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Abstract: Saliency map generation in synthetic aperture radar (SAR) imagery has become a 
promising research area, since it has a close relationship with quick potential target identification, 
rescue services, etc. Due to the multiplicative speckle noise and complex backscattering in SAR 
imagery, producing satisfying results is still challenging. This paper proposes a new saliency map 
generation approach for SAR imagery using Bayes theory and a heterogeneous clutter model, i.e., 
the 	  model. With Bayes theory, the ratio of the probability density functions (PDFs) in the target 
and background areas contributes to the saliency. Local and global background areas lead to 
different saliency measures, i.e., local saliency and global saliency, which are combined to make a 
final saliency measure. To measure the saliency of targets of different sizes, multiscale saliency 
enhancement is conducted with different region sizes of target and background areas. After 
collecting all of the salient regions in the image, the result is refined by considering the image’s 
immediate context. The saliency of regions that are far away from the focus of attention is 
suppressed. Experimental results with two single-polarization and two multi-polarization SAR 
images demonstrate that the proposed method has better speckle noise robustness, higher accuracy, 
and more stability in saliency map generation both with and without the complex background than 
state-of-the-art methods. The saliency map accuracy can achieve above 95% with four datasets, 
which is about 5–20% higher than other methods. 

Keywords: saliency map generation; Bayes theory; G0 clutter model; synthetic aperture radar (SAR) 
 

1. Introduction 

Due to its all-weather and round-the-clock operational capabilities, synthetic aperture radar 
(SAR) has been widely used in various earth observation applications, such as urban planning, 
earthquake or tsunami damage assessment, military surveillance, etc. [1]. Compared with 
single-polarization SAR, fully polarimetric SAR (PolSAR) can provide much more information 
about targets with different scattering mechanisms [2,3]. Due to those advantages, target detection 
and recognition from SAR and PolSAR images have attracted a lot of attention over the past two 
decades. However, the multiplicative speckle noise and complex backscattering within SAR and 
PolSAR images are inevitable challenges for the task of automatic target recognition (ATR). 

There are many target detection algorithms proposed for SAR and PolSAR images [3–10]. 
Among them, the constant false alarm rate (CFAR) [11] is the classic and most popular detection 
method, and has been widely used. With the assumption that the backscattering of a man-made 
target is higher than that of the background in SAR images, CFAR discriminates the target pixels 
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from background clutter via intensity information. This method can perform very well in a uniform 
background, but usually suffers some challenges when faced with a complex background. The 
reason is that the CFAR algorithm is quite sensitive to the precise description for the statistical 
characteristic of background. Moreover, the detected targets are usually separated into points or 
blocks due to the speckle noise. Although some CFAR variants, such as the greatest CFAR, smallest 
CFAR [12], variability index CFAR [13], and censoring CFAR [9] have been proposed to overcome 
this limitation, they are still sensitive to the target size to some extent. Therefore, it is still a challenge 
to detect targets of various sizes, such as vehicles and buildings, at the same time. Aside from the 
pixel intensity contrast used in CFAR-like detectors, many other image features are studied for 
target detection in SAR and PolSAR images, such as variance features, fractal features, and wavelet 
features [14,15]. Further, Brekke et al. [16] proposed to use a statistic indicator, namely subaperture 
cross-correlation magnitude for the purpose of ship target detection from SAR images, where the 
bandwidth splitting in the subband extraction is optimized to improve the detection accuracy. 
Marino et al. [17] utilized sub-look analysis for the detection of ships in SAR images. Note that these 
sub-look algorithms are strongly dependent on the polarization, frequency, and resolution of the 
SAR data, which may influence the actual applicability of the algorithm. Iervolino et al. [18] 
proposed a new technique based on the generalized-likelihood ratio test (GLRT) for ship detection in 
SAR imagery with different bands. It is worth pointing out that these methods can effectively detect 
vehicles and ships from SAR imagery; however, other man-made targets, such as buildings or 
harbors, are not easily detected due to the complex structures and scattering mechanisms. Therefore, 
it is necessary to develop a new stable method that can help identify various man-made targets in 
SAR imagery. 

The human visual system (HVS) has a considerable ability to automatically attend to only 
salient regions in uniform and non-uniform scenes [19]. The term ‘salient region’ describes the 
ability of a local area to attract visual attention, which can then be quantitatively measured through 
using the intensity level, which results in a saliency map [20]. The saliency map can be used to 
describe the scene, and can also be further selected to yield the regions of interest, i.e., targets. 
Saliency map generation has been broadly applied in various applications, such as image 
segmentation, classification, object recognition, and location [21–25]. Until now, many saliency map 
generation methods have been proposed for optical images, such as Itti’s method [26] and Harel’s 
method [27], etc. The saliency value of each pixel is calculated from the contrast between the current 
pixel and its surroundings according to three features, i.e., color, intensity, and orientation. Note that 
these methods are effective in measuring the saliency of optical images rather than SAR images due 
to the multiplicative noise and complex backscattering. To resolve this issue, Zhang et al. [22] 
modified the aforementioned saliency map generation method via constructing a two-dimensional 
local-intensity-variation histogram for self-dissimilarity metrics, and incorporating the Gamma 
statistical distribution of speckle noise into local complexity metrics. Jin et al. [28] proposed a 
saliency map generation and salient region detection method for SAR images based on gray-value 
contrast and orientation information. A patch with a larger standard deviation can be considered 
more salient. Tang et al. [20] proposed a stable salient region detection and saliency map generation 
method for SAR images, which is insensitive to speckle noise and can effectively describe the local 
intensity variation. However, while these methods are suitable for SAR images, they are not easily 
used for PolSAR images. Jager et al. [29] proposed a saliency measure to identify the scale-invariant 
distinctive regions of PolSAR images based on the entropy and changes in the context. Huang et al. 
[30] proposed a saliency indicator for PolSAR images based on the dissimilarity between patches, 
which was measured by using a coherency matrix on a local and global scale. Wang et al. [21] 
proposed a new approach for saliency map generation based on the idea of pattern recurrence. A 
simple saliency indicator is defined as the normalized variance of the nonlocal similarity map 
between target and background patches. These methods can effectively measure salient areas for 
SAR and PolSAR images; however, the performance is usually not satisfactory in some extremely 
heterogeneous scenes, especially for the identification of salient targets that have various sizes, such 
as buildings. 
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To improve the accuracy of saliency measurements for SAR and PolSAR images with uniform 
or complex scenes, respectively, we propose a new saliency map generation method in this paper 
using Bayes theory and a heterogeneous clutter model. Similar to the framework of the CFAR, we 
also use a sliding window to define the target and background areas. With Bayes theory, the ratio of 
the probability density functions (PDFs) in the target and background areas contributes to the 
saliency, which is robust to the multiplicative speckle noise. Multiscale saliency enhancement is 
conducted to highlight targets with different sizes. Therefore, this method can acquire an accurate 
saliency map for various targets. In addition, the saliency map is finally refined by considering the 
image’s immediate context. More importantly, the shadows, layovers, and sidelobes in the SAR 
images do not degrade the performance of the saliency map generation, which increases the actual 
applicability and portability of our proposed methodology. Note that the main aim of this paper is 
to develop a new saliency map generation method for SAR and PolSAR data, which is not exactly 
the same as target detection. However, our method can highlight the targets of interest, and is 
beneficial to applications such as target identification, change detection, etc. 

The remainder of the paper is organized as follows. Section 2 introduces the proposed saliency 
indicator for SAR images, and is followed by the saliency indicator for PolSAR images, which is 
described in Section 3. Section 4 presents the experimental results, discussions, and comparisons 
with other methods. Conclusions are given in Section 5. 

2. Saliency Indicator for SAR Images 

In this section, we introduce the saliency indicator for SAR images. Heterogeneous areas or 
target regions that have distinctive patterns and complex backscattering should obtain high 
saliency. Conversely, homogeneous areas or background regions should obtain low saliency values. 
Based on this principle, we first define local and global single-scale saliency with the ratio of PDFs 
within heterogeneous and background areas, respectively. Then, the use of multiple scales further 
enhances the saliency. Next, we refine the saliency map to further accommodate another principle. 
This suggests that the areas that are close to the focus of attention should be explored significantly 
more than far away regions. Therefore, salient regions can be highlighted, and discriminated from 
the background. 

2.1. Local and Global Single-Scale Saliency Measure 

Let ∈  be a pixel in one SAR amplitude image, and ( ) be the corresponding pixel gray 
value. We assume that pixel  is salient when it belongs to a heterogeneous target region, and 
nonsalient when it belongs to a homogeneous background region. A dual hypothesis about pixel 
saliency can be defined as :	 	is	nonsalient, ∈ Homogeneous region:	 	is	salient, ∈ Heterogeneous region (1)

With this assumption, the posterior probabilities of pixel  in salient and nonsalient regions 
can be represented as ( | ( ))  and ( | ( )) , respectively. Based on Bayes theory, i.e., ( | ) = ( | ) ( )/ ( ), we have ( ) = ( ( )| ) ( )( ( ))  (2)

Considering ( ) = ( ( )| ) ( ) + 	 ( ( )| ) ( ), we can rewrite Equation (2) as ( ) = ( ( )| ) ( )( ( )| ) ( ) + ( ( )| ) ( ) (3)

where ( ) and ( ) are the prior probabilities of  and , respectively. Since we have no 
prior information about the saliency for pixel , ( ) and ( ) are regarded as equal, i.e., 	 ( ) = ( ) = 0.5. Equation (3) is then rewritten as 
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( ) = ( ( )| )( ( )| ) + ( ( )| ) = 1( ( )| )( ( )| ) + 1 ∝ ( ( )| )( ( )| ) (4)

where the posterior probability ( )  is denoted as the single-scale saliency measure for pixel 
. It can be found that the saliency measure is directly proportional to the ratio of PDFs in 

heterogeneous and homogeneous regions, namely the target and background areas, respectively. In 
this paper, similar to the framework of the CFAR detector, we define two kinds of sliding windows 
to estimate ( ( )| ) and ( ( )| ), as shown in Figure 1. 

 
Figure 1. Target and background regions (salient and nonsalient regions) used for the estimation of 
two probability density functions (PDFs). (a) Regions for the calculation of the local saliency 
measure; (b) Regions for the calculation of the global saliency measure. 

Figure 1a gives the target and background regions used for the calculation of the local saliency 
measure. It can be seen that a small window denotes the target region, while a large window 
represents the background region. These two windows have the same center pixel ( , ) and slide 
within the whole image simultaneously. Since the background region contains the local pixels 
surrounding the target region, the estimated PDF of the background is local, and the obtained 
saliency measure is also local. Here, we denote the background region as Θ . Figure 1b shows the 
regions used for the calculation of the global saliency measure, where we can see that there is only 
one small sliding window representing the target region. The whole image excluding the target 
region is regarded as the background region, which is represented as Θ . Therefore, the estimated 
PDF of the background is global, and we can then obtain the global saliency measure. With 
Equation (4) and Figure 1, the local saliency measure is defined as ( ) = ( ) = 1( ( )| ) ∈( ( )| ) + 1 (5)

and the global saliency measure is ( ) = ( ) = 1( ( )| ) ∈( ( )| ) + 1 (6)

Then, similar to the definition proposed by Tang et al. in [20], the final single-scale saliency 
measure can be computed by the local and global values as 
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( ) = ( ) ∙ ( ) (7)

Note that the single-scale saliency means that we only use one target or background window 
size value to calculate the saliency measure. 

Regarding the estimation of ( ( )| ) and ( ( )| ), a lot of studies have worked on the 
backscattering statistical models for SAR and PolSAR images [31,32]. Among them, the 
multiplicative model is popular and widely used, which is based on the assumption that the 
observed random value  is the product of two independent and unobserved random fields:  
and . The former models the terrain backscatter and depends only on the type of area that each 
pixel belongs to, while the latter represents the speckle noise. For a multilook amplitude SAR image, 
the speckle is usually assumed to be the square root of Gamma distributed, with a parameter equal 
to the number of looks, whose probability density function is [22,23] ( ) = Γ( ) exp − , > 0, ≥ 1 (8)

where  is the mean and  is the number of looks that can be estimated with the equivalent 
number of looks [22,33], which will be discussed later. Γ(∙) is the Gamma function. This situation is 
denoted as ~Γ / ( , ). Under the hypothesis , i.e., for homogeneous areas, the radar return  
can be solely explained in terms of speckle. In this way, a good model for the backscatter from 
homogeneous terrain areas, i.e., , is a constant [22]. Therefore, we have ( ( )| )~Γ / ( , ). 
Under the hypothesis , i.e., for heterogeneous areas, two particular cases of the terrain 
backscatter distribution are commonly used in SAR data analysis, which are the square root of 
Gamma and the reciprocal of a square root of Gamma distributions [31]. The former will result in 
the  distribution, and the latter will lead to the 	  distribution. The  distribution gives a good 
fit for some homogeneous areas as well as for heterogeneous areas; however, the observations from 
some significant salient areas were heterogeneous to such an extent that the  distribution could 
not take account of them. In contrast, the 	  distribution can handle this situation. Therefore, in 
this paper, we utilize the 	  distribution to model the heterogeneous areas. The terrain backscatter 
can be modeled by the / ( , ) distribution, which is characterized by the density as ( ) = 2Γ(− ) exp(− ) , − , , > 0 (9)

with Equation (8) and Equation (9), we have the density of 	  distribution as ( ) = 2 Γ( − )Γ(− )Γ( ) ( + ) , − , , > 0, ≥ 1 (10)

where the parameters  and  can be used to characterize the roughness and scale of the SAR 
images, respectively [34]. Therefore, in the heterogeneous areas, we have the situation denoted as ( ( )| )~	 ( , , ). 

It is worth pointing out that the Gamma distribution and the  distribution are both 
particular cases of the 	  distribution [34]. Therefore, the 	  distribution can model the 
homogeneous, heterogeneous, and more heterogeneous (extremely heterogeneous) terrain areas. 
The reason why we still use the Gamma distribution to model the homogeneous areas is that this 
distribution is also effective, and more importantly, it is more efficient than the 	  distribution on 
parameter estimation, which will be discussed in the next subsection. 

2.2. Parameter Estimation of Two PDFs 

Since the mean amplitude of SAR image  can be calculated easily, there are three parameters 
left that need to be estimated within the Gamma distribution and the 	  distribution. For the 
former, the unknown parameter is the number of looks, , while for the latter, the parameters are 

, , and , respectively. It is worth noting that the number of looks, , should be estimated 
respectively in these two distributions, since the PDFs and pixel samples for each estimation are 
different. 
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In general, the number of looks, , is an integer provided by the sensor along with the images, 
and should be a priori information. However, in its absence, the number of looks can be estimated 
from real SAR data, and it is therefore named the equivalent number of looks (ENL), , [33], which 
can be estimated using the method of moments (MOM), as [33] Γ( + 1/2)Γ( ) − = 0 (11)

where  and  denote the first and second order sample moments, respectively. 
The parameter estimation of Gamma distribution is simple; however, for the 	  distribution 

it is not as easy. Until now, several methods have been proposed for the estimation of 	  
parameters such as the method of moments, i.e., MOM, the maximum likelihood (ML) method, and 
the robust estimators. Among them, MOM-based methods can be easily and successfully applied to 
estimate the 	  distribution parameters. According to the method presented by Marques et al. and 
Frery et al. in [33,34], the roughness parameter  can be solved by solving the following moment 
equation Γ (− − 1/4)Γ(− )Γ(− − 1/2) − / Γ( )Γ( + 1/2)Γ ( + 1/4) = 0 (12)

where /  denotes the 1/2 order sample moment, and  is the number of looks, which can be 
represented by the ENL . The scale parameter  can be estimated as 

= Γ(− )Γ( )Γ(− − 1/2)Γ( + 1/2)  (13)

Considering the impossibility of analytically obtaining the standard errors of the estimators, in 
this paper we use the bootstrap methods to obtain them. More details about the solution for the 
equations can be found in [34], which was proposed by Frery et al. 

2.3. Multiscale Saliency Enhancement 

In general, nonsalient pixels in homogeneous background areas are likely to be similar at 
different scales. In contrast, salient pixels in heterogeneous and complex areas could behave 
similarly at a few scales, but not at all of them. Therefore, multiple scales can be incorporated to 
further decrease the saliency of background pixels, thus improving the contrast between salient and 
nonsalient regions. From the perspective of target detection, the choice of local region size is related 
to the target size [21–23]. Specifically, when the target region and local region are a similar size, it 
will be beneficial for the detection. Nevertheless, when the local region size is much larger or 
smaller than the size of the target, there will be some false alarms or omissions in the detection 
result. Thus, in this paper, we change the local region size, i.e., the heterogeneous target region in 
Figure 1, to conduct the saliency map generation at multiple scales, where the size of the target 
region is usually changed from 3 × 3 to n × n depending on the size of the largest potential target 
and the image resolution. The size of the background region in Figure 1a can be chosen as 3~7 times 
of the target region size. For the background region in Figure 1b, it remains unchanged. 

Let = ,⋯ ,  denote the set of target region sizes to be considered for pixel , then, we 
have  scales. The saliency at pixel  is defined as the average of its saliency at different scales as ̅( ) = 1 ( )∈  (14)

where ( ) is the single-scale saliency of pixel , which can be obtained using Equation (7). Note 
that the larger ̅( ) is, the more salient pixel  is, and the larger the possibility of it being 
discriminated from the background areas. 
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2.4. Saliency Refinement Including the Immediate Context 

According to the HVS, the areas that are close to the focus of attention, which include the 
potential salient target areas, should be explored significantly more than far away regions. 
Therefore, if the regions surrounding the focus of attention convey contextual information, they 
draw our attention, and thus should remain salient. In contrast, in regard to the saliency of regions 
far away, the focus of attention should be suppressed. 

To refine the saliency result, we consider the visual contextual influence in two steps. Firstly, 
the most attended localized areas at each scale are extracted from the saliency maps produced by 
Equation (7). Specifically, for each pixel at scale , if its saliency value exceeds a certain threshold 

, it can be considered attended. Considering the human visual perception, the threshold  can 
be set as 0.8 [35], which is usually high enough to acquire the salient target pixels from the saliency 
map. Secondly, the saliency of the surrounding pixels outside the attended areas is weighted based 
on their Euclidean distance to the closest attended pixel. With this refinement, the saliency of pixel 
x is represented as ( ) = 1 ( )∈ 1 − ( ) = ̅( ) − 1 ( ) ( )∈  (15)

where ( ) denotes the Euclidean distance between pixel  and the closest focus of attention 
pixel at scale , which is normalized to the range between 0 and 1. From Equation (15), it can be 
seen that the distance ( ) tends to be zero if pixel  is close to the focus of attention, leading 
to ( ) ≈ ̅( ). However, if pixel  is far away from the focus of attention, ( ) becomes large, 
and the saliency decreases. Therefore, in this way, the saliency of pixels surrounding the attended 
areas can be enhanced. 

3. Saliency Indicator for PolSAR Images 

3.1. PDFs of Salient and Nonsalient Regions in PolSAR Data 

A polarimetric SAR system measures the complex scattering matrix , which can be written as 
[2] =  (16)

where the subscripts H  and V represent the horizontal and vertical linear polarizations, 
respectively. According to the reciprocity theorem, we have = . The target vector  is then 
formed as = ,√2 ,  (17)

where the superscript “T” denotes the matrix transpose. The multilook covariance matrix  is 
generated from  as 

〈 〉 = 〈 〉 = ∗∗ ∗  (18)

where 〈∙〉 denotes the ensemble average, † represents the complex conjugation and transposition, 
and ∗ stands for the complex conjugation. It has been demonstrated that the covariance matrix  
obeys a complex Wishart distribution (i.e., ∈ ( , )), with density given by [2] ( ) = | | exp −Tr( )( , )| |																		 ( , ) = ( ) Γ( − + 1) (19)
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where Tr and |∙| stand for the trace and the determinant operators, respectively.  denotes the 
number of looks, and  is the dimension of target vector , which is three for the reciprocal case. Γ(∙) is the gamma function, and  represents the averaged sample covariance matrix with =E( ). It should be noted that Equation (19) is an extension of Equation (8), with the former case 
when = 1. 

Under the assumption that the speckle is fully developed, several studies have verified that the 
Wishart distribution can generally provide a good fit to PolSAR data with low or moderate spatial 
resolution, especially in homogeneous natural areas [2], i.e., nonsalient regions. However, this 
distribution cannot perform so well in heterogeneous urban areas, i.e., salient regions. To resolve 
this issue, similar to the saliency detector designed for SAR images, we still utilize the polarimetric 	  distribution to model the salient regions, which is suitable for extremely heterogeneous areas. 
The PDF of the polarimetric 	  distribution is defined as [36] ( ) = | | Γ( − )( , )| | Γ(− )(− − 1) ∙ ( Tr( ) + (− − 1))  (20)

where − > 0 and ≥ 1, and the other parameters are the same as those in Equation (19). 
Therefore, for PolSAR data, in the heterogeneous areas, we have ∈ ( , , ). It is worth 
pointing out that ( , , ) is also an extension of the ( , , ), the latter being the special case 
when = 1 and = − − 1. In addition, it has been demonstrated that the Wishart distribution is 
a particular case of the polarimetric 	  distribution [36]; therefore, ( , , Σ) can be also used to 
describe heterogeneous and homogeneous areas for PolSAR data. For the efficiency of parameter 
estimation, we use the Wishart distribution to model nonsalient regions, and the polarimetric 	  
distribution to model salient regions, respectively. 

It is noteworthy that the parameter estimation scheme for PolSAR data is the same as that used 
for SAR data, which is already discussed in Section 2.2. The only difference is the averaged sample 
covariance matrix , which can be represented as the local average covariance matrix by using a 
sliding local window with size 3 × 3. 

3.2. Saliency Indicator for PolSAR Data 

Similar to the saliency detector for SAR images, the local saliency measure for PolSAR data is 
defined as ( ) = ( ) = 1( ( )| ) ∈( ( )| ) + 1 (21)

and the global saliency measure is ( ) = ( ) = 1( ( )| ) ∈( ( )| ) + 1 (22)

where Θ  and Θ  have the same definitions as those depicted in Section 2.1. Probabilities ( ( )| ) and ( ( )| ) are represented as 	 ( , ) and ( , , ), respectively. Then, the 
final single-scale saliency measure can be obtained by using the product of Equation (21) and 
Equation (22). Finally, the multiscale saliency enhancement and refinement are conducted with the 
same scheme for SAR data, which are described in Sections 2.3 and 2.4. 

The whole flowchart of our proposed saliency map generation approach for SAR and PolSAR 
images is shown in Figure 2, where Figure 2a is the procedure for SAR images, and Figure 2b is the 
procedure for PolSAR images. From this flowchart, we can find that the processing steps for SAR 
and PolSAR images are the same, and the only difference is the corresponding PDFs of the salient 
and nonsalient areas. 
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Figure 2. Framework of the proposed saliency map generation procedure. (a) Synthetic aperture 
radar (SAR) image saliency map generation; (b) Polarimetric SAR (PolSAR) image saliency 
generation. 

4. Experimental Results and Analysis 

In our experiments, we validate the effectiveness of the proposed method on SAR and PolSAR 
images, respectively. Several saliency map generation methods are used for comparison. Since the 
pattern recurrence method proposed by Wang et al. [21] is suitable for both SAR and PolSAR data, 
it is adopted as one compared method, named PRSaliency hereafter for simplicity. The method 
proposed by Tang et al. [20] is a stable salient region detection method for SAR images, which 
considers the intensity variation, and will be used for the comparison of SAR data, named 
IVSaliency hereafter. For PolSAR image comparison, we adopt the method proposed by Huang et al. 
[30], which is a saliency measure method for PolSAR data based on the dissimilarity between 
patches, named SDPolSAR hereafter. All of the parameters involved in these compared methods 
are set as the optimal values used in the corresponding references. In terms of the evaluation of 
different methods, we give qualitative comparisons with human visual observation and 
quantitative comparisons by using the receiver operating characteristic (ROC) analysis. 

4.1. Experimental Results with Single-Polarization SAR Data 

In this subsection, the first studied single-polarization SAR dataset was collected by a Chinese 
airborne SAR system with X band in 2005. This image was acquired in the stripmap mode HH 
polarization, as shown in Figure 3b, with a resolution of 0.5 m both in azimuth and range directions. 
The image size is 300 × 500. Figure 3a shows its corresponding optical photograph, i.e., the ground 
truth. As we can see, there are several vehicles, buildings, roads, and trees, leading to a complex 
background. From the human visual perspective, vehicles and buildings are generally of interest, 
and should be regarded as salient regions. They are marked with red rectangles in Figure 3a. In 
addition, in Figure 3b, we can see that there are some shadows near the vehicles and layovers near 
the buildings. These effects are common in SAR images, and we will check whether they influence 
the saliency map generation performance of our method in the following experiments. 
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(a) 

 
(b) 

Figure 3. First study area and single-polarization SAR dataset with X-band. (a) Optical image from 
Google Earth. The red rectangles denote salient regions through human visual perception; (b) HH 
polarization SAR image with X-band. 

The images in Figure 4a–c give the saliency map generation results using the proposed 
IVSaliency and PRSaliency methods, respectively, where the pixels with high intensities are salient. 
The saliency map obtained by our proposed method is overlaid onto the original SAR image to 
form a RGB image for further validation, as shown in Figure 4d. Specifically, we use the saliency 
map to denote the red channel, and the original SAR image is represented by the green and blue 
channels. In our proposed method, the target region size is changed from 3 × 3 to 15 × 15 with step 
length six, i.e., the local window sizes are three, nine, and 15, respectively. The size of the 
background region is chosen as three times that of the target region size. From Figure 4a, we can see 
that the buildings and vehicles are significantly salient and attract attention. Furthermore, different 
salient regions can be discriminated from each other very clearly. In contrast, the trees, roads, and 
flat ground exhibit low saliency, which is in accordance with human visual perception. 
Furthermore, we can also see that shadows and layovers do not degrade the performance of 
saliency map generation. Figure 4b gives the result of the IVSaliency method, where we can find 
that the buildings and vehicles reveal extremely strong saliency values, whereas the background is 
not salient at all. The saliency contrast between targets and background is very significant, 
indicating that this method has a strong ability to measure the salient regions from SAR images. 
However, it can be seen that there are some obvious false alarms, such as the areas marked with red 
ellipses. These areas have no salient targets, but exhibit high saliency values, as shown in Figure 4b. 
In addition, the resolution of the saliency map is lower in comparison with that of Figure 4a. The 
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shapes of the salient targets cannot preserve very well. The result of the PRSaliency method is given 
in Figure 4c, where we can observe that it is worse than the other two methods. Buildings with 
large sizes can exhibit apparent saliency, whereas other man-made targets, including the vehicles, 
have quite low saliency due to their small sizes. In addition, the resolution of the saliency map is 
not satisfactory, leading to the loss of salient target details. From the overlaid result displayed in 
Figure 4d, it can be demonstrated that our proposed method can effectively measure the salient 
regions and suppress the saliency of the background. Furthermore, the salient target details can be 
well preserved, leading to a high discrimination ability among the different targets. 

(a) (b) 
 

(c) (d) 

 

Figure 4. Saliency map generation results of different methods. (a) The proposed method; (b) The 
IVSaliency method; (c) The PRSaliency method; (d) Original SAR image overlaid with the salient 
map of (a), where the red regions are salient. 

To further analyze the contributions of the different stages involved in the proposed method, 
we give the intermediate results in Figure 5. Figure 5a,b are the local and global saliency maps with 
a single scale, i.e., the target region sizes are both set as 9 × 9. Figure 5c gives the combined saliency 
map using the results of Figure 5a,b, according to Equation (7). What we can see from the first two 
images is that the salient targets in the local saliency map are more apparent and significant than 
those in the global saliency map. However, more false alarms exist, such as the roads and trees with 
relatively high backscattering. The reason is that in the estimation of the Gamma distribution 
parameters, the background samples in the local areas can get more accurate results than those in 
the global areas, since the local areas are approximately homogeneous. Therefore, the pixels with 
relatively high backscattering in the local regions reveal high saliency values. Thus, it can be 
remarked that compared to the global saliency map in Figure 5b, the local method can enhance the 
saliency of man-made targets at the cost of leading to high false alarms. In Figure 5c, it can be seen 
that the combined saliency measure considers the advantages of local and global saliency maps 
simultaneously. The saliency of man-made targets is enhanced, whereas that of the background is 
suppressed. 

Figure 5d depicts the multiscale saliency map before the refinement. Compared with the 
saliency maps with single scale in Figure 5a–c, we can find that the multiscale processing can 
enhance the saliency of man-made targets. Meanwhile, the saliency of the background can be 
suppressed to some extent. This good performance benefits from the settings of different target 
region sizes, which can capture the saliency of targets with various sizes. However, we can still find 
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some false alarms, such as the areas marked with the red ellipses, which can be further suppressed 
by the following refinement stage. Figure 5e gives the focus of attention regions, namely the 
potential targets. The distance map 	 ( ) is shown in Figure 5f. It can be found that the pixels 
surrounding the focus of attention points have quite low distance values. In contrast, the roads and 
trees that are far away from the focus of attention points have high distance values, as shown in the 
red elliptic areas. According to the refinement in Equation (15), the saliency of the pixels that are far 
away from the focus of attention points can be further suppressed, which can be observed from the 
comparison between Figure 4a and Figure 5f. 

(a) (b) 

(c) (d) 

 

(e) (f) 

Figure 5. The intermediate results of our proposed saliency map generation algorithm. (a) Local 
saliency map with single scale; (b) Global saliency map with single scale; (c) Combined saliency 
map with single scale; (d) Multiscale saliency map before refinement; (e) Focus of attention points at 
single scale; (f) Distance image 	 foci(x) at single scale. 

The second studied single-polarization SAR dataset was collected by the Sentinel-1 SAR sensor 
with C-band in 2014. The study area is located in the city of Antwerp, Belgium. This image was 
acquired with Level-1 ground range detected (GRD) data type, as shown in Figure 6b. It was 
multi-looked with a factor of six, and the resolution of resulting image is about 10 m both in 
azimuth and range directions. The image size is 800 × 700. Figure 6a shows its corresponding 
optical photograph, i.e., the ground truth. As we can see, there are high-density residential areas, 
low-density residential areas, rivers, farmlands, forests, and some ships on the river, which lead to a 
quite complex scene. From the perspective of human visual observation, ships and urban buildings 
are generally of interest, and should be regarded as salient objects. Note that there are some 
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sidelobes around the ship targets and buildings, which may bring some challenges to the SAR 
image interpretation. In the following experiments, we will demonstrate the robustness of the 
sidelobes of our proposed method on saliency map generation. 

 
(a) (b)

Figure 6. The study area and Sentinel-1 SAR dataset with C band. (a) Optical image from Google 
Earth; (b) HH polarization SAR image with C band. 

The images in Figure 7a–c present the saliency maps generated by the proposed IVSaliency 
and PRSaliency methods, respectively, where the pixels with high intensities are salient. Similarly, 
the saliency map obtained by our proposed method is overlaid onto the original SAR image to form 
a RGB image for further validation, as shown in Figure 7d. The target region size and background 
region size in the proposed method are set as before in the previous experiment. It can be seen from 
Figure 7a that the high-density residential areas, low-density residential areas, and ships on the 
river are all significantly salient, and attract human beings’ attention. In contrast, the natural areas 
such as farmlands, rivers, and vegetations have quite low saliency values, making the contrast 
between salient and nonsalient objects very clear. In addition, it also can be seen that the sidelobes 
around the ships and buildings do not exhibit high saliency values, indicating that the sidelobes in 
SAR images do not degrade the performance of the saliency map generation. Figure 7b gives the 
result of the IVSaliency method, where we can find that only the high-density residential buildings 
reveal strong saliency values, whereas the low-density residential buildings and ships are not very 
salient. Moreover, the resolution of the saliency map is lower in comparison with that of Figure 7a. 
The shapes of the salient objects cannot preserve very well. The result of the PRSaliency method is 
given in Figure 7c, where we can find that the high-density residential buildings and low-density 
residential buildings both exhibit strong salieny values. However, the ships on the river have quite 
low saliency due to their small sizes. In addition, the resolution of the saliency map is still not 
satisfactory, leading to the loss of salient target details. From the overlaid result displayed in Figure 
7d, it can be demonstrated that our proposed method is still effective for measuring the salient 
regions of C band SAR images with complex scenes. More importantly, the proposed method is 
robust to the sidelobes. 
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(a) 
 

(b) 

(c) 
 

(d) 

 

Figure 7. Saliency map generation results of different methods using the Sentinel-1 dataset. (a) The 
proposed method; (b) The IVSaliency method; (c) The PRSaliency method; (d) Original SAR image 
overlaid with the saliency map of (a), where the red regions are salient. 

4.2. Parameter Discussion 

As introduced in the previous sections, two parameters exist that are involved in our proposed 
method, i.e., the target region size and the background region size, as shown in Figure 1. These two 
parameters have a close relationship with the parameter estimation of the Gamma distribution and 

 distribution, which can further influence the accuracy of the saliency map generation. If the 
target region size is set too small, there will be some omissions. In addition, the PDF parameter 
estimation within the target region using few pixels is not accurate. On the other hand, if the target 
region size is set too large, there will exist too many false alarms. Therefore, the multiscale target 
region sizes are appropriate for the saliency map generation. The changes of target region size will 
lead to different salient scales, which is beneficial for enhancing the saliency of targets with various 
sizes. However, it is worth pointing out that too many salient scales will increase the computation 
load dramatically. Therefore, based on the aforementioned analysis, we change the target region 
size from 3 × 3 to 15 × 15 with step length 6. Note that the settings of maximum region size and the 
step length depend on the size of the potential salient target, which is related to the image 
resolution. 

It has been stated that the background region size can be set as 3~7 times of the target region 
size in most of the CFAR-like algorithms [9,12,13]. In general, if we use more samples within the 
same region to estimate the PDF parameters, we can get a more accurate result. However, the 
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computation load will increase significantly at the same time. Considering the efficiency of our 
proposed method, the background region size is set to be three times that of the target region size. 

4.3. Experimental Results with PolSAR Data 

In this subsection, we utilize two PolSAR datasets to validate the effectiveness of our proposed 
method. The first one is acquired by the fully polarimetric Radarsat-2 C band sensor on 2 April 2008 
with the fine mode over the Flevoland area, which is a city located in the center of the Netherlands. 
The range resolution and azimuth resolution are 5.4 m and 8.0 m, respectively. The Pauli-coded 
image is shown in Figure 8a, where the red channel represents double-bounce scattering, the green 
channel describes volume scattering, and the blue channel shows single-bounce scattering. The 
image rows correspond to the azimuth direction, and the columns correspond to the range direction. 
It can be seen that serious speckle noise exists in this PolSAR image, which makes the saliency map 
generation difficult to handle. Figure 8b is the corresponding optical image obtained from Google 
Earth. This study area covers some buildings, farms, grasslands, and lakes. Note that this test area 
is relatively uniform, with some buildings in the natural background. From the aspect of human 
visual observation, the buildings should be of interest and regarded as salient targets, which depict 
double-bounce scattering in the PolSAR image, as shown in the area with the red rectangle in 
Figure 8a. In Figure 8b, the built-up areas in the lower right area of the image are enlarged for the 
observation of the details. From Figure 8a,b, it is worth pointing out that not all of the buildings 
reveal double-bounce scattering. The reason is that the buildings that are not parallel to the radar 
flight path have strong cross-polarized scattering, which is similar to the scattering mechanisms of 
the natural areas [3,8,10]. In the PolSAR image, these buildings show a green color, and are difficult 
to be discriminated from forests. Therefore, these buildings are not salient in the view of human 
visual perception. 

(a) 
 

(b) 

Figure 8. The study area and Radarsat-2 dataset. (a) Pauli-coded image with C-band (red: HH − VV, 
green: HV, blue: HH + VV); (b) Optical image from Google Earth, where the red area in the upper 
left image is the enlarged result of the lower right area. 

Figure 9a–c present the final saliency maps generated by using the proposed SDPolSAR and 
PRSaliency methods, respectively, where the pixels with high intensities are salient. Note that the 
parameter settings are the same as those in the previous experiment. Figure 9d shows the span 
image overlaid with the saliency map of our proposed method, where the red area denotes the 
salient region. From Figure 9a,d, we can observe that our method can effectively measure the 
salient regions with double-bounce scattering, such as the built-up areas. In contrast, the saliency 
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values of the background areas, including the forests, farms, grasslands, and lakes are all 
suppressed. Although the PolSAR image is seriously contaminated by the multiplicative speckle 
noise, the saliency map does not have a lot of isolated points, making the salient region smooth. 
What we can see from Figure 9b is that the SDPolSAR method can also highlight the built-up areas 
with double-bounce scattering; however, the edges of the salient region are not very clear. 
Furthermore, the background also reveals relatively high saliency, such as the boundaries between 
different natural areas. Therefore, it can be remarked that the saliency contrast between the target 
and the background in Figure 9b is not as significant as that in Figure 9a. The result displayed in 
Figure 9c is worse than other two methods, where the saliency of the built-up areas is lower than 
that of the lakes. However, it is worth pointing out that the result is quite smooth, indicating that 
this method is quite robust to the speckle noise. From the above analysis, we can find that the 
proposed method can effectively measure the salient regions from PolSAR data with relatively 
uniform background, and thus outperforms the other two methods. 

(a) 
 

(b) 
 

(c) 
 

(d) 

 

Figure 9. Saliency map generation results of Radarsat-2 C-band data with uniform background. (a) 
The proposed method; (b) The SDPolSAR method; (c) The PRSaliency method; (d) Span image 
overlaid with the saliency map of (a), where the red regions are salient. 

The second PolSAR dataset is acquired by the UAVSAR L-band imaging system. The study 
area is a harbor located in the southern California coast of the United States, as shown in Figure 10b. 
This area covers open water, some buildings, isolated boats, and man-made grounds, which is a 
complex image scene. Figure 10a displays the full polarimetric SAR image with Pauli-color coding, 
where the rows denote the azimuth direction and the columns represent the range direction. The 
multilook complex data have a resolution with 7.2 m in the azimuth direction and 5 m in the range 
direction. From the perspective of human visual perception, the boats and buildings are of interest, 
and should be regarded as salient objects, which are marked with red rectangles in Figure 10b. Due 
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to the relatively low resolution, the vehicles on the road are too small to be regarded as salient 
objects. Note that there are two ships in Figure 10b, but they disappear in Figure 10a, as depicted in 
the two red circles. It is worth pointing out that the optical image is acquired from Google Earth, 
which has a different date than that of the PolSAR image; therefore, the two ships may move out of 
this place. They are ignored in the following comparison analysis. 

 
(a) 

 
(b) 

Figure 10. Third study area and UAVSAR dataset. (a) Pauli-coded image with L-band (red: HH − 
VV, green: HV, blue: HH + VV); (b) Optical image from Google Earth. The areas with red rectangles 
represent targets of interest. 

Figure 11a–c show the saliency maps of the three methods, respectively. Figure 11d overlays 
the proposed detection result on the span image, where the red regions denote the salient targets. 
What we can see from Figure 11a,d is that our proposed method can obtain most of the salient 
targets, including the isolated and assembled boats. In addition, the buildings inside the harbor can 
also be effectively highlighted. The saliency of the background areas is suppressed very well, which 
makes the saliency map smooth and clear. Nevertheless, some small targets have relatively low 
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saliency values, making them difficult to be measured. The reason is that the target sizes are smaller 
than the minimal target region size, leading to saliency measure omissions of the targets. In Figure 
11b, we can find that the result of the SDPolSAR method is not satisfactory. The resolution of the 
saliency map is bad, and the salient targets cannot be clearly discriminated. Furthermore, the 
saliency of the background is not suppressed well. Therefore, this method is not very effective for 
the saliency map generation from the complex heterogeneous image scenes. From Figure 11c, it can 
be seen that the result of the PRSaliency method is fine, where the isolated boats can be well 
detected. In addition, the saliency of the background is also suppressed. However, this method 
cannot measure the saliency of the assembled boats and buildings, making the result worse than 
our proposed method. From the comparison of these methods, it can be found that the proposed 
approach can well highlight the salient targets from the PolSAR image with a complex 
heterogeneous background. The targets exhibit higher saliency than the backgrounds, and also can 
be clearly discriminated from each other. 

(a) (b)  

(c) (d) 

 

Figure 11. Saliency map generation results of the UAVSAR L-band data with complex image scenes. 
(a) The proposed method; (b) The SDPolSAR method; (c) The PRSaliency method; (d) Span image 
overlaid with the saliency map of (a), where the red regions are salient. 

4.4. Performance Evaluation and Comparison 

There are few studies that focus on quantitative evaluation indicators for saliency map 
generation. As we stated in the Introduction section, saliency is a measure of prominent 
characteristics that can be used to discriminate targets from backgrounds. Therefore, our proposed 
approach can be extended to salient target detection for SAR and PolSAR images, and the detection 
accuracy analysis can be used to evaluate the performance of the saliency map. It is worth pointing 
out that the saliency map also can be used in other applications, such as the image segmentation. 
Therefore, the evaluation indicators for image segmentation also can be used to measure the 
saliency map generation performance. Since this work starts from the target detection application 
and further proposes saliency map generation methods for SAR and PolSAR images, we adopt the 
target detection accuracy measures to quantitatively evaluate the saliency map generation 
performance of different methods. Salient targets can be detected by simply thresholding the 
saliency map. In this paper, we set the threshold to 0.7 for simplicity. To quantitatively evaluate the 
performance of different saliency map generation methods, we compare the target detection results 
using various saliency maps with respect to human-annotated “ground truth”. 
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Figure 12 gives the ground truth maps of salient target detection using above four datasets 
respectively, which are all annotated with human eye observation. Figure 13 depicts the receiver 
operating characteristic (ROC) curves of different methods using four datasets. An ROC graph 
depicts relative tradeoffs between benefits (true positives) and costs (false positives). Methods on 
the upper left-hand side of an ROC graph are generally regarded as excellent. From the four ROC 
graphs depicted in Figure 13, we find that our proposed method can achieve the best salient target 
detection performance in both SAR and PolSAR images among different approaches. For the sake 
of further comparison, the AUCs (i.e., areas under the curve of ROC, the higher the AUC, the better 
the detector) of different methods are given in Table 1. The method has a better saliency detection 
performance if its AUC is close to one. 

Table 1. Area under the curve (AUC) results of different methods. 

 
X Band 

SAR Image 
Sentinel-1 C Band 

SAR Image 
Radarsat-2 C 
Band Image 

UAVSAR L 
Band Image 

The proposed method 0.9756 0.9833 0.9879 0.9512 
The IVSaliency method 0.9347 0.7241   
The PRSaliency method 0.8435 0.8012 0.7651 0.9323 
The SDPolSAR method   0.9014 0.7345 

 

(a) (b) 

(c) (d) 

Figure 12. Human-annotated ground truth of salient target detection. (a) X-band SAR image; (b) 
Sentinel-1 C-band SAR image; (c) Radarsat-2 C-band PolSAR image; (d) UAVSAR L-band PolSAR 
image. 
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(a) 

 
(b) 

(c) (d) 

Figure 13. Receiver operating characteristic (ROC) curves of various methods using different 
datasets. (a) X-band SAR image; (b) Sentinel-1 C-band SAR image; (c) Radarsat-2 C-band PolSAR 
image; (d) UAVSAR L-band PolSAR image. 

From Figure 13 and Table 1, we can find that the IVSaliency method can achieve a satisfactory 
result with the X band SAR image compared to the proposed approach. However, it cannot 
perform so well with the Sentinel-1 C band SAR image. In addition, it cannot be applicable to the 
PolSAR images. The PRSaliency method can be applied to both single-polarization SAR images and 
PolSAR images. It performs well in the UAVSAR L band image, but is not satisfactory in the X band 
and C band SAR images, and the Radarsat-2 C band PolSAR image. Therefore, it can be stated that 
this method is suitable for saliency map generation in the PolSAR image with a relatively complex 
background. The performance of the SDPolSAR method is comparable with other methods in the 
saliency map generation of the PolSAR image with a uniform background (e.g., Radarsat-2 C band 
image). Nevertheless, it performs much worse than the other methods in the PolSAR image with a 
complex heterogeneous background (UAVSAR L band image). It can be found that the proposed 
saliency map generation method performs well both with single-polarization SAR images and 
PolSAR images. Furthermore, the generated saliency maps are satisfactory with and without the 
complex background. The saliency map accuracy can achieve above 95% with four datasets, which 
is about 5–20% higher than other methods. 

Table 2 gives the time costs of saliency map generation using different methods. All of the 
experiments are implemented using MATLAB language on a laptop with an Intel Core i7-6700HQ 
CPU with frequency of 2.6 GHz and 32-GB RAM. The sizes of the X-band SAR, Sentinel-1 C-band, 
Radarsat-2 C-band, and UAVSAR L-band images are 300 × 500, 800 × 700, 300 × 300, and 250 × 600, 
respectively. From Table 2, we can see that the computational cost of our proposed approach is 
higher than other methods. The time cost mainly comes from the parameter estimation of PDFs. 
The PRSaliency method runs fast among these methods, thanks to the quick computation of the 
pattern recurrence. Note that although our method can achieve satisfactory saliency map 
generation results, the efficiency should be further improved in the future. 
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Table 2. Time costs of saliency detection using different methods (seconds). 

 
X-Band SAR 

Image 300 × 500 
Sentinel-1 C-Band 

SAR Image 800 × 700 
Radarsat-2 C-Band 

Image 300 × 300 
UAVSAR L-Band 
Image 250 × 600 

The proposed method 20.14 52.36 28.54 36.15 
The IVSaliency method 13.25 30.19   
The PRSaliency method 12.14 26.92 10.38 18.57 
The SDPolSAR method   18.17 25.78 

5. Conclusions 

This paper proposes a saliency map generation method for SAR and PolSAR images based on 
Bayes theory and a heterogeneous clutter model. The ratio of the probability density functions in 
the target and background areas is utilized to define the saliency, which also considers the local and 
global information. For saliency map generation in SAR images, the Gamma and  distributions 
are utilized to model the salient and nonsalient areas. For PolSAR images, the Wishart and 
polarimetric  distributions are adopted. Therefore, this proposed method can highlight the 
salient regions from SAR and PolSAR images with and without a complex background. 
Furthermore, multiscale saliency enhancement is conducted to measure the saliency of targets with 
different sizes. The result is further refined by considering the image immediate context. The 
proposed method is firstly validated on an X-band SAR image and a Sentinel-1 C-band SAR image, 
and compared with respect to existing methods such as IVSaliency and PRSaliency. It is then tested 
with Radarsat-2 C-band and UAVSAR L-band PolSAR images, and compared with SDPolSAR and 
PRSaliency methods. The results of four datasets with different frequencies demonstrate that our 
proposed method performs best in terms of robustly highlighting salient targets with and without 
the presence of a complicated background. Furthermore, the shadows, layovers, and sidelobes in 
the SAR images do not degrade the performance of saliency map generation, which increases the 
actual applicability and portability of the proposed methodology. 

Future work will mainly focus on the improvement of computational efficiency and further 
applications using the saliency map. In addition, the saliency of buildings not parallel to the radar 
flight path in PolSAR images should be enhanced by considering the scattering mechanisms, which 
is beneficial for discriminating them from natural areas. 
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