model is
required to improve the image comparability. Elvidge et al. proposed an invariant area method which
combines reference images to establish a long time series nighttime light model [54]. The invariant
area is directly related to the performance of the model. According to this assumption, the invariant
area has two conditions: (1) the socio-economic development in invariant area is a minimum, which
ensures nighttime light levels show very little change; and (2) the invariant area should cover all of the
gray levels of nighttime light images to ensure model universality. In Elvidge’s method [54], Sicily in
Italy was selected as an invariant area and scattergrams of the digital number values for each satellite
versus F121999 were examined. Furthermore, a second order polynomial regression model was drawn
from the scattergram, as follows:

DNref = C0 + C1 × DNt + C2 × DNt
2

where DNref represents the pixel value of the reference image, DNt represents the pixel value of image
in year t and C0, C1 and C2 represents the coefficients of regression model.

Through this model, C0, C1, and C2 can be empirically derived and R2 expresses the fitting degree
of regression model. In this study, we directly employed coefficients of the Elvidge et al. [54] method
and these coefficients and R2 are shown in Table 1.

Table 1. Inter-calibration coefficients of DMSP/OLS.

Satellite Year C0 C1 C2 R2

F10 1992 –2.0570 1.5903 –0.0090 0.9075
F10 1993 –1.0582 1.5983 –0.0093 0.9360
F10 1994 –0.3458 1.4864 –0.0079 0.9243
F12 1994 –0.6890 1.1770 –0.0025 0.9071
F12 1995 –0.0515 1.2293 –0.0038 0.9178
F12 1996 –0.0959 1.2727 –0.0040 0.9319
F12 1997 –0.3321 1.1782 –0.0026 0.9245
F12 1998 –0.0608 1.0648 –0.0013 0.9536
F12 1999 0.0000 1.0000 0.0000 1.0000
F14 1997 –1.1323 1.7696 –0.0122 0.9101
F14 1998 –0.1917 1.6321 –0.0101 0.9723
F14 1999 –0.1557 1.5055 –0.0078 0.9717
F14 2000 1.0988 1.3155 –0.0053 0.9278
F14 2001 0.1943 1.3219 –0.0051 0.9448
F14 2002 1.0517 1.1905 –0.0036 0.9203
F14 2003 0.7390 1.2416 –0.0040 0.9432
F15 2000 0.1254 1.0452 –0.0010 0.9320
F15 2001 –0.7024 1.1081 –0.0012 0.9593
F15 2002 0.0491 0.9568 0.0010 0.9658
F15 2003 0.2217 1.5122 –0.0080 0.9314
F15 2004 0.5751 1.3335 –0.0051 0.9479
F15 2005 0.6367 1.2838 –0.0041 0.9335
F15 2006 0.8261 1.2790 –0.0041 0.9387
F15 2007 1.3606 1.2974 –0.0045 0.9013
F16 2004 0.2853 1.1955 –0.0034 0.9039
F16 2005 –0.0001 1.4159 –0.0063 0.9390
F16 2006 0.1065 1.1371 –0.0016 0.9199
F16 2007 0.6394 0.9114 0.0014 0.9511
F16 2008 0.5564 0.9931 0.0000 0.9450
F16 2009 0.9492 1.0683 –0.0016 0.8918
F18 2010 2.3430 0.5102 0.0065 0.8462
F18 2011 1.8956 0.7345 0.0030 0.9095
F18 2012 1.8750 0.6203 0.0052 0.9392
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2.3.2. Image Correction

(1) Inter-calibration

According to the inter-calibration coefficients of Table 1, each image in this study was
inter-calibrated by band math using the ENVI 4.8 software and the DN values below 0 were assigned
to 0, while DN above 63 were assigned to 63.

(2) Inter-annual composition

In the same year, two kinds of sensors were used to obtain the nighttime light images, for example,
F12 and F14. In order to make full use of information from multiple sensors, the inter-calibration
images needed to be inter-annual composited [55]. The formula is as follows:

DN(n,t) =

{
0

(DNa
(n,t) + DNb

(n,t))/2
DNa

(n,t) = 0 and DNb
(n,t) = 0

other

t = 1994, 1997, 1998, ...2007

where DNa
(n,t) and DNb

(n,t), respectively, represent the image DN values of sensor a and sensor b at the
pixel n after the inter-calibration in year t, DN(n,t) represent image DN values at the pixel n after the
inter-annual composition in year t.

(3) Inter-annual series correction

Over the past 20 years, most cities in China have experienced continuous expansion. It can be
assumed that DN values in the latter year should be no less than that seen in the previous year in the
same position. Thus, the inter-annual series correction method was employed to calibrate time-series
of nighttime light images [53,56]. The calibration can be divided into the following cases: (1) If the
DN value is 0 in the latter year, it should be 0 in the previous year; (2) when the DN value is above 0,
the DN value in the previous year should be less than that in the latter year; and (3) in other cases,
the image DN value remains the same [56]. Based on this principle, the correction formula is as follows:

DN(n,t) =


0

DN(n,t−1)
DN(n,t)

DN(n,t+1) = 0
DN(n,t+1) > 0 and DN(n,t−1) > DN(n,t)

other

n = 1992, 1993, ..., 2012

where DN(n,t−1), DN(n,t) and DN(n,t+1), respectively, represent the DN value of pixel n after
inter-annual composition in year t − 1, year t, and year t + 1.

2.3.3. Post-Image Processing

The study area image was clipped from the global image according to the 1:250,000 administrative
boundaries of China, and resampled at 1 km resolution. Those images were reprojected to the Albers
equal area conic projection with the 1940 Krassovsky ellipsoid and a dataset was generated for
this research.

2.4. Method

2.4.1. Linear Regression Trend Method

A linear regression trend method can be used to compute the changing trends of each pixel during
the study period [57,58]. It is possible to comprehensively reveal the spatial temporal pattern through
the changes in the trends characteristic of each pixel, [59,60]. With the advantage of eliminating DN
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outliers by fitting time-series DN values, this method can objectively reveal temporal change trends of
light pollution. The calculation formula is as follows:

slope =

t ×
t

∑
i=1

i × DNi −
t

∑
i=1

i
t

∑
i=1

DNi

t ×
t

∑
i=1

i2 −
(

t
∑

i=1
i
)2

where DNi represents the DN value in year i, t represents time span (t = 21 years in this study).
If slope > 0, it represents an increase of light pollution and the higher the slope value, the more
significant the increase; if slope < 0, it represents a decline of light pollution and the lower the slope
value, the more significant the decline; otherwise, slope = 0 means the light pollution is stable.

2.4.2. Construction of the Nighttime Light Index

In order to analyze the spatial and temporal characteristics of light pollution, four nighttime
light indices were constructed, including total night light (TNL), night light mean (NTM), night light
standard deviation (NTSD), and the proportion of total night light (PTNL). TNL, NTM, and NTSD
index values were extracted using ArcGIS 10. The formulas and descriptions of the indices value are
shown in Table 2.

Table 2. Nighttime light indices.

Indicator Name Expression Description

Total night light (TNL) TNL =
63
∑

i=1
Ci × DNi

Refers to the total amount level of light
pollution in the statistical area. DNi is the
ith gray level, Ci is the number of pixels that
correspond to the gray level.

Night light mean (NTM) NTM = (
63
∑

i=1
Ci × DNi)/

63
∑

i=1
Ci

Refers to the average level of light pollution
in the statistical area. DNi is the ith gray
level, Ci is the number of pixels
corresponding to the gray level.

Night light standard
deviation (NTSD) NTSD =

√
1
N

N
∑

i=1
(DNi − NTM)2

Refers to the differentiation level of light
pollution in the statistical area. DNi is the
ith gray level, NTM is the night light mean.

Proportion of total night
light (PTNL) PTNL = TNL/TNLall

Refers to the proportion of TNL in each
region to that of the whole country. TNL is
the total night light in the region and TNLall
is the total night light in the whole region.

3. Results

3.1. Comparison of Night Light Image Correction

In order to evaluate the effect of nighttime light image correction, the TNL of China was extracted
before and after correction (Figure 4). The TNLs of different sensors among original images (Figure 4a)
show significant differences in the same year. However, after the inter-calibration (Figure 4b), the TNL
is more consistent in different years, and the result shows that the sensor error was effectively
eliminated. Furthermore, the inter-annual composition method was employed to correct the images
and Figure 4c shows that the annual fluctuation of TNL is an increasing trend during the study
year. Consequently, the inter-annual series correction method was used to correct the images and
the correction result is shown in Figure 4d. After the inter-annual series correction was applied,
the increasing trend of TNL was more stable. This indicates that the image correction has a good
performance and it can, therefore, be used to analyze the spatial and temporal characteristics of night
light pollution in China.
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3.2. Night Light Pollution Variation Characteristics at the National Scale

A linear regression trend method was employed to reveal the variation characteristics of light
pollution in China from 1992 to 2012, as shown in Figure 5. The figure shows that light pollution
experienced a sharply increasing trend at the national level. Light-polluted areas were mainly located
in municipalities and provincial capitals, whereas local areas showed a declining trend, for example
in Shanxi, Yunnan, Inner Mongolia, and Xinjiang Province. In addition, in most areas of China, light
pollution showed a stable trend. This stable trend contains two cases: urban area stable light pollution
and rural area stable light pollution. The former case is mainly due to light pollution in urban core
areas being high in 1992 and it remained stably sustained from 1992 to 2012; thus, the change trend of
light pollution was stable. The latter case is mainly because there is almost no human activity at night
in the rural areas; thus, these areas sustained no light pollution during the past 21 years. Generally,
light pollution in China is located in three major urban agglomerations (the Beijing–Tianjin–Hebei
region, the Yangtze River Delta, and the Pearl River Delta) and light pollution around the middle
Yangtze, the Shandong Peninsula, Chengdu-Chongqing, and Harbin-Changchun is also at a high level.

In order to investigate light pollution in the three major urban agglomerations (the
Beijing–Tianjin–Hebei region, the Yangtze River Delta, and the Pearl River Delta), the synthesis
map (Figure 6) was generated by using multi-temporal (1992, 2012, and 2012) nighttime light imagery.
The black color represents stable light pollution from 1992 to 2012, the red color represents extended
light pollution, and the blue color represents decreasing light pollution, respectively.

Compared to the Pearl River Delta and the Beijing–Tianjin–Hebei region, the composite color
around the Yangtze River Delta is white and red from Shanghai to Nanjing. Therefore, it demonstrates
that the Yangtze River Delta experienced rapid and wide increases in light pollution along the Yangtze
River. From the spatial pattern of light pollution, it can be clearly seen that the Yangtze River Delta has
formed a light pollution stretch area from Shanghai to Nanjing (Figure 6b). In addition, Hangzhou and
Ningbo also experienced increasing light pollution.
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Figure 6. Color composite of nighttime light of three major urban agglomerations in China.
(a) The Beijing–Tianjin–Hebei region; (b) the Yangtze River Delta; and (c) the Pearl River Delta.

The most light-polluted cities (Guangzhou, Dongguan, Shenzhen, Hong Kong, Macao, Zhuhai,
and Foshan) are shown in the white color in Figure 6c. This result indicates that light pollution in the
Pearl River Delta formed a stretch zone from 1992 to 2012 and this stretch zone is more stable than
the one in the Yangtze River Delta. In addition, light pollution in Hong Kong showed a decreasing
trend, which may relate to Hong Kong’s light pollution policy in recent years [61]. Compared with
the Yangtze River Delta and the Pearl River Delta, the spatial connectivity of light pollution in the
Beijing–Tianjin–Hebei urban agglomerations are less obvious.

During the past 21 years, China’s light pollution has had an expanding trend (Figure 5). However,
areas of light pollution decline still exist, which are represented by the blue color in Figure 5. In order
to analyze the reasons for the decrease of nighttime light, high-resolution satellite images from Google
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Earth were selected to validate the land cover type, with results shown in Figure 7. Figure 7A,B
represent abandoned oil mining facilities; Figure 7C–E represent abandoned coal mining facilities;
and Figure 7F,G represent dam construction facilities. It was found that the main drivers of light
pollution decrease were facilities abandoned due to resource exploitation and the completion of
the dam project. Gas flaring phenomena occurred in the process of oil exploration. Elvidge et al.
demonstrated that DMSP/OLS can be used to monitor gas flaring [52]. In the gas flaring areas, the gray
values of nighttime light imagery are close to the urban core gray values, and even more saturated.
When the oil exploration decreased, the gray values of the image corresponding to the gas flaring
areas decreased significantly and the regression change analysis shows a downward trend. The main
reason for the light pollution decrease in the Shanxi, Shaanxi, and Inner Mongolia Province regions is
that coal exploitation weakened or was exhausted, resulting in decreasing population and economic
activities surrounding the mine. This caused a decrease in the nighttime light pollution. The decline in
nighttime light pollution in Yunnan was mainly due to dam construction. During the construction
process, high-power searchlights were used, resulting in strong light pollution. When the project
was completed, the searchlights were no longer required and the nighttime light intensity decreased,
leading to a decreasing trend in the light pollution change.
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3.3. Night Light Pollution Change Characteristics at the Regional Scale

In order to understand the changing characteristics of light pollution on a regional scale in China,
the TNL and PTNL indices were employed. The result is shown in Figure 8. The TNL in seven regions
showed an increasing trend from 1992 to 2012. The largest growth range of TNL was seen in east
China, followed by north China, and the smallest growth range of TNL was observed in south China.
This is because east China includes five coastal provinces and Shanghai, so the economic level of this
region is higher than the national average. North China consists of a large industrial zone and is also a
densely populated area of China. Overall, the sum of TNL in east China and north China accounted for
half of the TNL. Although Guangdong Province is located in south China and it is highly economically
developed, the economic development level of the Guangxi and Hainan provinces are lower than the
national average. The fastest growth rate of TNL was in southwest China, followed by northwest
China. Southwest China witnessed an increase of 340% and northwest China, 290%. The growth rates
of these regions were higher than those of east China and north China. This is understandable because
western cities have enjoyed rapid development since the launch of the Western Development Strategy.
It also demonstrates that nighttime light pollution will inevitably increase during rapid social and
economic development.

As shown in Figure 8, the TNL in east China accounted for about 30% of the TNL of the
whole country, followed by north China, accounting for about 20%, and southwest China, which
accounted for only 6% of the whole country. Thus, light pollution has a significant spatial imbalance
around the country. Furthermore, each region shows a difference in PTNL trends. According to
the statistical results shown in Figure 8, the inter-annual change trends of PTNL can be divided
into three types: increasing (northwest China and southwest China), decreasing (north China and
south China), and stable (east China, central China, and northeast regions). The increasing pattern
shows that the light pollution is accelerating, and the growth rate of TNL is higher than that of the
national average. This result demonstrated that light pollution has expanded and intensified over the
past 21 years. The iron and steel industry production decline may be related to the PTNL decline in
north China. However, the decrease of PTNL in south China may be related to the lower speed of
economic growth in Guangxi and Hainan. The stable pattern shows that the speed of light pollution
expansion is relatively consistent with that of the national average, and there are fluctuations. During
the study years, the fluctuation of PTNL in east China was stable; however, the PTNL in central
China first increased and then decreased. Conversely, the PTNL in northeast China first decreased,
and then increased.
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3.4. Night Light Pollution Change Characteristics at the Provincial Scale

The night light pollution characteristics of 34 provincial administrative regions (including Hong
Kong, Macao, and Taiwan) in China were analyzed by using the total of night light (TNL), the mean
of night light (MNL) and the standard deviation of night light (SDNL). Figure 9 shows the statistical
results of the total value of night light in each province of China. It can be seen from the figure for the
TNL index that the three provinces showing the highest figures are Shandong, Guangdong, and Hebei.
The lowest three figures correspond to Hong Kong, Tibet, and Macao. The results indicate that the
TNL is not only related to the level of economic development, but also to the administrative area.
The largest night light pollution was found in Shandong, Guangdong, Hebei, which have higher
economic development levels and have a wider area. The TNL in Hong Kong declined by 11.1%,
which is related to the government’s prevention and control measures for light pollution in recent
years. The TNL in other provinces showed an upward trend, which indicated that light pollution
in the night also showed an increasing trend. Among those provinces, Tibet had the fastest growth
rate, which was 768%. Hainan Province increased by 462%. Beijing and Shanghai increased by 68%
and 71%, respectively. These results show that night light pollution has risen rapidly in economically
undeveloped provinces and this result mainly relates to the rapid increase of government investment.
On the contrary, the growth of TNL was slower in the more economically developed areas.
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Figure 9. Total nighttime light (TNL) at the provincial scale in China.

Compared with the TNL, the MNL can eliminate the influence of the administrative area and
reflect the regional average night light pollution level. The average statistical results of nighttime light
in each province of China are shown in Figure 10. For the MNL, the top three are Hong Kong, Macao,
and Shanghai, the lowest three are in Xinjiang, Qinghai, and Tibet. This suggests that the nighttime
light pollution level is associated with economic development. Hong Kong, Macao and Shanghai are
often known as the “sleepless cities”, with MNL digital numbers ranging from 20 to 50. Most of the
undeveloped provinces belong to the non-luminous areas, and have a low degree of nighttime light
pollution. The fastest growth rate of the MNL was seen in Tibet, followed by Hainan, while the growth
rate of more economically developed cities was low. Hong Kong had a negative MNL growth, which
is consistent with the changing of the TNL value. Light pollution increased considerably in Shanghai,
Tianjin, and Jiangsu and the growth of MNL among these provinces was more than 10. Hong Kong
and Macau had smaller increases, because Hong Kong and Macao have a small land area and higher
economic level; thus, their light pollution is more serious. In Shanghai, Tianjin, and Jiangsu, light
pollution has become an increasingly serious problem due to long-term economic development.
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The standard deviation of night lights (SDNL) can reflect regional heterogeneities. The SDNLs in
different provinces of China are shown in Figure 11. The SDNLs of Taiwan, Beijing, and Shanghai were
higher, while in Xinjiang, Qinghai, and Tibet they were relatively lower. This result shows that light
pollution in the developed areas has a greater heterogeneity. This is because MNL in the developed
province has a high value, but the gray value in the suburbs (non-luminous) is zero, resulting in greater
heterogeneities across the whole region. For undeveloped provinces, the MNL is low in most of the
areas in the dark, so the nighttime light pollution is less heterogeneous across the whole region. Most
provinces witnessed an SDNL increase during the past year, except for Macao, whose SDNL dropped
by 10.3%. The SDNL of Tibet had the fastest growth of up to 219%, followed by Yunnan, with 156%.
These results show that the light pollution imbalance among undeveloped provinces increased during
the study years.
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4. Discussion

Currently, light pollution has become a global environmental issue, especially in developed
countries [2] and rapidly developing countries [38–40]. A typical case is China, which has experienced
unprecedented urbanization and achieved remarkable economic development during the past three
decades. The light pollution trends in China have been reported in a previous study [40] using
time-series DMSP/OLS imagery; however, this strategy still lacks quantitative indicator methods to
measure light pollution. In addition, the processes and patterns of light pollution in China are not
clear over different scales, as a result of the huge imbalance between the east and west in China’s social
and economic development. In this study, we employed a systematic nighttime light calibration flow
to improve the consistency and comparability of DMSP/OLS time series imagery. In addition to the
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widely used TNL index, we also developed three nighttime light indices to quantitatively assess the
light pollution across the national, regional, and provincial scales, respectively.

The increasing trend of light pollution at the national scale is consistent with the previous study [40].
Moreover, we found that the Yangtze River Delta, the Pearl River Delta and the Beijing–Tianjin–Hebei urban
agglomeration have formed a light pollution stretch area and the spatial connectivity of light pollution
in the Yangtze River Delta and Pearl River Delta is more obvious than that of the Beijing, Tianjin, and
Hebei urban agglomeration. This result is consistent with the findings described by Yu et al. [30] from
urban spatial cluster analysis with DMSP-OLS nighttime light data. When considering declining areas
of light pollution, we found similar decreasing trends in cities with rich mineral resources as shown in
previous studies [2,40], such as the Shanxi, Shaanxi, and Inner Mongolia provinces. We further found
that light pollution in regions with oil mining and dam construction facilities has been decreasing
during the past 21 years.

At the regional scale, light pollution across east China and north China was higher than in
west China, and the first two regions account for about 50% of the TNL in the whole country.
However, the growth rate of light pollution in northwest China and southwest China is accelerating.
These findings can be linked with economic development trends and policy guidance in China,
for example the Western Development Strategy.

At the provincial scale, three nighttime light indices were used to assess the nighttime light pattern
and these indicators can effectively reflect the overall level, average level, and difference level of light
pollution. With those results, it is more objective and accurate to reveal the past, present, and trends of
light pollution levels in China. In addition, we also found that the light pollution level can be linked
with the social and economic development level; thus, these nighttime light indicators can be used to
further estimate socio-economic parameters.

5. Conclusions

In order to analyze the characteristics of the light pollution in China, this paper proposes a process
flow to correct the time series DMSP/OLS nighttime light imagery from 1992 to 2012. Following this
process, a linear regression trend method and nighttime light index were employed to discover the
temporal and spatial characteristics of light pollution at multiple scales. The conclusions of this study
are as follows:

(1) After image correction, time series DMSP/OLS nighttime light imagery errors can be eliminated
efficiently. This improved the consistency of the image and laid the foundations for the light
pollution analysis.

(2) Areas of light pollution increase were mainly located in municipalities and capital cities and found
in the Yangtze River Delta, the Pearl River Delta, and the Beijing–Tianjin–Hebei region stretching
area. Due to resource depletion and the dam construction project, local-area light pollution
showed a decrease in the Shanxi, Inner Mongolia, Shaanxi, Xinjiang, and Yunnan provinces.

(3) The TNLs of seven regions showed an increasing trend over the previous year. The largest growth
range of the TNL was in east China, followed by north China. The fastest growth rate of the TNL
was in southwest China (increased by 340%), followed by northwest China (increased by 290%).
According to PTNL change trends, northwest China and southwest China were increased, north
China and south China were decreased, and east China, central China, and the northeast regions
were stable.

(4) The greatest level of TNL was located in Shandong at the provincial scale, followed by Guangdong
and Hebei. The high levels of light pollution were mainly located in the developed provinces
(Hong Kong, Macao, Shanghai, and Tianjin). In Tibet and Hainan, the TNL growth has been very
rapid. The light pollution heterogeneities of developed provinces (Taiwan, Beijing, and Shanghai)
were high; however, those of undeveloped provinces (Xinjiang, Qinghai, and Tibet) were low.
The growth rate of the SDNL of the western provinces was higher than that of the east provinces.
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In this study, DMSP/OLS nighttime light remote sensing was used to demonstrate the temporal
and spatial characteristics of China’s light pollution at multiple scales. It is helpful to objectively and
accurately understand the light pollution problems of the recent rapid urbanization. Moreover, this
conclusion can be of benefit to the government for policy-making and light pollution regulation. For the
next step, we will further research nighttime light pollution’s effect on the ecological environment and
risks to health by integrating multi-source remote sensing data and ground investigation data.
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