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Abstract: The study tested a data mining engine (PARACUDA®) to predict various soil attributes
(BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu) using reflectance data acquired for both optical and
thermal infrared regions. The engine was designed to utilize large data in parallel and automatic
processing to build and process hundreds of diverse models in a unified manner while avoiding
bias and deviations caused by the operator(s). The system is able to systematically assess the effect
of diverse preprocessing techniques; additionally, it analyses other parameters, such as different
spectral resolutions and spectral coverages that affect soil properties. Accordingly, the system
was used to extract models across both optical and thermal infrared spectral regions, which holds
significant chromophores. In total, 2880 models were evaluated where each model was generated
with a different preprocessing scheme of the input spectral data. The models were assessed using
statistical parameters such as coefficient of determination (R2), square error of prediction (SEP),
relative percentage difference (RPD) and by physical explanation (spectral assignments). It was found
that the smoothing procedure is the most beneficial preprocessing stage, especially when combined
with spectral derivation (1st or 2nd derivatives). Automatically and without the need of an operator,
the data mining engine enabled the best prediction models to be found from all the combinations
tested. Furthermore, the data mining approach used in this study and its processing scheme proved
to be efficient tools for getting a better understanding of the geochemical properties of the samples
studied (e.g., mineral associations).

Keywords: soil spectroscopy; chemometrics; quantitative models; PLSR; optical spectral region;
thermal infrared spectral region; heavy metals; pH; CEC; basic cations

1. Introduction

Soil spectroscopy has proven to be a fast, environmentally-friendly, reproducible, and repeatable
analytical technique that has been increasingly used for rapid, non-destructive and cost-effective
soil analyses. Spectroscopy, covering the optical (reflected solar radiation) and thermal infrared
(earth tsurface emitted radiation) regions across the 0.4–15 µm spectral range, can be used to determine
a wide range of soil properties [1] such as organic carbon (OC) [2], texture [3], cationic exchange
capacity (CEC) [4], total phosphorus (P) [5], exchangeable potassium (K) [6], electrical conductivity
(EC) [7–9], total concentration of potential pollutant metals/metalloids [10] and mineral content [11,12].
Aside from the fundamental interaction of electromagnetic radiation with matter, indirect interaction
can be found and provide additional quantitative information of the soil in question [13]. The chemical
or physical phenomenon that interacts with electromagnetic radiation is termed a chromophore.
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The interaction between matter and electromagnetic radiation has been studied from both the
theoretical and practical points of view. The spectral information is represented by a spectrum which
consists of visible as well as non-visible information to the naked eye that further, when extracted,
can spotlight the material in question in both quantitative and qualitative ways. The previously
mentioned spectral regions can be divided into sub-regions: visible (VIS, 0.4–0.7 µm), near infrared
(NIR, 0.7–1.0 µm), shortwave infrared (SWIR, 1.0–3.0 µm), mid-wave infrared (MWIR, 3.0–7.0 µm) and
longwave infrared (LWIR, 7.0–15 µm).

Analysing the spectral data can yield quantitative information about the material’s chemical
composition. This is because the spectral characteristics are correlated with the direct and indirect
chromophores across all regions. In the VIS and NIR regions, iron oxides (due to electronic transitions)
and organic matter are the main chromophores. Across the SWIR region the main active chromophores
are OH in free water and the clay mineral lattice, organic matter, carbonates and salts [13]. In the
MWIR and LWIR spectral regions, absorption features, resulting from fundamental molecular vibration
modes, show additional information about soil constituents, such as Si-bearing minerals (mainly quartz
and clay minerals), carbonates, organic matter and gypsum [1,14].

High-dimensional spectral datasets, which are typically obtained in the solid and liquid phase,
are used as inputs for quantitative modelling in spectroscopy. The data mining stage for extracting
a valid model requires adequate statistical analysis techniques, which are able to deal with many
highly collinear spectral frequencies (predictor variables) from relatively few observations. In this
regard, multivariate analysis techniques, such as Multiple Linear Regression (MLR) [15], Principal
Component Regression (PCR) and Partial Least Squares Regression (PLSR) analyses [16], are capable of
extracting reasonable models with overlapping information. Recently, different approaches have been
used for spectroscopic data modelling including the artificial neural network (ANN, [17]), support
vector machine regression (SVM, [18]) and random forests (RF) regression [19]; however PLSR is still
probably the most widely used analysis technique over all, as it is an adequate technique to handle
the difficulties inherited from the interpreted overtones by extracting the response variable relevant
information from the spectra, while ignoring redundant information [12,15,20].

Prior to employing statistical modelling to detect the relationship between spectroscopy and the
chemical properties of the material, different types of preprocessing techniques can be applied to
the input spectral information (e.g., [18,21–23]) either to minimize the noise or normalize the input
spectroscopic data. Among these methods, the most common are: smoothing techniques, spectral
derivatives, transfer to a logarithmic scale or continuum removal (CR). However, a literature search
revealed that a study assessing how these pretreatment techniques (employed alone or in combination)
affect the final model validity has yet to be done.

Soil reflectance, in all spectral domains, has a proven capability to detect several soil properties,
however it is still unclear what effects on the final models’ validity the input spectral data have
(e.g., sensor specifications: spectra resolution, spectral range/ranges covered and signal to noise
ratio (SNR)). Whereas most of the chemometrics work has been devoted to the reflective part
of solar radiation (the optical range; VIS–NIR–SWIR) (e.g., [24–26]), the wavelength range based
on earth radiation (the thermal range; MWIR and LWIR) has been also used with quite good
success [12,27]. Merging both ranges (optical and thermal) in chemometric analyses of soil is still not
so common [8,12,28] and using optical and thermal ranges together has usually been employed mainly
only for organic matter modelling [29,30]. Therefore, the question as to whether this spectral merging
would result in more valid prediction models than using just each range alone (optical vs. thermal),
has yet to be sufficiently answered.

To fill these gaps in soil spectroscopic modelling, powerful statistical modelling, which can cope
with many pre-treatment stages automatically to assess the best prediction models, was used and
tested. This engine is termed PARACUDA® and was designed to utilize parallel and automatic
processing to build and process hundreds of diverse models in order to prevent errors or biases caused
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by an operator when taking the model setting decision. The following questions were asked when
taking advantage of this innovative data mining approach:

• To what extent does the several preprocessing method improve the modelling?
• What is the contribution of the thermal infrared region (MWIR and in particular of the LWIR, as it

is used in remote sensing applications) to the predictive capability of complex attributes that have
no direct chromophores in the VIS–NIR–SWIR as well as MWIR and LWIR regions such as pH,
base saturation and heavy metals?

• What is the influence of spectrometer parameters (e.g., different spectral resolution and region
coverage) on the final model results?

2. Materials and Methods

2.1. Study Sites and Soil Samples

The study area was located in the Sokolov basin in the western part of the Czech Republic
(Figure 1a), in a region affected by long-term extensive lignite mining. Due to the mining activities and
coal burning power plants that were built in the immediate vicinity of the mined area, this region is
one of the most contaminated areas of the Czech Republic where high levels of trace elements have
been detected [31,32]. The soil was sampled from natural Norway spruce forest stands which surround
the open-cast lignite mines in Sokolov, but have not been directly affected by the mining activities.
However, the soil in all of the stands exhibits low pH [33].

Different bedrock characterizes the selected sites (Table 1). Metamorphic rocks, such as
paragneisses, phyllites or mica-schist, underlie the sampling stands within the Habártov and Kovářská
study site. In contrast, it is mainly intrusive rocks, such as granites, that underlie the sampling sites
within the Mezihorská site and sedimentary rocks, such as sandstones, at the stands located in the
Erika site. Both study sites have the same main soil type—Cryptopodzol/podzol.

Table 1. Soil sample sites.

Site Latitude (N) Longitude (E) Elevation (m.a.s.l.) Distance from
Open-Pit Mines (km) Geological Unit

Erika 50◦12′25′′ 12◦36′17′′ 495 6.4 Staré Sedlo sandstones
Habartov 50◦09′48′′ 12◦33′28′′ 477 11.2 paragneiss, mica shist

Mezihorská 50◦15′50′′ 12◦38′17′′ 678 5.8 granites
Studenec 50◦14′09′′ 12◦33′00′′ 722 8.5 paragneiss, mica shist

Detailed field investigations preceded sample collection, In addition, trace element and heavy
metal gradients were studied in situ using a portable Innov-x Alpha RFA spectrometer to ensure that
the selected soil samples cover the whole gradient ranges found at the sites. At each forest stand
(4 stands, Table 1), 10 soil samples were collected (40 samples in total). Tree litter was excluded and
material was collected from the organo–mineral horizons (A + AB, depth of 10–30 cm). The soil
material collected was air dried prior to sieving and then transported to the certified laboratories of
the Czech Geological Survey. Exchangeable cations (Ca, Mg, K, Na) and Al were analysed in 0.1 M
BaCl2-extracts using atomic absorption spectrophotometry (AAS, Perkin-Elmer A Analyst 100). Soil pH
was determined in distilled water and in 1 M CaCl2 (ISO 103900). To measure Total Exchangeable
Acidity (TEA), BaCl2-extracts were titrated using 0.025 M NaOH to pH = 7.8. To measure the organic
carbon (Corg) and selected trace elements (Cu, Zn, As, Hg) the samples were sieved <2 mm and
homogenized, trace elements were then determined using flame atomic absorption spectrometry
(FAAS) and, in the case of Hg, atomic absorption spectrometer (AMA254). Organic carbon (Corg) was
determined by sulfochromic oxidation (ISO 14235). Cation exchange capacity (CEC) was calculated as
the sum of exchangeable base cations (BC = Ca + Mg + K + Na) and TEA. Base saturation (BS) was
determined as the fraction of CEC associated with BC.
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Figure 1. (a) Diagram showing geographic positions of the sampled soils; (b) organo–mineral 
horizon H2 (A + AB, depth of 10–30 cm) determination.  

Chemical analysis of the 40 samples within the dataset shows that the pH ranges were rather 
low—between 3.03 and 3.83. The other soil attributes showed high variations in the studied 
attributes (Table 2). Naturally, significant positive correlations (Pearson correlation coefficient r 
higher than 0.7) were found for Hg–CORG, Hg–Pb, As–Pb, Cu–Pb, Zn–Cu, BC–BS, Hg–CEC, Hg–BC, 
CORG–CEC, CORG–BC (Figure 2). 

 
Figure 2. Colour-coded correlation matrix calculated for the soil attributes studied.  
(Note: ** Correlation is significant at the 0.01 level, * correlation is significant at the 0.05 level). 

Table 2. Descriptive statistics of the soil parameters studied. 

 Min Max Mean SD Var Skew 
pH 3.03 3.83 3.45 0.16 0.03 −0.23 

Corg (%) 2.08 9.71 5.29 2.23 5.02 0.36 
BC (mmol(+)/kg) 1.69 111.35 26.16 26.83 720.22 1.41 
CEC (mmol(+)/kg 61.07 183.50 109.88 32.74 1072.04 0.78 

BS (%) 1.74 62.36 20.42 16.56 274.08 0.84 
Hg (ppm) 0.06 0.26 0.15 0.07 0.01 0.26 
As (ppm) 7.67 80.45 37.02 27.00 675.87 0.40 
Cu (ppm) 5.50 26.40 13.93 7.24 52.36 0.41 
Zn (ppm) 23.00 98.00 56.87 24.28 589.64 0.35 
Pb (ppm) 30.00 147.00 77.40 37.52 1407.83 0.38 

  

Figure 1. (a) Diagram showing geographic positions of the sampled soils; (b) organo–mineral horizon
H2 (A + AB, depth of 10–30 cm) determination.

Chemical analysis of the 40 samples within the dataset shows that the pH ranges were rather
low—between 3.03 and 3.83. The other soil attributes showed high variations in the studied attributes
(Table 2). Naturally, significant positive correlations (Pearson correlation coefficient r higher than 0.7)
were found for Hg–CORG, Hg–Pb, As–Pb, Cu–Pb, Zn–Cu, BC–BS, Hg–CEC, Hg–BC, CORG–CEC,
CORG–BC (Figure 2).
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Figure 2. Colour-coded correlation matrix calculated for the soil attributes studied. (Note: ** Correlation
is significant at the 0.01 level, * correlation is significant at the 0.05 level).

Table 2. Descriptive statistics of the soil parameters studied.

Min Max Mean SD Var Skew

pH 3.03 3.83 3.45 0.16 0.03 −0.23
Corg (%) 2.08 9.71 5.29 2.23 5.02 0.36

BC (mmol(+)/kg) 1.69 111.35 26.16 26.83 720.22 1.41
CEC (mmol(+)/kg 61.07 183.50 109.88 32.74 1072.04 0.78

BS (%) 1.74 62.36 20.42 16.56 274.08 0.84
Hg (ppm) 0.06 0.26 0.15 0.07 0.01 0.26
As (ppm) 7.67 80.45 37.02 27.00 675.87 0.40
Cu (ppm) 5.50 26.40 13.93 7.24 52.36 0.41
Zn (ppm) 23.00 98.00 56.87 24.28 589.64 0.35
Pb (ppm) 30.00 147.00 77.40 37.52 1407.83 0.38
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2.2. Spectral Measurements

Soil reflectance was measured at the laboratory using two different spectrometers: (i) a
broad-band Full Spectral Range (FSR) reflectometer (designed by ABB Bomem, Québec City, QC,
Canada) [34]—measured the reflectance of the soil samples across the optical and thermal regions
(15,506–748 cm−1; 0.64–13.36 µm) with a spectral resolution of 16 cm−1; (ii) ASD FieldSpec3
spectroradiometer—measured the reflectance of the soil samples across the whole optical VIS–NIR–SWIR
region (0.35–2.5 µm). The parameters of both spectrometers are shown in Table 3. Both measurements
were done using a high intensity contact probe. The ASD measurements were carried out according
to [35]. A calibrated gold panel is built into the FSR instrument [36] and the FSR measurements were
done under the following routine [34]: each soil sample was placed in a sampling cup, placed under
the input port of the reflectometer and its reflectance spectrum was recorded. The reflectance spectra
of the soil samples acquired from both spectrometers are shown in Figure 3.
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Figure 3. The spectra of the soil samples acquired from both spectrometers and the three tested scenarios
are depicted (a) broad-band Full Spectral Range (FSR) reflectometer (spectral range of 0.64–13.36 µm):
Scenario 1 (Sc1) and Scenario 2 (Sc2) are depicted; (b) ASD FieldSpec 3 spectroradiometer (spectral
range of 0.35–2.5 µm), these spectral measurements represent Scenario 3 (Sc3); see the Section 2.3. for
further details.

Table 3. Technical specifications of the two spectrometers used.

Spectrometer Type Spectral Range Number of Bands Spectral Sampling Interval

ASD 0.35–2.50 µm 2151
1.4 nm @ 350–1050 nm
2 nm @ 1000–2500 nm

FSR 0.64–13.36 µm 1914
<1 nm @ 640–1100 nm

From 1 to 5 nm @ 1050–2500 nm
From 5 to 136 nm @ 2500–13,360 nm
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2.3. Statistical Modelling Interface—PARACUDA

For this study a new computing engine that has been developed at RSL–TAU termed
PARACUDA® was used. This engine is an automated computing system developed to manage
and deploy thousands of chemometric models and preprocessing combination methods in order to
extract the best prediction model from a big data archive. It replaces the manual operation scheme
usually deployed in chemometrics using other dedicated software such as the Unscrambler® [37].
The system can be considered as data mining software for finding and utilizing hidden patterns and
relationships within large and complicated databases with no human interaction. PARACUDA® excels
especially in handling large (spectral) data and modelling spectral measurements against chemical
constitutes. This allows users to generate robust prediction models for soil properties (although it can
work with other general databases).

One of the most advantageous characters of the abovementioned data mining system is
the ‘all-possibilities’ approach (APA) scheme, where the system automatically applies linear
and nonlinear modelling algorithms combined with several preprocessing methods to the data.
The preprocessing algorithms include averaging, centring, smoothing, standardization, normalization
and transformations among others. The modelling algorithms applied to the data are Artificial
Neural Networks (ANN) and Partial Least Squares (PLS). Under the APA concept, the machine
evaluates all preprocessing methods and their combinations and develops a unique model for every
possible sequence resulting in up to 120 different combinations. This is an extremely computer
power-consuming method and thus it runs on a grid based supercomputer with many processing
cores for rapid analysis.

It must be stated that the APA approach was firstly tested by Zhao et al. (2015) [38] who proved
the importance of considering multiple pathways for modelling spectral data. However, there are
a few differences between the two approaches while the main one is the initial preprocessing or
pretreatments procedure. Zhao et al. (2015) [38] tested five combinations of pretreatments: while this
study analyzed a set of eight potential algorithms and evaluated each in different mutual combinations
resulting in up to 120 valid combinations to be applied separately to the spectroscopic data.

The system is easy to operate via an excel plug-in and a web interface that enables fast and
easy data transfers to the PARACUDA® servers, changes to the modelling parameters for advanced
users (a full automatic mode is the default) as well as controlling current jobs and monitoring their
progress. The main PARACUDA® excel plug-in screen enables dependent and independent datasets
to be selected, the problem type to be selected (Function fitting or classification), notes to be entered for
future reference and to finalize fine tuning of the PARACUDA operation including the data division
process for validation, dimension reduction and modelling methodologies. Furthermore, preprocessing
options and other advanced parameters are also available through the excel plugin.

For reliable results that represent the entire dataset as best as possible, the Conditioned Latin
Hypercube Sampling (cLHS) method is used in the system [37]. The cLHS is a stratified random
procedure that provides an efficient way of sampling variables from their multivariate distributions.
Up to 1,000,000 semi-random (quantile) divisions are created and the distributions of the modelled
values are examined. The variability of values within each sub-group is evaluated for each grouping
iteration. The grouping with the most variability within each group is chosen as the best representation
of the dataset and continues to the following steps. For this process it is important to make sure there
is similarity in the values range and distribution in the calibration and validation groups.

PARACUDA® pre-processes spectral datasets prior to analysis in order to remove any irrelevant
information which cannot be handled properly by the modelling techniques. The system uses some of
the most common preprocessing techniques: Savitsky–Golay Initial Smoothing [39]; Multiplicative
Scatter Correction (MSC); Standard Normal Variate (SNV); Pseudo Absorptance (log(1/R) [40];
Continuum Removal [41]; First Derivative [42]; Second Derivative [43]; and Final Smoothing.
The system applies possible combinations of the calculations in a specific order, optionally creating
120 new datasets. Each new dataset is the outcome of the preprocessing sequence applied to the
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data repetitively. For example, an optional sequence can be: Smoothing, Continuum Removal, First
Derivative, and again Smoothing. All mathematically valid combinations applied to the original data
result in a new archive of data-sets which are ready to be evaluated and modelled.

The system enables the user to adjust the training/test grouping ratio for the population. In this
case the system was set to use 75% of the samples for training and 25% of the samples for testing.
As previously mentioned, the data was divided into these groups based on the cLHS algorithm that
ensured appropriate representation of the datasets. The results of all of the PLS models were then
consolidated to statistically quantify the effects of the preprocessing method, as well as the training/test
group selection process on the modelling results.

PARACUDA Model Setting

Due to the limited number of samples, PARACUDA was only used for the PLSR modelling.
The PLSR models were built for diverse soil properties (BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu)
using three different spectral scenarios (see Figure 3):

• using the soil spectra acquired by the FSR spectrometer, which covers the whole optical and
thermal range (0.6–13.3 µm, Scenario 1: Sc1)

• using the soil spectra acquired by the FSR spectrometer selecting the optical range only (0.6–2.5 µm,
Scenario 2: Sc2)

• using the soil spectra acquired by the ASD spectrometer: the whole optical range (0.4–2.5 µm,
Scenario 3: Sc3)

The 40 samples from the original dataset were automatically divided into a training dataset
consisting of 30 samples, and a test set of 10 samples by the software, as described earlier. In order
to avoid over fitting, an internal validation method (full cross-validation) was first run on the entire
40 samples to estimate the optimal number of Latent Variables (LV) on the PLSR models.

As previously discussed in this study, eight different preprocessing techniques and their
combinations were tested under the PLSR modelling: Smoothing (SM), multiplicative Scattering
Correction (MSC), Signal Normal Variate (SNV), Absorbance (ABS), Continuum Removal (CR), 1st and
2nd Derivative (FD and SD, respectively) and final smoothing (FSM). PLSR modelling was employed
combining all logical combinations among the eight preprocessing techniques, while PLSR models
were set to run identically (Figure 4) and employed on the three different scenarios described above
(utilizing different spectral settings Figure 3).
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After processing, the selection of the best models out of all the options were evaluated based
on the following parameters: lowest number of factors as a measure of model robustness, the lowest
root mean square error of prediction (RMSEP) as a measure of expected error in future predictions,
the coefficient of determination (R2) and the Relative Percentage Difference (RPD).

As a result, for each of the parameters, 96 models were run for each spectral set (each spectral
scenario), thus 288 PLSR models (3 × 96) were processed in all for each soil parameter (Tables 4–6).
Therefore, for 10 different soil attributes 2880 models were generated and evaluated. It should be
emphasized that this arduous work was run automatically and took 60 min. An expert/operator
consideration was only entered after the best model was selected in order to explain the spectral
assignment of the model as will be discussed later.

Table 4. Statistics on the spectral preprocessing techniques of the best models found for the selected soil
attributes while using PLSR modelling (SM: smoothing, FSM: final smoothing, MSC: Multiplicative
Scatter Correction, SNV: Signal Normal Variate, ABS: absorbance, CR: continuum removal,
FD: first derivative, SD: second derivative, (n): number of models found fulfilling the selection criteria:
employed maximum of up to five PC’s, reached RPD higher than 1.5 and achieved the highest R2test,
* model RPD was <1.5).

Spectral Preprocessing

Soil Attributes Scenario SM FSM MSC SNV ABS CR FD SD (n)

BC

Sc1
x x x

3x x
x x x

Sc2 x 1

Sc3
x x x x

2x x x

CEC
Sc1 x x x 1 *
Sc2 x 1 *
Sc3 x x 1 *

BS
Sc1 x x 1
Sc2 x x 1
Sc3 x 1

pH
Sc1 x x x 1
Sc2 x x 1
Sc3 x x 1

Corg

Sc1
x x

2x
Sc2 x x x 1
Sc3 x x 1

Pb
Sc1

x x x
3x x

x x
Sc2 x x x 1
Sc3 x x 1

Hg
Sc1 x x 1
Sc2 x x 1
Sc3 x x x 1

As
Sc1 x x 1
Sc2 x x 1
Sc3 x x x 1

Zn
Sc1 x x x 1
Sc2 x 1
Sc3 x x x 1

Cu

Sc1 x 1
Sc2 x 1

Sc3
x x x x

2
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Table 5. PLSR Models for BC, CEC, BS, pH, Corg: the best model statistics using the three different
spectral data sets as inputs: Scenario 1: Sc1 (0.6–13.3 µm, FSR spectrometer), Scenario 2: Sc2 (0.6–2.5 µm,
FSR spectrometer), Scenario 3: Sc3 (0.4–2.5 µm, ASD spectrometer), * model where RPD was <1.5.

Soil Attribute (Spectrometer) PC (n) Test R2 RMSEP SEP SD RPD

BC: Sc1
1 0.79 14.86 10.60 22.94 2.69
2 0.86 12.91 9.01 23.09 3.16
3 0.73 13.59 12.59 24.09 2.24

BC: Sc2 1 0.62 17.83 17.91 23.09 1.59
BC: Sc3 2 0.81 18.35 12.78 23.19 2.23

CEC: Sc1 3 0.62 21.46 22.89 36.96 1.42 *
CEC: Sc2 5 0.62 31.24 21.57 34.59 1.48 *
CEC: Sc3 2 0.49 23.69 25.23 34.57 1.32 *

BS: Sc1 5 0.83 11.56 7.76 17.71 2.13
BS: Sc2 5 0.71 10.57 10.17 17.84 1.62
BS: Sc3 1 0.81 8.87 7.61 14.60 2.26

pH: Sc1 3 0.44 0.07 0.08 0.10 2.25
pH: Sc2 1 0.68 0.07 0.06 0.10 3.05
pH: Sc3 1 0.77 0.05 0.04 0.09 4.23

Corg: Sc1 2 0.87 0.84 0.79 2.18 2.77
1 0.81 1.01 1.02 2.18 2.16

Corg: Sc2 4 0.82 1.11 0.97 2.27 2.35
Corg: Sc3 3 0.85 1.00 0.97 2.18 2.26

Table 6. PLSR Models for heavy metals (Pb, Hg, As, Zn, Cu): the best model statistics using three
different spectral data sets as inputs: Scenario 1: Sc1 (0.6–13.3 µm, FSR spectrometer), Scenario 2: Sc2
(0.6–2.5 µm, FSR spectrometer), Scenario 3: Sc3 (0.4–2.5 µm, ASD spectrometer).

Soil Attribute: Scenario PC (n) Test R2 RMSEP SEP SD RPD

Pb: Sc1
2 0.89 12.64 12.96 37.93 2.94
4 0.82 16.31 14.49 33.05 2.70
2 0.89 14.06 13.69 39.29 2.69

Pb: Sc2 4 0.85 15.36 16.39 38.74 2.32
Pb: Sc3 4 0.65 15.85 15.07 23.13 2.61

Hg: Sc1 2 0.91 0.03 0.02 0.07 2.72
Hg: Sc2 5 0.72 0.04 0.04 0.07 1.68
Hg: Sc3 2 0.78 0.03 0.03 0.07 2.02

As: Sc1 5 0.81 11.74 12.25 28.30 2.13
As: Sc2 5 0.72 16.50 15.21 26.65 1.73
As: Sc3 5 0.85 11.74 12.55 28.32 2.08

Zn: Sc1 1 0.77 12.16 12.21 23.58 2.04
Zn: Sc2 3 0.84 11.83 11.93 24.26 2.08
Zn: Sc3 3 0.85 11.37 10.13 25.94 2.37

Cu: Sc1 5 0.99 2.09 1.40 7.01 5.27
Cu: Sc2 5 0.91 3.39 2.67 7.64 2.72

Cu: Sc3
5 0.93 3.03 3.13 6.72 2.37
5 0.83 4.37 3.13 7.40 2.33

3. Results

3.1. PLSR Prediction Model Assessment

Tables 4–6 present the results of the best analytical runs. To select the number of the most
significant components the eigenvalue plots were generated for all the soil variables studied. It was
found that the first five PC’s explained most of the data variance. Therefore, the PLSR models selected
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employed a maximum of up to five PC’s, reached a RPD higher than 1.5 and achieved the highest R2

for the test data set (R2test). In some cases it was not possible to find any model that showed RPD
higher than 1.5 and these models were marked with * in Tables 4–6.

Table 4 shows the best prediction models found, respectively the preprocessing techniques
employed on spectral data prior to modelling, either alone or in all possible mutual combinations.
Summarizing these results it can be said that preprocessing spectral data prior to modelling is an
important step. For all of the parameters, the models achieving the best results employed some kind of
preprocessing techniques (usually a combination of two or three of them). In other words, no model
without preprocessing achieved better results than those employing the preprocessing techniques.
For most of the models which were run, the smoothing (smoothing and/or final smoothing) was found
to be beneficial, especially in combination with derivative transformation (1st or 2nd derivatives).
If the optical spectral data are used as an input (Sc2 and Sc3), the transformation to absorbance was
also a preferable preprocessing step that resulted in increasing the model’s quality.

Tables 5 and 6 show the best models with statistics as follow: number of PC’s, R2test, Root Mean
Square Errors (RMSE), Standard Deviations (SD) and Regression Point Displacements (RPD’s). Based on
the guidelines given by [44], the prediction models obtained were categorized into five groups which
are then summarized in Table 7: score 1 (excellent prediction): RPD and R2test higher than 3.0 and 0.9
respectively, score 2 (good predication): RPD values from 2.5–3.0 and R2test between 0.82–0.90, score 3
(approximate prediction): RPD values from 2.0–2.5 and R2test between 0.66–0.81, score 4 (possibility to
distinguish between high and low values): RPD values from 1.5–2.0 and R2test between 0.50–0.65,
score 5 (unsuccessful prediction): RPD values lower than 1.5 or R2test lower than 0.5.

Table 7. The prediction models obtained were categorized into five groups (1 is the best and 5 the
worst score) based on the guidelines given by [44], further described in Section 3.1). If the same
score is obtained, the model with the higher R2test is marked with *. Scenario 1: Sc1 (0.6–13.3 µm,
FSR spectrometer), Scenario 2: Sc2 (0.6–2.5 µm, FSR spectrometer), Scenario 3: Sc3 (0.4–2.5 µm,
ASD spectrometer).

Soil Attributes Sc1 Sc2 Sc3

BC 2 4 3
CEC 5 5 5
BS 2 4 3
pH 5 3 3 *
Corg 2 * 2 2
Pb 2 * 2 4
Hg 2 4 3
As 3 4 3 *
Zn 3 3 3 *
Cu 1 3 3

To summarize, when using PARACUDA® the best predictability was obtained for Cu (R2test > 0.9,
RPD > 3) followed by Pb, Corg and Hg (v R2test > 0.82, RPD between 2.5 and 3.0) and by BC, BS, Zn
and As (validation data set R2 > 0.8, RPD between 2.0 and 2.5).

For some variables it was possible to find more than one model having high RPD’s (Tables 5 and 6):

• when the FSR scenario (Sc1) was employed: BC and Pb (three models), Corg (two models)
• when the ASD scenario (Sc3) was employed: Cu (two models)

On the other hand, CEC was found to be difficult to predict even when using the PARACUDA®

and being able to assess 288 different models (in Table 4 marked with *).
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The information from the thermal region (Sc1) brought significant benefits to the modelling of
base cations (BS), base saturation (BS) and organic C (Corg) content as well as for some heavy metals
such as: Pb, Hg, Cu and As (Tables 6 and 7). On the other hand, the high spectral resolution across
the optical VIS–NIR–SWIR range provided by the ASD spectrometer (Sc3) was more beneficial for
modelling pH and Zn (Tables 6 and 7).

3.2. Spectral Sensitivity Assessment

As described in Section 3.1, the statistics revealed the following results:

• High spectral resolution covering the whole optical range (the spectral information acquired by
the ASD spectrometer), was found to be more beneficial for modelling pH, Zn, As and Corg (Sc 3)

• The information in the thermal region (MWIR and LWIR) improved the predictive capabilities for
BC, BS and Corg content as well as for such heavy metals as Pb, Hg and Cu (Sc1).

The intention was to further test if the above described trends (the cases when a
high-spectral-resolution optical range gives better predictions vs. the cases when a lower spectral
resolution covering optical and thermal ranges gives better predictions than the latter one) can be
explained in terms of spectral assignments. Spectral assignment is very important information in
chemometrics [45], especially when a small data set is analysed. If spectral assignment cannot be found,
all models might remain questionable, as no physical chemical basis is encountered. The version of the
Paracuda used at the time of processing did not provide an interface to visualize spectral implications
and assignments (later versions will include this function). Accordingly, to be able to explain which
particular wavelengths are the most important for predictions and to visualize the spectral implications
of the studied soil attributes the Pearson’s correlation coefficients (r) were calculated between the
attributes and the measured reflectance values (Figures 5–7) using the statistical software (SW) SPSS.

3.2.1. Demonstrating the Benefit of Scenario 3 When the Whole Optical Region (0.4–2.5 µm) Is Covered
at a High Spectral Resolution

As already discussed, the high spectral resolution within the wider VIS–NIR–SWIR optical range
(the spectral information obtained by the ASD spectrometer), was more beneficial for modelling pH, Zn
and As. For those attributes the Person’s correlation coefficients (r) calculated over the optical ranges
of both spectrometers, ASD and FSR, are displayed in Figure 5. In addition to the above attributes, the
Corg is also displayed to demonstrate the spectral assignments of the organic component. To be able to
discuss and compare these results with those previously published, Table 8 shows band assignments
of identified VIS–NIR–SWIR wavelengths, which were compiled from [45,46].

The key wavelengths within the VIS–NIR–SWIR optical range for the Corg (Figure 5) were
found to be between 0.40–0.54 µm (r lower than −0.77), 0.63–0.73 µm (r lower than −0.76–0.7),
2.26–2.32 µm and 2.35 µm (r lower than −0.67). These spectral assignments characterized organic
matter or biomass [14,47].

The key wavelengths for pH were located in the VIS and NIR regions, the highest negative
correlations (r between −0.4 and −0.3) were found for the spectral region between 0.40–0.53 µm and
then between 0.82–1.00 µm (r between −0.3 and −0.27). These wavelengths are usually assigned to
electronic transitions of Fe-oxides [14,48–50] which are highly correlated with pH. The inter-correlation
of the chromophoric property (in this case Fe-oxides) to the non-chromophoric one (in this case pH) is
discussed in [44]. They demonstrated significant model prediction of non-chromophoric attributes
in soils by the inter-correlation mechanism. It is well known that the VIS–NIR region can be used
to differentiate between diverse iron oxides which are stable under different pH ranges [28,51–53]
and accordingly to serve as a spectral assignment indicator for pH. As demonstrated in Figure 5, the
ASD spectrometer, characterized by a wider optical range while having a high spectral resolution, is
more advantageous in this case than the FSR spectrometer, which is characterized by a shorter optical
range in the VIS–NIR region. As a result the FSR is more limited in detecting and discriminating
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diverse Fe-oxides and thus not optimal for predicting pH. Similarly, the important wavelengths of
Zn are assigned to the same VIS–NIR regions as pH, 0.40–0.53 µm (r between −0.54 and −0.44) and
0.84–1.00 µm (r between −0.435 and −0.453) again indicating the inter-correlation mechanism by the
Fe-oxides assignments. In addition, wavelengths between 2.35 and 2.366 µm show higher negative
correlations (below −0.4). This spectral region can be assigned to C biomass [14,54] showing that Zn
can also be associated with C biomass in the soil samples under study (again via the chromophoric
property). Also in this case, the better spectral coverage of the ASD spectrometer (e.g., spectral range)
allowed better determination of both iron oxides and C biomass. The As follows a similar pattern as
described for Zn, except that the assignments between 0.63 and 0.73 µm characterizing Corg are better
pronounced. With the examples of Zn and As, the advantage of the better spectral coverage of the
ASD spectrometer, allowing better differentiation between iron oxides and the organic component,
is also demonstrated.

Remote Sens. 2017, 9, 134  12 of 21 

 

VIS–NIR region can be used to differentiate between diverse iron oxides which are stable under 
different pH ranges [28,51–53] and accordingly to serve as a spectral assignment indicator for pH. 
As demonstrated in Figure 5, the ASD spectrometer, characterized by a wider optical range while 
having a high spectral resolution, is more advantageous in this case than the FSR spectrometer, 
which is characterized by a shorter optical range in the VIS–NIR region. As a result the FSR is more 
limited in detecting and discriminating diverse Fe-oxides and thus not optimal for predicting pH. 
Similarly, the important wavelengths of Zn are assigned to the same VIS–NIR regions as pH,  
0.40–0.53 µm (r between −0.54 and −0.44) and 0.84–1.00 µm (r between −0.435 and −0.453) again 
indicating the inter-correlation mechanism by the Fe-oxides assignments. In addition, wavelengths 
between 2.35 and 2.366 µm show higher negative correlations (below −0.4). This spectral region can be 
assigned to C biomass [14,54] showing that Zn can also be associated with C biomass in the soil 
samples under study (again via the chromophoric property). Also in this case, the better spectral 
coverage of the ASD spectrometer (e.g., spectral range) allowed better determination of both iron 
oxides and C biomass. The As follows a similar pattern as described for Zn, except that the 
assignments between 0.63 and 0.73 µm characterizing Corg are better pronounced. With the 
examples of Zn and As, the advantage of the better spectral coverage of the ASD spectrometer, 
allowing better differentiation between iron oxides and the organic component, is also 
demonstrated. 

 
Figure 5. Spectral sensitivity calculated for (a) the ASD spectra (optical range 0.4–2.5 µm) and (b) the 
FSR spectrometer (optical range 0.6–2.5 µm) (y-axes showing the Person’s correlation coefficients).  

When comparing the sensitivity results obtained by the ASD and FSR spectrometers for the 
same attributes, a common general trend was found (lowest negative correlations found for Corg 
followed by Zn, As and pH). However, for the spectrum obtained by the FSR spectrometer, lower 
correlations were found (Figure 5b) (between −0.45 and −0.5) as compared to the ASD spectrum 
(between −0.2 and −0.8) (Figure 5a). These results demonstrate that the spectral optical coverage of 
the FSR spectrometer (0.6–2.5 µm) does not allow such detailed differentiation among iron minerals 
and organic matter as is possible with the ASD spectrometer (0.4–2.5 µm). 

Table 8. Band assignments of identified VIS–NIR–SWIR wavelengths (these were compiled from 
[45,46]). 

Wavelengths (µm) Possible Assignment Remark 
0.400–1.200 Electronic transitions Iron-bearing minerals 

0.450, 0.520–0.533, 0.560–0.575,  
0.630–0.640, 0.660–0.680  Organic C 

1.400, 1.900 Water absorption  

2.190–2.290 OH–stretching and bending 
combination vibrations 

Phyllosilicates 

2.270, 2.310, 2.350 C–H stretching Organic matter 

Figure 5. Spectral sensitivity calculated for (a) the ASD spectra (optical range 0.4–2.5 µm) and (b) the
FSR spectrometer (optical range 0.6–2.5 µm) (y-axes showing the Person’s correlation coefficients).

When comparing the sensitivity results obtained by the ASD and FSR spectrometers for the same
attributes, a common general trend was found (lowest negative correlations found for Corg followed by
Zn, As and pH). However, for the spectrum obtained by the FSR spectrometer, lower correlations were
found (Figure 5b) (between −0.45 and −0.5) as compared to the ASD spectrum (between −0.2 and
−0.8) (Figure 5a). These results demonstrate that the spectral optical coverage of the FSR spectrometer
(0.6–2.5 µm) does not allow such detailed differentiation among iron minerals and organic matter as is
possible with the ASD spectrometer (0.4–2.5 µm).

Table 8. Band assignments of identified VIS–NIR–SWIR wavelengths (these were compiled from [45,46]).

Wavelengths (µm) Possible Assignment Remark

0.400–1.200 Electronic transitions Iron-bearing minerals

0.450, 0.520–0.533, 0.560–0.575,
0.630–0.640, 0.660–0.680 Organic C

1.400, 1.900 Water absorption

2.190–2.290 OH–stretching and bending
combination vibrations Phyllosilicates

2.270, 2.310, 2.350 C–H stretching Organic matter
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3.2.2. Demonstrating the Benefit of Scenario 1 When Optical and Thermal Regions (0.6–13.3 µm)
Are Combined

Combining the optical and thermal region together in Scenario 1 brought significant benefits to
the modelling of base cations (BC), base saturation (BS) and organic C (Corg) as well as to heavy metals
such as Pb, Hg and Cu. For these soil attributes the Person’s correlation coefficients (r) calculated over
the VIS–NIR–SWIR and MWIR–LWIR regions are displayed in Figures 6 and 7, respectively.

Similarly as in the case of As, Zn and pH, the important wavelengths in the VIS–NIR (Figure 6)
indicate inter-correlation with Fe-oxides, in addition, the absorptions in the SWIR region at 2.21 µm
and 2.34 µm indicate inter-correlations with clay minerals and C biomass, respectively. The most
important ranges in the MWIR–LWIR region were identified as follows: 2.77–3.83 µm (3600–2580 cm−1),
5.75–6.40 µm (1740–1560 cm−1), 8.15–9.52 µm (1226–1050 cm−1) and 10.90–12.20 µm (920–825 cm−1)
(Figure 7). The positive correlation peaks, which are highest around 5.2 µm (1900 cm−1) and 7.7 µm
(1300 cm−1), characterize the absorption shoulder positions and demonstrate that the higher the
shoulder is, the higher the contents of the studied soil attributes are. On the other hand, absorption
wavelengths that correlate with the soil attribute contents are characterized by negative correlations,
the stronger the relationship between the soil attribute and the absorption depth, the more significant
the negative correlation and thus a lower r is obtained. In Table 9 the key wavelength ranges identified
within the MWIR–LWIR regions when using the sensitivity analyses are assigned. To compare the
results, Table 10 shows band assignments of identified wavenumbers compiled from [46,53–58].
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Table 9. Key wavelength ranges within MWIR–LWIR identified in this study employing a sensitivity
analysis. As the results published by the scientific community commonly use the wavelength (µm)
and/or wavenumber (cm−1) scales, both scales are used to make the results comparable and universal.

Soil Parameter
MWIR–LWIR

µm cm−1

pH 2.76; 8.42; 11.79 3619; 1188; 848

CORG

2.77–3.87 (absorption: 2.80); 3600–2580 (absorption: 3564);
5.75–6.62 (absorptions: 6.00 and 6.33); 1740–1510 (absorptions: 1666 and 1580);
8.16–9.52 (absorptions: 8.70, 9.26); 1226–1050 (absorptions: 1150; 1080);
10.75–12.12 (absorption: 11.79) 930–825 (absorption: 848)

BS 2.76; 8.42; 11.79 3619; 1188; 848

BC 2.76; 8.42; 11.79 3619; 1188; 848

CEC
2.77–3.87 (absorption: 2.80); 3600–2580 (absorption: 3564);
8.16–9.52 (absorptions: 8.70, 9.26); 1226–1050 (absorptions: 1150; 1080);
10.75–12.12 (absorption: 11.79) 930–825 (absorption: 848)

Pb

2.77–3.87 (absorption: 2.80); 3650–2780 (absorption: 3602);
5.75–6.62 (absorptions: 6.00 and 6.33); 1750–1550 (absorptions: 1666);
8.16–9.52 (absorptions: 8.70, 9.26); 1226–1050 (absorptions: 1150; 1080);
10.75–12.12 (absorption: 11.79) 930–825 (absorption: 848)

Hg

2.77–3.87 (absorption: 2.80); 3650–2780 (absorption: 3556);
5.75–6.62 (absorptions: 6.00 and 6.33); 1750–1550 (absorptions: 1666; 1573);
8.16–9.52 (absorptions: 8.70, 9.26); 1226–1050 (absorptions: 1150; 1080);
10.75–12.12 (absorption: 11.79) 930–825 (absorption: 848)

As
2.77–3.87 (absorption: 2.80); 3650–2780 (absorption: 3602);
8.16–9.52 (absorptions: 8.70, 9.26); 1226–1050 (absorptions: 1150; 1080);
10.75–12.12 (absorption: 11.79) 930–825 (absorption: 848)

Cu

2.77–3.87 (absorption: 2.80); 3650–2780 (absorption: 3602);
5.75–6.62 (absorptions: 6.00 and 6.33); 1750–1550 (absorptions: 1666);
8.16–9.52 (absorptions: 8.70, 9.26); 1226–1050 (absorptions: 1150; 1080);
10.75–12.12 (absorption: 11.79) 930–825 (absorption: 848)

Zn
2.77–3.87 (absorption: 2.80); 3650–2780 (absorption: 3602);
8.16–9.52 (absorptions: 8.70, 9.26); 1226–1050 (absorptions: 1150; 1080);
10.75–12.12 (absorption: 11.79) 930–825 (absorption: 848)
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Table 10. Band assignments of identified MWIR–LWIR wavenumbers (these were compiled
from [46,53–58]. As the results published by the scientific community commonly use the wavelength
(µm) and/or wavenumber (cm−1) scales, both scales are used to make the results comparable
and universal.

Wavelengths
(µm/cm−1) Constituent/Structural Assignment Remark

2.778–3.333 µm/
3600–3000 cm−1

O–H stretching bands, H2O bending
near 3.1 µm

Overtones and combinations of phyllosilicates
2.66, 2.73 µm are fundamental modes in H2O molecule

2.762–2.994 µm/
3620–3340 cm−1 H2O–stretching bands Overtones and combinations of phyllosilicates

3.410–3.571 µm/
2932–2800 cm−1 C–H bands of organic compounds Overlap with inorganic components such as clays

and silica

5.747–5.889 µm/
1740–1698 cm−1

C=O groups in carboxylic acids,
aldehydes and ketones C–O groups in soil organic matter

6.087–6.250 µm/
1640–1600 cm−1

Amid I band (C=O, C–N) of proteins,
C=O of carboxylic acids and ketones C–O groups in soil organic matter

7.812–8.333 µm/
1280–1200 cm−1 C=O and O–H of COOH soil organic matter

8.547–10.526 µm/
1170–950 cm−1 C–O–C stretching of polysaccharides soil organic matter

8.1–9.5 µm Si–O bond stretching vibrations quartz

8.771–12.048 µm/
1140–830 cm−1

Tetraeder SiO4 stretching and
banding vibrations silicates

10.929–12.658 µm/
915–790 cm−1 OH banding vibrations phyllosilicates

The key wavelengths for BS as well as BC were found for a region between 2.76 and 3.20 µm
(3625–3120 cm−1) (for both r lower than −0.4) and then 11.8–12.0 µm (843–833 cm−1) (r for BS
lower than 0.4 and for BC lower than −0.35 respectively). Both these ranges are assigned to
phyllosilicates (Table 10) showing that for these attributes it is beneficial if such a mineral phase
can be spectrally detected.

Corg exhibits negative correlation lower than −0.5 across a wide range between 2.77 and
3.60 µm (3600–2778 cm−1), that can be assigned to overtones and combinations of phyllosilicates
and organic compounds (Table 10). Then negative correlations lower than −0.4 are associated
with the following ranges: 5.83–6.14 µm (1712–1627 cm−1), 8.15–8.80 µm (1226–1134 cm−1),
10.12–9.40 µm (1095–1064 cm−1) and 11.07–12.00 µm (902–833 cm−1). The range between 5.83–6.14 µm
(1712–1627 cm−1) is associated with C–O groups in soil organic matter, the range 8.15–8.80 µm
(1226–1134 cm−1) to COOH, the range 10.12–9.40 µm (1095–1064 cm−1) can be possibly assigned
to C–O–C stretching of polysaccharides as well to silica content (SiO4) and the 11.07–12.00 µm
(902–833 cm−1) to phyllosilicate content.

When analysing the correlation across the MWIR–LWIR wavelengths for Cu and Pb, a wide range
between 2.77–3.40 µm (3600–2923 cm−1) exhibits correlations lower than −0.6 (possibly assigned to
phyllosilicates). Apart from this, the range between 8.26 and 9.30 µm (1210–1070 cm−1) shows negative
correlations lower than 0.6 for Cu and lower than 0.55 for Pb. This demonstrates that Cu and Pb are
associated with phyllosilicates and quartz as well as with the organic phases in the studied soils.

4. Discussion

The PARACUDA® engine, due to its automatic processing, allowed a systematic assessment
of what effects preprocessing techniques have on prediction model validity. Some preprocessing
strategies have been tested before; Gholizadeh et al., 2015 [10] achieved the best results to predict
potentially toxic elements (As, Cd, Cu) using Support Vector Machine Regression (SVMR) when
employing Sawitzky–Golay smoothing together with derivative analysis as a pretreatment technique.
Nocita et al., 2014 [59] tested several preprocessing techniques (CR, SNV, Sawitzky–Golay smoothing
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filter and the 1st and 2nd derivative) prior to employing PLSR modelling of soil organic content
(SOC) when using the Lucas dataset and concluded that the Sawitzky–Golay smoothing and
1st derivative improved model prediction validity while the 1st derivative analyses improved the
model’s performance for organic soil the most. In this study, the evaluation of 2880 models confirmed
that the preprocessing of spectral data prior to modelling is an important step. For all of the soil
attributes, the models achieved the best results when some kind of preprocessing techniques were
employed (usually a combination of two or three of them). For most of the models run, smoothing
(smoothing and/or final smoothing) was beneficial, especially in combination with derivative
transformation (1st or 2nd derivatives).

PARACUDA® was used to find the best estimation models of diverse soil attributes reaching the
highest validity. A similar systematic approach was tested by Zhao et al., 2015 when using a processing
trajectory to optimize non-systematic parameters (e.g., spectral pretreatment, latent factors and variable
selection) and demonstrating better efficiency of using this approach to model the relative content of
water in corn. It can be concluded that the data mining engine presented here can serve as an efficient
tool to find the best prediction models. Apart from CEC, it was possible to find satisfactory predictions
for the other modelled attributes (Cu considered as excellent prediction: RPD and R2test higher than
3.0 and 0.9 respectively; Corg, BC, BS, Pb, Hg models denoted as good prediction: RPD values from
2.5–3.0 and R2test between 0.82 and 0.90). Approximate quantitative predictions were achieved for As,
Zn and pH (RPD values from 2.0 to 2.5 and R2test between 0.66 and 0.81). The values of CEC generally
characterizing the studied Norway spruce forest soil dataset were high (mean: 109.8 mmol(+)/kg,
standard deviation: 32.7 mmol(+)/kg) when compared to the studies published by [60,61]. This can
be the reason why the CEC prediction was worse (RPD = 1.48, R2test = 0.62). For heavy metals, the
results are comparable or even better than those published by [10] when employing SVM modelling
together with the 1st derivative as a pretreatment technique or by Bray et al. (2009) [62] who used an
ordinal logistic regression technique to predict Zn, Cu, Pb and Cd.

However, it needs to be noted that the results published by different groups or researchers are not
consistent in the manner of defining the accuracy that can be achieved in predicting different heavy
metals or other attributes which do not show any direct spectral chromophores. As they do not show
any direct spectral chromophores, the mechanism of detecting them using infrared spectroscopy is
thus attributed to their relationship with other soil components that have direct spectral chromophores.
Therefore, for different case studies, such attributes can be predicted at different accuracy levels.
For instance, heavy metals can be modelled due their associations with soil components such as:
organic matter, clay minerals and Fe/Al oxides. These indirect relationships have previously been
explored in pedotransfer functions (PTFs) [28]. For instance [63,64] demonstrated that various PTFs
can be used to predict the adsorption of metals as a function of soil carbon content, CEC and pH.
Furthermore, Choe et al. (2008) [65] proposed a binding mechanism based on the surface complex
model where metals can bind to the hydroxylated mineral surface thus affecting the absorptions
characteristic for Fe, Al, Mn oxides and clay minerals or organic matter. Therefore, in each case study,
the results depend on the local geochemical conditions and thus the results are highly site-specific.

Due to the limited number of samples analysed (40 samples) and due to the fact that they
were collected within one region, these results are also site-specific. However, it shows how the
processing scheme presented here and the PARACUDA® engine can be used to find the best prediction
models as well as to get a better understanding of the geochemical properties of the samples studied.
Employing statistical modelling with the aid of the system, allowed two groups or mineral associations
to be defined: First group—Zn, As and pH—which can be predicted in a more accurate way using
high spectral resolution spectra covering the whole optical range (ASD reflectance, 0.4–2.5 µm,
Scenario 3)—and the second group—BC, BS, Pb, Hg, and Cu—for which more reliable predictions
can be achieved when working with the spectrum covering shorter optical range and the thermal
region (MWIR and LWIR, Scenario 1). Basically the same groups were defined when analysing the
linear correlations among their chemical concentrations (Figure 2). It has been explained that pH, as
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well as Zn and As, show indirect spectral indications to iron oxides, organic matter and clay minerals
(Figure 5). This relationship was also described in [33] where multivariate statistics were employed
on a chemical analysis characterizing diverse horizons within the soil profile in order to define a
conceptual model for the chemical and biochemical processes taking place in the studied soil–tree
system. On the other hand, the second group (BC, BS, Pb, Hg, and Cu) has a stronger relationship
to phyllosilicate content together with organic component (Corg). Logically, different TPHs can be
used to predict these two groups (pH, Zn, As vs. BC, BS, Pb, Hg, and Cu). It has been demonstrated
that the statistical analysis of spectral assignments can add important and reliable information about
the non-chromophoric properties, just as laboratory methods provide. Furthermore, the indirect
relationships to diagnostic soil constituent absorption features can be analysed to help to resolve
the heavy metal’s abundances and geochemical form (e.g., speciation) despite the argument some
scientists have raised [66]. This is key information for understanding the chemical behaviour of heavy
metals in the environment studied.

Based on these results, it is possible to support the suggestion given by [61], that the use of
portable VIS–NIR–SWIR together with MWIR–LWIR instruments has a potential to replace many
conventional techniques of soil analysis. Whereas optical field spectrometers are becoming very
popular and more and more frequently used, the price for a MWIR–LWIR portable instrument is still
too high and remains unaffordable for most researchers. Nonetheless, as recently also demonstrated by
others [12,67] these results strengthen the idea that future satellite systems should be designed to work
in both the optical and thermal regions (e.g., HyspIRI) in order to better evaluate heavy metals on the
Earth’s surface as well as to improve the modelling capability of attributes in complex soil systems.
This is also relevant for field and laboratory work.

5. Conclusions

The APA data mining engine termed PARACUDA® proved to be a powerful tool to assess
the spectral performances of different spectrometers in order to achieve the best prediction models.
This task cannot be achieved by the traditional and regular method that uses manual analyses and a
subjective consideration by an expert/operator. For 10 soil attributes, the evaluation of 2880 models
proved that preprocessing spectral data prior to modelling is an important step. For all of the attributes,
the models achieving the best results employed some kind of preprocessing techniques (usually a
combination of two or three of them). For most of the models run, smoothing (smoothing and/or
final smoothing) was beneficial, especially in combination with derivative transformation (1st or
2nd derivatives).

Using the engine it was possible to find excellent (Cu) or good models (Corg, BC, BS, Pb, Hg)
for most of the modelled attributes. Approximate quantitative predictions were achieved for As, Zn
and pH. On the other hand, for the tested soils, the CEC was found to be difficult to predict even when
using the PARACUDA® and being able to assess 288 different models for this soil attribute. This can
be explained by the rather high CEC values characterizing this forest soil dataset.

The information from the thermal region (MWIR and LWIR) brought significant benefits to
modelling base cations (BS), base saturation (BS) and organic C (Corg) as well as such heavy metals
as Pb, Hg, Cu and As. On the other hand, the wider optical-range coverage (ASD spectrometer)
was more beneficial for modelling pH and Zn. These two attributes showed a high affinity to iron
oxides, thus, in this case, the spectra acquired by the ASD spectrometer, which covers the optical
range between 0.35–2.5 µm at a high spectral resolution, resulted in better predictions. The sensitivity
analyses allowed identification of the wavelengths across the optical and thermal regions that were
found to be important to predict selected soil attributes. Furthermore, it has been shown how the
processing scheme presented here and PARACUDA® can be used to obtain a better understanding of
the geochemical properties of the samples studied (e.g., mineral associations). This is key information
for understanding the chemical behaviour of heavy metals in the environment studied.
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