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Abstract: Surface urban heat island (SUHI) in the context of urbanization has gained much 
attention in recent decades; however, the seasonal variations of SUHI and their drivers are still not 
well documented. In this study, the Beijing-Tianjin-Hebei (BTH) urban agglomeration, one of the 
most typical areas experiencing drastic urbanization in China, was selected to study the SUHI 
intensity (SUHII) based on remotely sensed land surface temperature (LST) data. Pure and 
unchanged urban and rural pixels from 2000 to 2010 were chosen to avoid non-concurrency 
between land cover data and LST data and to estimate daytime and nighttime thermal effects of 
urbanization. Different patterns of the seasonal variations were found in daytime and nighttime 
SUHIIs. Specifically, the daytime SUHII in summer (4 °C) was more evident than in other seasons 
while a cold island phenomenon was found in winter; the nighttime SUHII was always positive 
and higher than the daytime one in all the seasons except summer. Moreover, we found the highest 
daytime SUHII in August, which is the growing peak stage of summer maize, while nighttime 
SUHII showed a trough in the same month. Seasonal variations of daytime SUHII showed higher 
significant correlations with the seasonal variations of ∆LAI (leaf area index) (R2 = 0.81, r = −0.90) 
compared with ∆albedo (R2 = 0.61, r = −0.78) and background daytime LST (R2 = 0.69, r = 0.83); 
moreover, agricultural practices (double-cropping system) played an important role in the 
seasonal variations of daytime SUHII. Seasonal variations of the nighttime SUHII did not show 
significant correlations with either of seasonal variations of ∆LAI, ∆albedo, and background nighttime 
LST, which implies different mechanisms in nighttime SUHII variation needing future studies.  

Keywords: Urban heat island; land surface temperature; land use change; albedo; LAI; 
urbanization 

 

1. Introduction 

Despite only a small proportion of global land cover, urban areas place 54% of world’s 
population according to the 2014 revision of the World Urbanization Prospects [1–3], and the urban 
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area of 2000 may triple by 2030 if the trend continues [4]. Along with more and more urban 
inhabitants, a large number of artificial architectural landscapes and impervious surfaces (such as 
paving and roofing materials) will replace the original underlying landscapes containing transpiring 
vegetation and pervious surfaces [1,5–8]. These changes will modify surface properties such as 
albedo, emissivity, leaf area index (LAI), vegetation cover fraction and roughness length [9–15], 
which will subsequently alter exchanges of energy and water between land surface and atmosphere, 
and then modify surface microclimatic variables such as the temperatures, humidity, and 
near-surface winds [10,16]. A common resultant phenomenon along with urbanization is the urban 
heat island (UHI) effect, which refers to the fact that urban areas tend to have higher air and/or 
surface temperature than surrounding suburban/rural areas [17]. The UHI not only influences 
terrestrial ecosystems [13,18,19], local climate [10,16,20,21], water and air quality [22–24], and 
biodiversity [4], but also has substantial effects on the quality of life and human well-being in urban 
areas [25–27]. Therefore, a better understanding of UHI intensity and its drivers is critical to support 
urban climate research, urban planning, and urban sustainability [16,17,28,29] 

UHI studies can be subdivided into three types: the surface UHI (SUHI), the canopy UHI, and 
the boundary layer UHI [30–32]. The canopy UHI relates to the thin layer of the atmosphere between 
ground level and roof top height, and is usually described by air temperature; the boundary layer 
UHI relates to a layer above the canopy layer, and is also usually measured by air temperature; 
SUHI differs from canopy UHI and usually is measured by land surface temperature (LST) from 
satellite or airborne sensors through upwelling thermal radiance [33]. With advantages in spatially 
explicit coverage and high resolution, LST-based SUHI has been increasingly used in recent studies 
at multiple scales ranged from cities [34–39], countries [28,40,41], continents [42–44], to the whole 
world [45,46]. To accurately quantify UHI effects, a definition of urban areas and its surrounding 
suburban/rural areas is the first step. However, there existed large differences among these studies 
[42], and fewer studies take steps to ensure that the selected urban and suburban/rural areas stayed 
unchanged throughout the study period, usually ignoring the data concurrency between land cover 
data and LST data [47,48]. Land cover change over time can make satellite UHI observations more 
complicated and uncertain; such non-concurrency of urban/rural areas can lead to various biases in 
land surface conditions and UHI results [47,49]. In addition, most studies emphasize relations with 
SUHI intensity (SUHII) in a specific season and its driving forces (spatial pattern), yet seasonal 
variability of SUHI and the relations with the variability of biophysical variables and background 
climate (temporal pattern) have not been well documented. 

Since the Reform and Opening, China has undergone rapid urbanization at an accelerating rate; 
both the number and sizes of cities are growing, and resulting in a series of ecological and 
environmental problems. Urbanization has become one of the main characteristics of land use 
change in China. In this paper, our purpose is to evaluate seasonal variability of multi-year mean 
daytime and nighttime SUHI intensity (SUHII) based on remotely sensed LST observations with 
high accuracy in typical urban sprawl regions of Beijing-Tianjin-Hebei (BTH) urban agglomeration. 
We also try to establish its relationships with variations of biophysical variables (LAI, albedo) and 
background climate. 

2. Materials and Methods  

2.1. Study Area 

As one of the urban agglomerations experiencing rapid urbanization, the Beijing-Tianjin-Hebei 
(BTH) region of China was chosen to study thermal effects of urbanization (Figure 1a). The BTH 
urban agglomeration includes Beijing City, Tianjin City, and 11 cities in Hebei province (Figure 1b), 
and it is currently defined as the political, cultural, and economic center of China. The BTH region is 
one of the most developed regions in China, it generates over 10% of the total national GDP in 2010 
despite covering only about 2.28% of the Chinese territory (about 22 × 104 km2) [50]. In 2010, the 
population in this area was about 104.6 million, accounting for 7.84% of the Chinese total 
population. Beijing and Tianjin are two megacities with population more than 10 million, and Hebei 
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is one of important industrial province in northern China. Most of this region is flat to slightly 
sloping lowland except the mountainous area of Chengde and the northern Zhangjiakou in the 
northwestern part, and it belongs to the temperate continental monsoon climate with hot-wet 
summer and cold-dry winter [51]. In the BTH region, cropland is the land use type occupying the 
largest proportion (about 50%), and woodland accounts for about 21%, while waterbodies is less 
than 3%. In most cities, cropland is also the dominate land use type around city/town centers (Figure 
1a). In recent decades, the BTH urban agglomeration has undergone enormous population increase 
and economic growth, urban sprawl is prevalent and replacing a mass of surrounding croplands, 
while seldom woodland and waterbodies [7,52]. Moreover, the winter wheat-summer maize double 
cropping system is dominant in this region. The typical growing season for winter wheat is from 
early October to mid-June of the following year, and summer maize is inter-planted in wheat fields 
at the beginning of June and harvested at the end of September [53,54]. 

 

Figure 1. Overview of the study area: (a) Location of the Beijing-Tianjin-Hebei (BTH) urban 
agglomeration in China; (b) Spatial pattern of land use types; (c) Elevation; (d) Distribution of 
built-up land expansion (%) during 2000–2010 and the distribution of selected typical urban sprawl 
areas (blue rectangles). 
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2.2. Data 

2.2.1. Land Use and DEM Data 

We used the National Land Cover/Use Dataset of China (NLCD-China) that our research team 
developed in this study. This dataset was primarily produced by interpreting Landsat TM/ETM+ 
satellite remote sensing data. The classification scheme includes six first-class land use types: 
cropland, woodland, grassland, water bodies, built-up land, and unused land. Moreover, there were 
25 second-class land use types such as paddy fields, dry land, lakes, streams, and rivers, more 
information can be found in [55,56]. In this study, we used the land use grid proportion data with 
1 km × 1 km resolution in 2000 and 2010. Field survey based validation indicated that the 
classification accuracy for each land use type was over 90% [55,57]. Digital Elevation Model (DEM) 
data was derived from the Space Shuttle Radar and Topography Mission (SRTM). 

2.2.2. MODIS data 

We used the 8-day Emissivity/LST products (Version 005) from MODIS with 1 km resolution 
from the Land Processes Distributed Active Archive Center (http://modis-land.gsfc.nasa.gov/). The 
LST was retrieved from clear-sky (99% confidence) observations using a generalized split-window 
algorithm [58]. MODIS provides observation data regarding the Earth four times a day, the overpass 
time of Terra is around 10:30 (local solar time) in its descending mode and 22:30 in its ascending 
mode, while the overpass time of Aqua is around 13:30 in its ascending mode and 01:30 in its 
descending mode. The LST products derived from the Terra (MOD11A2) and Aqua (MYD11A2) 
instruments from 2002/185 (year/DOY) to 2011/361 were included in this study to generate month, 
seasonal, and annual LST datasets. To ensure four observations per day, the MODIS datasets before 
2002/185 were not included for fewer than four observations per day. MODIS LST datasets have 
been widely validated to have an accuracy of less than 1 K in most cases [59]. 

Snow cover data (MOD10A2) (http://nsidc.org/data/MOD10A2) were provided by National 
Snow and Ice Data Center (NSIDC). The 8-day 500 m snow cover product has a high accuracy of 
more than 93% [60]. The time range was the same with the albedo described in the following section 
for retrieving snow-free albedo.  

2.2.3. GLASS Data 

Compared with MODIS albedo and LAI datasets, the Global LAnd Surface Satellite (GLASS) 
albedo and LAI datasets are gapless and continuous, and have similar accuracy to MODIS products. 
Therefore, we used the albedo and LAI datasets of GLASS products (http://glcf.umd.edu/data/) for 
analysis of urbanization effects. The GLASS broadband albedo (including visible and NIR spectrum) 
products show a reasonable consistency with the magnitude and trend of the ground measurements 
by direct comparison with ground measurements at a set of homogeneous FLUXNET sites, with a 
bias of less than 0.001 and an RMSE of less than 0.05 for clear days [61]. Previous study also showed 
high consistency of GLASS and MODIS (or CYCLOPES) LAI values by direct comparison with 20 
ground-measured LAI reference maps at 17 sites, with an R-square of 0.76 and RMSE of 0.51 [62–64]. 
The 8-day GLASS albedo products (GLASS02A06 V3, 2000/065–2010/361) and LAI products 
(GLASS01A01 V3, 2001/001–2011/361) with 1 km resolution were used in this study. 

2.3. Methods 

2.3.1. Typical Urban Sprawl Regions 

Cropland is the main land cover type around cities and towns in the BTH region, and it is also 
the most converted type in the urbanization process; thus, it is proper to measure the thermal effects 
of urbanization by comparing LST of built-up land and nearby croplands. In order to quantitatively 
measure the thermal effects of urbanization, a set of specific urban and rural paired regions were 
chosen to compare the LST difference between urban and nearby cropland areas, following the 
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below four principles: (1) Selected regions had undergone significant urban expansions; (2) The 
spatial distribution of the selected regions were throughout the study area to represent the entire 
region; (3) In the selected regions, conversion of cropland to built-up land has occurred; (4) There 
were sufficient optimal values of biophysical parameters in the chosen regions to ensure the 
reliability of statistical results. Based on these principles, a total of eight typical areas were chosen 
finally (Figure 1d). Regions No. 1 and No. 8 had a size of 100 km × 100 km, following with No. 4 
region of 100 km × 60 km and the rest regions of 60 km × 60 km. The eight chosen typical regions 
include 10 of 13 cities in the study area, representing the majority of the urban expansion area. The 
remaining three northern cities were not chosen for less urban expansion and rare optimal values of 
the biophysical parameters. 

2.3.2. Optimal Biophysical Parameters Extraction 

Optimal surface parameter values were extracted following three steps: (1) Pure and 
unchanged grids of built-up land and cropland were selected when the area proportion of this land 
cover type was greater than or equal to 90%, and their proportion did not change during 2000–2010, 
and elevation differences between cropland and built-up land ranged within ±120 m in the same 
typical urban sprawl region (Figure 2); (2) Typical and accurate biophysical values of specific land 
cover type were obtained by processing original data through quality control flag information. 
Original 500 m NSIDC snow-cover data (MOD10A2) was first resampled to 1 km using the nearest 
neighboring method for matching the albedo data. Optimal snow-free broadband white-sky albedos 
of eight days were obtained by choosing albedo data with a QC flag of 0 (best quality) in 
GLASS02A06 datasets and snow-free condition according to the NSIDC snow-cover data. Optimal 
LAI values were obtained by choosing LAI data with a QC flag of 0 (best quality) in GLASS01A01 
datasets. High-quality LST values of cropland were obtained by choosing values with LST Error Flag 
of 0 in MOD11A2/MYD11A2 datasets, yet LST values of built-up land extraction were different, they 
were obtained by choosing values with LST Error Flag of 0 and 1 for following calculation and 
analysis. Finally, four times of LST data over built-up land and cropland in a whole day were 
extracted. (3) The 8-day extracted grid values (LST, Albedo, and LAI) in about 10 years were averaged to 
eliminate inter-annual variation, and then 8-day zonal average values in typical urban sprawl regions 
were calculated. Finally, monthly and seasonal values for specific land cover type were acquired based 
on 8-day zonal average values. The four seasons were defined as spring (March to May), summer (June 
to August), autumn (September to November), and winter (December to February). 

 
Figure 2. Distribution of the pure and unchanged urban and cropland pixels, and the selected typical 
urban sprawl regions (blue rectangles) for surface urban heat island intensity (SUHII) analysis.  
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2.3.3. Analysis 

In this study, SUHII was defined as the LST differences between pure and unchanged built-up 
land and cropland at specific observation time in a specific region.  

( ) ( , ) ( , )t urban t cropland tSUHII LST LST= −  (1)

where LST(urban,t) is LST of pure unchanged built-up land at observation time t, and LST(cropland,t) is LST 
of pure unchanged cropland at observation time t, SUHI(t) is the SUHII at observation time t. 

Four times corresponding to MODIS observation times were adopted for SUHII analysis, 
daytime LST values of built-up land/cropland were obtained by averaging ones at 10:30 and 13:30, 
while nighttime LST values of built-up land/cropland were obtained by averaging ones at 22:30 and 
1:30 local time, then daytime/night SUHII could be obtained according to Equation (1). As two key 
biophysical variables of radiation budget and energy balance, monthly mean LAI difference (∆LAI) 
and albedo difference (∆albedo) between built-up land and cropland were applied to uncover the 
drivers of monthly mean daytime and nighttime SUHII. Moreover, cropland daytime/nighttime LST 
during the calculation of SUHII was defined as background daytime/nighttime LST. Dependence of 
daytime/nighttime SUHII on background daytime/nighttime LST was also implemented [43].  

3. Results 

3.1. Seasonal Variations of SUHII  

3.1.1 Daytime SUHII 

The variations in monthly daytime LST in both built-up land and cropland showed unimodal 
patterns across the year (Figure 3a). From January to June/July, LST increased, then decreased, and 
the LST values at 13:30 were significantly higher than that at 10:30 in a whole year. Large monthly 
and seasonal variations of SUHII were observed during daytime in the BTH region (Figure 3b,c). 
From April to October, daytime SUHII was positive, showing two peaks in May and August, and 
with the highest surface urban heat island phenomenon in August. However, in the other five 
months, the daytime SUHII was negative, showing urban cool island phenomenon in these months. 
The SUHII at 13:30 was almost higher than that at 10:30 in the whole year, with the exception of 
November and December. From the perspective of seasons, summer was the season experiencing 
largest SUHII in the daytime, reaching about 4 °C. In summer, SUHII was 3.50 ± 0.57 °C at 10:30 and 
4.43 ± 0.79 °C at 13:30. Spring and autumn also suffered from SUHI phenomenon, whose intensity 
was much lower than summer, less than 2 °C. However, the daytime SUHII in winter was different 
from other three seasons, showing negative values both at 10:30 and 13:30. As a whole, annual 
daytime SUHII was 0.91 ± 0.59 °C, and SUHII increased from 0.68 ± 0.64 °C at 10:30 to 1.15 ± 0.64 °C 
at 13:30.  

 
Figure 3. Cont. 
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Figure 3. Seasonal variations of daytime land surface temperature (LST) and daytime SUHII: (a) 
Monthly variation of daytime LST for built-up land and cropland; (b) Monthly variation of daytime 
SUHII; (c) Seasonal variation of daytime SUHII. Error bars represent one standard deviation across 
the eight typical urban sprawl regions. 

3.1.2. Nighttime SUHII 

The variations in monthly nighttime LST in both built-up land and cropland also showed 
unimodal patterns across the year, similar to that in daytime (Figure 4a). From January to July, LST 
increased, then decreased, and LST values at 22:30 were significantly higher than that at 1:30 in a 
whole year for both built-up land and cropland. Compared with daytime SUHII, monthly and 
seasonal variations of SUHII were found to be more stable during nighttime in the BTH region 
(Figure 4b,c). In the 12 months, nighttime SUHII was always positive, showing stable apparent 
SUHI phenomenon at nighttime. And the SUHII at 22:30 was higher than that at 1:30 in all seasons 
as well as most of the months. On the contrary to daytime SUHII, summer was the season 
experiencing smallest nighttime SUHII (only 2.53 ± 0.54 °C), with 2.61 ± 0.53 °C at 22:30 and 2.45 ± 
0.56 °C at 1:30, which was much lower than daytime SUHII in summer. In spring, autumn and 
winter, the nighttime SUHI phenomenon was always remarkable (SUHII > 3 °C), larger than 
corresponding daytime SUHII. As a whole, annual nighttime SUHII was 3.11 ± 0.48 °C, and more 
remarkable at 22:30 (3.22 ± 0.49 °C) than that at 1:30 (3.00 ± 0.51 °C). 

 
Figure 4. Cont. 
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Figure 4. Seasonal variations of nighttime LST and SUHII: (a) Monthly variation of nighttime LST for 
built-up land and cropland; (b) Monthly variation of nighttime SUHII; (c) Seasonal variation of 
nighttime SUHII. Error bars represent one standard deviation across the eight typical urban sprawl 
regions. 

3.2. Driving Forces of SUHII Seasonal Variations 

As illustrated in Figure 5, the monthly mean daytime SUHII were closely related to monthly 
mean ∆LAI, ∆albedo, and background daytime LST. When cropland is converted to built-up land, 
LAI will decrease in the whole year, especially in May and August. Monthly mean daytime SUHII 
is negatively and significantly correlated with monthly mean ∆LAI (r = −0.90, p < 0.001), and the two 
daytime SUHII peaks in May and August correspond to the two troughs of ∆LAI. The highest 
SUHII in August was corresponding to the largest LAI difference. Moreover, albedo decreases in 
the whole year along with built-up land occupying cropland, especially in May and August. 
Relationships between monthly mean daytime SUHII and monthly mean ∆albedo were similar with 
that of ∆LAI (r = −0.78, p < 0.01). Two daytime SUHII peaks in May and August were also just 
corresponding to the two troughs of ∆albedo. Meanwhile, monthly background daytime LST was 
positively correlated with monthly SUHII (r = 0.83, p < 0.01). The month experiencing highest SUHII 
did not correspond to the highest month experiencing highest background daytime LST (Figure 5), 
indicating that monthly change of daytime SUHII was not related to a single factor, ∆LAI and 
∆albedo would exert influences on the SUHII simultaneously. According to multiple linear 
regression, combined effects of monthly mean ∆LAI, ∆albedo, and background daytime LST could 
explain a significantly larger part of the SUHII variation (R2 = 0.92, p < 0.001). As a whole, the 
seasonal variation of daytime SUHII was affected by synthetic effects of ∆LAI, ∆albedo, background 
daytime LST and other factors, and variation of ∆LAI is main driver of variation of daytime SUHII 
with higher explanation rate (R2 = 0.81) compared with variation of ∆albedo (R2 = 0.61) and 
background daytime LST (R2 = 0.69). 

In contrast, relationships between monthly mean nighttime SUHII and monthly mean 
∆LAI/∆albedo/background nighttime LST were insignificant (Figure 6). That means the driving 
forces of seasonal variations of nighttime SUHII were other factors than variations of ∆LAI, ∆albedo, 
or background nighttime LST, which was different from that of daytime SUHII. However, in 
growing seasons from April to September, we can also see high consistency as for monthly mean 
nighttime SUHII and monthly mean ∆LAI/∆albedo, especially in May and August, all showing 
unified troughs.  
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Figure 5. Driving forces of seasonal variations of daytime SUHII: (a) Seasonal variations of daytime 
SUHII and ∆LAI (leaf area index); (b) Correlations between monthly daytime SUHII and ∆LAI; (c) 
Seasonal variations of daytime SUHII and ∆albedo; (d) Correlations between monthly daytime 
SUHII and ∆albedo; (e) Seasonal variations of daytime SUHII and background daytime LST; (f) 
Correlations between monthly daytime SUHII and background daytime LST. The shaded areas and 
error bars represent one standard deviation across the eight typical urban sprawl regions. 
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Figure 6. Driving forces of seasonal variations of nighttime SUHII: (a) Seasonal variations of 
nighttime SUHII and ∆LAI; (b) Correlations between monthly nighttime SUHII and ∆LAI; (c) 
Seasonal variations of nighttime SUHII and ∆albedo; (d) Correlations between monthly nighttime 
SUHII and ∆albedo; (e) Seasonal variations of nighttime SUHII and background nighttime LST; (f) 
Correlations between monthly nighttime SUHII and background nighttime LST. The shaded areas 
and error bars represent one standard deviation across the eight typical urban sprawl regions. 

4. Discussion 

4.1 Possible Mechanisms of Seasonal SUHII Variations  

As a whole, the SUHII seasonal variation pattern was consistent with previous studies. The 
daytime SUHII in summer was the strongest, while daytime SUHII in winter showed a contrary 
urban cool island phenomenon. This strongest daytime SUHI phenomenon in summer from this 
study is consistent with previous studies about most of the China cities [40,41], Seoul and Tokyo 
[38], most of the central European cities [43], and most of the USA cities [28,65]. However, the cities 
with surface urban cool island are usually distributed in Northern China [40,41] and high latitudes 
of the Northern Hemisphere (e.g., 55°N–60°N) [10]. The variation in monthly mean daytime SUHII 
mainly resulted from monthly mean ∆albedo and vegetation change (∆LAI), which varied a lot 
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across the whole year (Figure 5). On the one hand, due to multiple internal reflections resulting from 
“canopy” geometry of numerous multi-story buildings, urban areas had lower albedo than rural 
croplands (Figure 5); thus, urban area absorbed more solar radiation, especially in summer with the 
highest solar radiation in a year. On the other hand, vegetation played a vital role in partitioning 
sensible heat and latent heat, which was a critical factor influencing UHI. Original land surface with a 
large amount of vegetation was exploited for residential or transportation lands with less vegetation, 
causing more sensible heat and less latent heat, thus summer experienced strongest SUHII.  

In the BTH region, two daytime SUHII peaks in May and August were found (Figure 5), and 
this was relevant with the winter wheat-summer maize double cropping system in this region. That 
showed the control of agriculture practices on vegetation activity and daytime SUHII, consistent 
with previous study [40]. In August (May), summer maize (winter wheat) was in peak growing 
stage, owing high LAI and evapotranspiration to cool the surface; while it was the contrary in the 
urban areas with high sensible heat energy to heat the surface, thus exaggerating the SUHI effect. 
Moreover, the higher daytime SUHII in August than May was most probably attributed to higher 
LAI of summer maize than that of winter wheat.  

Few studies attempted to explain winter daytime urban cool island, Wang et al. [66] tried to 
explain it by simulating LST assigning specific thermal inertia values to soil (882 W·s1/2·m−2·K−1) and 
urban (concrete) (1428 W·s1/2·m−2·K−1) types, and they found lower thermal inertia of dry bare soil in 
the rural areas can explain the negative SUHII in winter. In winter, land surface is mainly covered by 
bare soil with sparse vegetation, thus it is conducive to increase LST than urban areas, and in turn 
lead to the urban cool island. More studies should be done to discover the underlying mechanisms 
of this urban cool island phenomenon.  

With regard to nighttime SUHII, it was greater than daytime SUHII except for summer, and the 
monthly and seasonal variations of nighttime SUHII were more stable than that of daytime (Figure 
4), which was also found in the cities of northern China [40,66], but different from most of the US 
cities [28] and global mean trend deduced from 419 global big cities [46]. In the BTH region, 
monthly mean nighttime SUHII was not significantly correlated with monthly mean 
∆LAI/∆albedo/background nighttime LST, suggesting different driving mechanism compared with 
daytime SUHII. It is possibly because nighttime SUHI mainly resulted from the higher thermal 
admittance of building materials in urban areas than rural areas, which does not change significantly 
across seasons [29]. Another key factor affecting nighttime SUHII is anthropogenic heat emissions 
[67,68] from appliances, transportation systems and infrastructures, factories and other human 
activities, which exist all year around.  

Another interesting phenomenon was that daytime SUHII was generally increasing along with 
the background LST increase, showing significant dependence of daytime SUHII on background 
LST. This phenomenon meant that when background LST increased, urban area LST experienced 
faster increase than the nearby rural areas, similar with the heat wave exaggeration results on SUHII 
[69,70]. In our study, the SUHII reached a peak at 13:30 in summer for the two MODIS daytime 
observation times. With the increase of background LST from 10:30 to 13:30, urban areas received 
more incoming shortwave radiation and longwave radiation compared to near rural areas, resulting 
in more absorbed radiation. Moreover, sensible heat increased more significantly at urban areas due 
to more impervious materials and scarcity of water, while latent heat increased more significantly at 
the rural areas due to abundant vegetation and water [70].  

4.2. Uncertainties 

Although MODIS LST has been validated with a high accuracy, it is mostly over homogeneous 
surfaces; validation over heterogeneous surfaces such as urban areas remains uncertain [71]. 
Emissivity estimation of urban areas is easily biased for mixing components, intra-class variation 
[72,73]. Therefore, LST errors in urban areas may be slightly larger due to large uncertainties in 
surface emissivity, and this uncertainty will pass on the SUHII calculation. In addition, LST quality 
control would also have impacts on SUHII as mentioned in study of [74]. Another uncertainty is the 
chosen method of urban and rural areas for SUHII calculation. As shown in the study of [42], results 
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of different calculation methods (about eleven methods in total) of SUHII show weak correlations. In 
our study, the SUHII indicator is chosen as LST differences between pure and unchanged urban and 
cropland pixels to avoid non-concurrency between land cover data and LST data, which is different 
from previous studies. We also chose LST data of high accuracy through filtering using quality 
control flag to enable the SUHII calculation more accurate. 

Although the pattern of daytime SUHII was consistent with prior research and with less 
uncertainty [28,38,40,41,43,65], relatively large uncertainty existed in the pattern of nighttime SUHII. 
The nighttime SUHII in summer was lowest, which was consistent with most of the previous studies 
[40,66,75], but not consistent with the study of [76]. Nighttime SUHII in spring was the strongest in 
this study, which was different from summer in the study of [76] and winter in the studies of 
[40,66,75]. The differences may be due to different SUHII calculation methods [42] as well as LST 
quality control [74]. Furthermore, relatively limited optimal winter LST values may increase the 
winter SUHII uncertainty, and our study was for the multi-year average situation, not for a single 
year [76], thus inter-annual variations may affect the SUHII pattern. Additionally, the variations in 
city size and latitudes where cities are located could also affect the mechanism of the seasonal 
variation of SUHII [28,43,65]. Additional studies need to explore this in the future. 

5. Conclusions  

In this study, based on satellite remote sensing LST data and selected pure and unchanged 
urban and nearby cropland pixels, we assessed the seasonal variations of daytime and nighttime 
SUHII and established its relations with the seasonal variations of ∆LAI, ∆albedo, and background 
LST in the BTH region. In general, there were significant different patterns of daytime and nighttime 
SUHII. Summer daytime SUHII (about 4 °C) was more evident than other seasons while winter 
underwent urban cool island. May and August were two months that experienced daytime SUHII 
peaks, and August was the month suffering from strongest UHI phenomenon greater than 5 °C. 
Overall, nighttime SUHII was higher and more stable than daytime except in summer, and SUHII 
was higher than 2 °C in the whole year. Seasonal variations of daytime SUHII mainly resulted from 
variations of ∆LAI (R2 = 0.81, p < 0.001) and ∆albedo (R2 = 0.61, p < 0.01). More green space or white 
roofs are needed to alleviate daytime SUHII. Moreover, background LST increase would also 
exaggerate the SUHI effect in the daytime. However, correlations between seasonal variations of 
nighttime SUHII and ∆LAI/∆albedo/background nighttime LST were not significant. More studies 
are needed from the perspective of surface energy balance in the future.  
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