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Abstract: Vegetation phenology is considered a sensitive indicator of climate change, which controls
carbon, nitrogen, and water cycles within terrestrial ecosystems. The Moderate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) is an important
moderate resolution remote sensing data for monitoring vegetation phenology. However, Terra
MODIS Collection 5 (C5) vegetation index products were identified to be affected by sensor
degradation, which has been addressed in the recently released MODIS Collection 6 (C6) vegetation
index products. In order to compare the difference between MODIS C5 and C6 NDVI in monitoring
vegetation phenology, the start and end of growing season (SOS and EOS) of the alpine grassland
on the Tibetan Plateau (TP) were extracted using four common methods. Then, the C5 and C6
NDVI-derived SOS (SOSC5 and SOSC6) and EOS (EOSC5 and EOSC6) were compared with
ground-observed phenology data. Results showed that the multi-year average growing season
NDVIs of C6 were lower than those of C5 in most areas, while the inter-annual variation patterns
of regional average SOSC5 and SOSC6 (EOSC5 and EOSC6) were consistent. However, large spatial
differences in phenological trends were found between C5 and C6 NDVI products. From C5 to
C6, pixels with a SOS (EOS) trend shifting from significant to insignificant or from insignificant to
significant accounted for at least 14.58% (9.07%) of the total pixels. SOSC5 was more consistent than
SOSC6 with the ground-observed green-up dates. C5 NDVI may be more appropriate for monitoring
SOS than C6 NDVI in the study region, but more ground-observed phenology records are needed
to confirm it due to only four observational sites in this study. However, large differences and poor
correlations existed between EOSC5 (EOSC6) and the ground-observed beginning of leaf coloring.
To further evaluate the uncertainty of MODIS C5 and C6 NDVI in monitoring vegetation phenology,
higher resolution near-surface remote sensing data and corresponding validation methods should
be applied.

Keywords: vegetation phenology; Tibetan Plateau; MODIS; NDVI; start of growing season (SOS);
end of growing season (EOS)

Remote Sens. 2017, 9, 1288; doi:10.3390/rs9121288 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9121288
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 1288 2 of 17

1. Introduction

Vegetation phenology dynamics can reflect the response of terrestrial ecosystem to climate
change and play an important role in adjusting the cycling of carbon, nitrogen, and water [1–3].
Remote sensing data have been widely used to monitor vegetation phenology at large scales [4–6],
because satellite-derived vegetation indices can measure vegetation canopy greenness and have the
advantages of wide coverage, high revisiting frequency, and relatively low cost. The Normalized
Difference Vegetation Index (NDVI) is one of the most commonly used vegetation indexes for
monitoring vegetation phenology [7–9].

Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data have been
increasingly used for monitoring vegetation phenology. MODIS sensors aboard Terra and Aqua
satellites have been in operation since 1999 and 2002, respectively, and can provide long-term remote
sensing records of >10 years. However, the designed lifetimes of the sensors are only six years.
In recent years, severe data problems were found to exist in MODIS Collection 5 (C5) ocean colors [10],
aerosols [11], and NDVI products [12–14], mainly resulting from sensor degradation. Due to the
increasing exposure of MODIS sensor to solar and cosmic radiation, severe degradation of Terra MODIS
near-infrared, red and blue bands has been observed. The sensor degradation was the most pronounced
in the Terra blue band and decreased with wavelength [12,13]. Though the blue band is not used
directly to calculate NDVI, degradation of blue top-of-atmosphere reflectance over time will influence
the calculation of surface reflectance in other spectral bands and NDVI [13,15,16]. Moreover, the sensor
degradation was much faster for Terra than Aqua [13,17]. To remove the effects of sensor degradation,
improved calibrated approaches were adopted to produce the recently released MODIS Collection 6
(C6) products [12,18]. When compared with C5, the C6 Level 1B data, including the top-of-atmosphere
reflectance in the near-infrared, red and blue bands were calibrated [13]. In addition, the NDVI retrieval
algorithms were also improved [19]. Unlike C5 NDVI, which uses daily reflectance data, C6 NDVI
uses pre-composed (8-day) surface reflectance data that are atmospherically corrected with a modified
compositing algorithm that aims to reduce the aerosol issues (minimizing the blue band) [17,19].

The differences between MODIS C5 and C6 NDVI have been evaluated in some previous
studies (e.g., [17,20]). However, no study has conducted a comparative analysis of the performance
of MODIS C5 and C6 NDVI in monitoring vegetation phenology. Given that MODIS C5 NDVI has
been extensively used for monitoring vegetation phenology [21–23], it is necessary to analyze the
difference between vegetation phenology derived from C5 and C6 NDVI and consequently investigate
the uncertainty in monitoring vegetation phenology due to sensor degradation. Due to the fact that
Terra data is more affected by the sensor degradation than Aqua data [13,17], this study focused on the
Terra MODIS NDVI products.

Four common methods were adopted to identify the start and end of growing season
(SOS and EOS) of the alpine grassland on the Tibetan Plateau (TP) based on Terra MODIS C5
and C6 NDVI. Then, a comparative analysis of vegetation phenology derived from the two NDVI
products was conducted for each phenology extraction method. Meanwhile, the performances of
vegetation phenology derived from C5 and C6 NDVI in capturing ground-observed phenology were
also evaluated.

2. Data and Methods

2.1. Remote Sensing Data

The Terra MODIS 250 m 16-day composited NDVI (MOD13Q1) products originating from C5 and
C6 during 2001–2015 were acquired from National Aeronautics and Space Administration (NASA)
Earth Observing System Data and Information System (EOSDIS). To reduce the effect of cloud and
Nadir Bidirectional Reflectance Distribution Function (BRDF), the composite of NDVI was performed
by the Constrained View Angle-Maximum Value Composite (CV-MVC) algorithm. The pixel reliability
(PR) layer from MOD13Q1 products was used to determine the pixel quality and calibrate NDVI time
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series. A PR value of 0 or 1 represents good pixel or marginal pixel in the NDVI time series. A PR
value of 2 or 3 represents pixel covered by ice/snow or cloud, which should be corrected.

2.2. Ground-Observed Phenology Data

The ground-observed phenology data were collected from the nation-wide phenological
observation network that was established by the China Meteorological Administration [24]. As Kobresia
humilis is the dominant species in the alpine grassland on the TP, the ground-observed phenology data
of K. humilis, including green-up (GU) and beginning of leaf coloring (BLC), were collected at Haiyan,
Gande, Henan, and Qumarleb sites from 2001–2012 (Table 1).

Table 1. Summary of ground-observed phenology data of Kobresia humilis.

Site Name Longitude Latitude Altitude (m) Number of Years

Haiyan 100◦51’E 36◦37’N 3140 12
Gande 99◦54’E 33◦58’N 4050 12
Henan 101◦36’E 34◦44’N 3500 12

Qumarleb 95◦47’E 34◦08’N 4175 12

2.3. Data Pre-Processing

The snow cover during the non-growing season on the TP will reduce NDVI values, resulting
in retrieval errors for the phenology data. To reduce the effect of snow, snow-contaminated NDVI
values (PR value equals 2) were replaced by the median value of the uncontaminated NDVI values
(PR value equals 0 or 1) during the non-growing season (from November to the following March) for
each pixel [25]. However, plenty of snow-contaminated pixels could not be flagged out by the PR
values. Therefore, another way was applied to eliminate snow contamination. For each pixel, all of
the NDVI values that were lower than the mean of the NDVI values during the non-growing season
were replaced by the mean. After that, the Savitzky-Golay filter was used to reconstruct the NDVI
time series to further remove cloud contamination [26]. In this study, all data were re-projected to the
Albers conic equal area projection.

Only the vegetation phenology in the alpine grassland was analyzed in this study. To eliminate
the effects of bare soil, sparse vegetation and evergreen forest, grass pixels were selected by the
following criteria [25,27]: (1) the average NDVI for June–September should be greater than 0.1; (2) the
annual maximum NDVI should exceed 0.15 and occur within July–September; (3) the average NDVI
for July–September should be greater than 1.2 times of the average NDVI for November–March;
and, (4) the average NDVI in winter (December–February) should be lower than 0.4.

2.4. Phenology Extraction Methods

Many methods have been used to extract vegetation phenology, but the vegetation phenology
varied with extraction methods [28]. To avoid the effect of phenology extraction methods on the
uncertainty analysis of remote sensing data in monitoring vegetation phenology, four commonly
used methods were adopted to extract the SOS and EOS in the alpine grassland on the TP, i.e., the
maximum curvature change method (MCC), dynamic threshold methods with a threshold of 0.2 and
0.5 (DT2 and DT5), and maximum slope method (MS).

2.4.1. MCC Method

A four-parameter logistic function [29] was employed to fit each increasing or decreasing
section of a NDVI time series and then the daily NDVI values were derived from the fitted function,
as shown below:

y(t) =
c

1 + ea+bt + d (1)
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where t is the time (Julian day of year, DOY), y(t) is the NDVI value at time t, a and b are fitting
parameters, c + d is the maximum NDVI value, and d is the initial background NDVI value [29].
Then, the curvature-change rate (CCR) of the fitted logistic curve was used to extract phenological
dates, according to Equation (2) [29]:

CCR = b3cz× 3z(1− z)(1 + z)3 2(1 + z)3 + b2c2z

[(1 + z)4 + (bcz)2]
2.5 − b3cz× (1 + z)2 1 + 2z− 5z2

[(1 + z)4 + (bcz)2]
1.5 (2)

where z = ea+b. SOS is defined as the DOY when CCR reaches its first local maximum value during the
growth period, while EOS is defined as the DOY when CCR reaches its second minimum value during
the senescence period.

2.4.2. DT2 and DT5 Methods

The phenological metrics were derived using the dynamic threshold method developed by
White et al. [30]. In this method, the daily NDVI values were first generated using a linear interpolation
approach from the original 16-day composites. SOS and EOS are defined as the DOY when the
NDVI ratio reaches a certain threshold during the NDVI rising stage and decline stage, respectively.
The NDVI ratio is defined as:

NDVIratio =
NDVIt − NDVImin

NDVImax − NDVImin
(3)

where NDVIt is the NDVI value at time t, NDVImax is the annual maximum NDVI value, NDVImin is
the annual minimum NDVI value during the growth period for SOS or during the senescence period
for EOS. In this study, the threshold was set to be 0.2 (0.5) for DT2 (DT5) method.

2.4.3. MS Method

In this method, SOS or EOS is defined as the DOY when NDVI begins to rapidly increase (SOS)
or decrease (EOS) [31], which is identified based on the maximum absolute slope of the fitted NDVI
curve in Equation (1) during the growth or senescence period.

2.5. Data Analysis Methods

The temporal change trends of regional average growing season (April–October) NDVI (GSNDVI)
based on C5 and C6 products (GSNDVIC5 and GSNDVIC6) during 2001–2015 were calculated and
compared. The change trends in the regional average GSNDVI were computed as the slope of the linear
regression of the regional average GSNDVI against year. To analyze the spatial differences between
C5 and C6 GSNDVIs, the pixel-by-pixel multi-year average values and linear trends were further
calculated. With the same methods being used for comparing GSNDVI, the C5 and C6 NDVI-derived
SOS (SOSC5 and SOSC6) as well as EOS (EOSC5 and EOSC6) identified by each phenology extraction
method were further compared. Paired-samples t tests were conducted to compare the GSNDVI or
phenological metrics between C5 and C6.

To validate the satellite-derived vegetation phenology, the average phenology of a 3 × 3 window
centered at each site was extracted for comparison with the ground-observed phenology. The mean
error (ME) and the mean absolute error (MAE) were used to estimate the difference between
the satellite-derived phenology and the ground-observed phenology. They are calculated by the
following formulas:

ME =
1
n

n

∑
i
(P(rs)i − P(site)i) (4)

MAE =
1
n

n

∑
i
|(P(rs)i − P(site)i)| (5)
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where P(rs)i and P(site)i are the satellite-derived phenology and the ground-observed phenology
at sample i, respectively; n is the number of samples. In addition, the correlations between the
satellite-derived phenology and the ground-observed phenology were also calculated to evaluate
their consistency.

The statistical significance of all the regression coefficients and correlation coefficients was
examined using the F-test. P values less than 0.05 were considered significant.

3. Results

3.1. Comparison Between GSNDVIC5 and GSNDVIC6

The regional average GSNDVIC6 was significantly (p < 0.001) lower than GSNDVIC5 for the
alpine grassland on the TP (Figure 1). The annual regional average GSNDVI showed no obvious
trend for C5 (p = 0.424), but a significant increasing trend for C6 (7.26 × 10−4 yr−1, p < 0.05) during
2001–2015 (Figure 1). At spatial scale, the multi-year average GSNDVIC6 was lower than GSNDVIC5

over 85.8% of the total pixels (Figure 2). The multi-year average GSNDVI decreased more than 5%
from C5 to C6 over 30.13% of the pixels, while it increased more than 5% over only 0.12% of the pixels
(Figure 2a). Moreover, large spatial differences in trends between GSNDVIC5 and GSNDVIC6 were
found (Figure 3a). From GSNDVIC5 to GSNDVIC6, significant trends (p < 0.05) became insignificant
over 7.33% of pixels, while insignificant trends became significant over 9.98% of pixels. With regard to
the pixels where both GSNDVIC5 and GSNDVIC6 indicated significant trends, GSNDVI trend became
more negative over 9.03% of pixels and more positive over 4.10% of pixels from C5 to C6. A significant
(p < 0.001) difference between GSNDVIC5 and GSNDVIC6 trends was observed. The mean difference
in GSNDVI trend (C6–C5) was −3.74 × 10−4 yr−1. Besides, GSNDVIC6 showed increasing trends over
more area and decreasing trends over less area (65.3% increasing, 18.6% significantly increasing; 34.7%
decreasing, 4.5% significantly decreasing) when compared with GSNDVIC5 (55.8% increasing, 12.9%
significantly increasing; 44.2% decreasing, 7.6% significantly decreasing) (Figure 3b).
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3.2. Temporal Differences in Regional Phenology

For each method, similar advancing trends were found between regional average SOSC5 and
SOSC6 during 2001–2015, but the advancing trend of SOSC5 was slightly smaller than that of SOSC6

(Figure 4, Table 2). For each method, the multi-year average regional SOSC5 was significantly later
than SOSC6 (p < 0.001), but the difference was only about one day (Table 2).
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(a) Maximum Curvature Change (MCC); (b) Dynamic Threshold 0.2 (DT2); (c) Dynamic Threshold
0.5 (DT5); and, (d) Maximum Slope (MS).

Table 2. Summary statistics for the regional average start of growing season derived from C5 and C6
NDVI products for the alpine grassland on the Tibetan Plateau during 2001–2015.

Method MCC DT2 DT5 MS

Product C5 C6 C5 C6 C5 C6 C5 C6

Mean 130.5 129.2 139.6 138.4 169.8 169.3 163.6 163.0
Std 2.5 2.6 2.9 3.0 2.7 2.8 2.5 2.6

Trend −0.278 −0.298 −0.339 −0.378 −0.312 −0.332 −0.258 −0.264
p value 0.060 0.050 0.043 0.028 0.047 0.040 0.088 0.091

Dall 30.79% 30.59% 26.87% 26.37% 27.91% 27.70% 28.65% 29.31%
Dsig 1.18% 1.17% 0.91% 0.79% 1.00% 0.93% 1.01% 1.03%
Aall 69.2% 69.4% 73.13% 73.63% 72.09% 72.30% 71.35% 70.69%
Asig 11.39% 12.03% 14.95% 16.31% 12.80% 13.52% 13.08% 12.75%

Mean: multi-year average regional SOS. Std: temporal standard deviation. Trend: slope of linear regression of
regional average SOS against year (days yr−1). p value: significance level for the trend. Aall and Dall: proportions of
advancing and delaying trends, respectively. Asig and Dsig: proportions of significantly (p < 0.05) advancing and
delaying trends, respectively.

The regional average EOSC5 and EOSC6 also showed consistent inter-annual variations but no
significant trends were found (Figure 5, Table 3). Different from SOS, the multi-year average regional
EOSC5 was slightly earlier than EOSC6 for each method, with a difference of less than one day, but the
difference was only significant (p < 0.05) for MCC and DT2 methods (Table 3).
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Figure 5. Comparisons of annual regional average end of growing season from MODIS C5 (SOSC5)
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Table 3. Summary statistics for the regional average end of growing season derived from C5 and
C6 Normalized Difference Vegetation Index (NDVI) products for the alpine grassland on the Tibetan
Plateau during 2001–2015.

Method MCC DT2 DT5 MS

Product C5 C6 C5 C6 C5 C6 C5 C6

Mean 312.3 313.0 303.0 303.5 272.5 272.6 279.1 279.3
Std 2.2 1.9 2.5 2.2 2.3 2.1 2.3 2.1

Trend −0.060 0.010 −0.068 −0.018 −0.101 −0.067 −0.093 −0.061
p value 0.665 0.929 0.670 0.895 0.490 0.622 0.523 0.645

Dall 43.75% 49.75% 42.53% 47.09% 39.66% 42.38% 39.64% 42.83%
Dsig 1.96% 2.80% 1.90% 2.54% 1.66% 2.00% 1.49% 1.85%
Aall 56.25% 50.25% 57.47% 52.91% 60.34% 57.62% 60.36% 57.17%
Asig 3.91% 2.75% 4.35% 3.40% 4.89% 4.26% 5.18% 4.31%

Mean: multi-year average regional EOS. Std: temporal standard deviation. Trend: slope of linear regression of
regional average EOS against year (days yr−1). p value: significance level for the trend. Aall and Dall: proportions of
advancing and delaying trends, respectively. Asig and Dsig: proportions of significantly (p < 0.05) advancing and
delaying trends, respectively.

3.3. Spatial Differences in Multi-Year Average Phenology

For each method, various degrees of differences between the multi-year average SOSC5 and SOSC6

were found (Figure 6). The multi-year average SOSC6 was earlier than the multi-year average SOSC5 for
most of pixels (68.7% for MCC, 66.2% for DT2, 57.6% for DT5 and 61.6% for MS) (Figure 6). As for the
pixels with differences of more than five days, SOS based on MCC and MS methods showed the largest
(14.4%) and smallest (4.9%) proportions of the total area, respectively (Figure 6). The corresponding
proportions for DT2 and DT5 methods were 13.2% and 7.4%, respectively. All four methods indicated
that the pixels with SOSC6 later than SOSC5 were mainly distributed in the northwestern TP, while the
differences between SOSC5 and SOSC6 varied with methods in the southern TP, with larger differences
for MCC and DT2 methods and less for DT5 and MS methods (Figure 6).
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Similar to SOS, large differences were found for multi-year average EOSC5 and EOSC6 based on
four methods (Figure 7). The EOSC6 was later than the EOSC5 over 58.5% of pixels for MCC method,
while the proportions were 55.8%, 50.0%, and 53.1% for DT2, DT5, and MS methods, respectively
(Figure 7). The pixels with the differences of more than five days between EOSC5 and EOSC6 accounted
for 11.7%, 7.1%, 6.4% and 4.1% of the total area for MCC, DT2, DT5 and MS methods, respectively.
For each method, the pixels where EOSC6 was earlier than EOSC5 were mainly distributed in the
eastern and southwestern TP. The differences of EOS in the central TP were larger for MCC method
than the other methods.
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3.4. Spatial Differences in Phenological Trends

For each method, the proportion of advancing trends was much higher than that of delaying
trends for both SOSC5 and SOSC6 (Table 2). The proportions of advancing (delaying) trends, as well as
significantly advancing (delaying) trends (p < 0.05) in SOSC5 and SOSC6 were similar based on the same
method (Table 2). However, the trends in SOSC5 and SOSC6 showed obvious spatial inconsistencies
(Figure 8). For all four methods, the significant levels of SOS trends shifted over a considerable
proportion of the study region. Significant trends in SOSC5 became insignificant in SOSC6 over 6.98%,
7.67%, 7.55%, and 7.74% of pixels for MCC, DT2, DT5, and MS methods, respectively (Figure 8).
Meanwhile, insignificant trends in SOSC5 became significant in SOSC6 over 7.60%, 8.92%, 8.20%, and
7.42% of pixels for MCC, DT2, DT5, and MS methods, respectively (Figure 8). For the pixels with
significant trends in both SOSC5 and SOSC6, SOS trends tended to be more negative from C5 to C6 for
each method (Figure 8). Significant (p < 0.001) difference was observed between the SOS trends of C5
and C6 for each method, with mean differences between C5 and C6 (C6–C5) of −0.05, −0.07, −0.05,
and −0.03 day yr−1 for MCC, DT2, DT5, and MS methods, respectively.
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The proportion of advancing trends was higher than that of delaying trends for both EOSC5 and
EOSC6 for each method (Table 3). Only a small proportion of significantly advancing or delaying trends
was found for both EOSC5 and EOSC6 (Table 3). For each method, the advancing trends in EOSC6

accounted for a higher proportion of the total pixels than those in EOSC5, while the delaying trends
in EOSC6 accounted for a lower proportion than those in EOSC5 (Table 3). Large spatial differences
in trends between EOSC5 and EOSC6 were also found (Figure 9). From C5 to C6, pixels with a EOS
trend shifting from significant to insignificant accounted for 4.70%, 4.71%, 4.80%, and 4.90% of the
total pixels for MCC, DT2, DT5, and MS methods, respectively. Meanwhile, insignificant trends in
EOSC5 became significant in EOSC6 over 4.37%, 4.41%, 4.51%, and 4.39% of pixels for MCC, DT2, DT5,
and MS methods, respectively. Although a significant difference was also found between EOSC5 and
EOSC6 trends (p < 0.001) for each method, a very small proportion of pixels with significant trends for
both EOSC5 and EOSC6 was found for each method (1.18% for MCC, 1.54% for DT2, 1.75% for DT5,
and 1.77% for MS) (Figure 9).
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3.5. Comparison Between Satellite-Derived and Ground-Observed Phenology

The differences between the satellite-derived SOS (SOSC5 and SOSC6) and the ground-observed
GU were smaller for MCC and DT2 methods and larger for DT5 and MS methods (Table 4). For both
SOSC5 and SOSC6, the MEs and MAEs were about 10 days based on MCC and DT2 methods, but more
than 30 days based on DT5 and MS methods (Table 4). However, SOSC5 had a slightly smaller ME or
MAE than SOSC6 for each method (Table 4). Besides, both SOSC5 and SOSC6 were significantly and
positively correlated with GU for all of the methods (p < 0.01), but the correlation coefficient between
SOSC5 and GU was larger than that between SOSC6 and GU for each method (Table 4). Results based
on MCC method showed the highest correlation coefficients between SOS and GU (Table 4).

However, large differences between the satellite-derived EOS (EOSC5 and EOSC6) and the
ground-observed BLC were found. The MEs and MAEs of EOS were more than 18 days for each
method (Table 4). Moreover, both EOSC5 and EOSC6 showed very poor positive correlations with BLC
for all of the methods (Table 4). Nevertheless, the correlation between EOSC5 and BLC was still slightly
higher than that between EOSC6 and BLC for each method (Table 4).



Remote Sens. 2017, 9, 1288 13 of 17

Table 4. Mean error (ME), mean absolute error (MAE) and correlation coefficient (r) between the
satellite-derived phenology and the ground-observed phenology.

Method Phenological Metric ME MAE r

MCC

SOSC5 −7.375 9.542 0.675 **
SOSC6 −7.979 10.479 0.637 **
EOSC5 60.354 60.354 0.073
EOSC6 59.896 59.896 0.067

DT2

SOSC5 4.146 9.479 0.580 **
SOSC6 4.271 9.688 0.538 **
EOSC5 48.979 48.979 0.172
EOSC6 48.396 48.396 0.164

DT5

SOSC5 35.125 35.125 0.532 **
SOSC6 35.417 35.417 0.478 **
EOSC5 18.813 19.521 0.207
EOSC6 18.292 18.750 0.180

MS

SOSC5 30.771 30.771 0.526 **
SOSC6 30.833 30.833 0.464 **
EOSC5 22.563 22.729 0.178
EOSC6 22.375 22.375 0.175

** indicates p < 0.01.

4. Discussion

The annual regional average GSNDVI for the alpine grassland on the TP showed no obvious trend
for C5 (p = 0.424), but a significant increasing trend for C6 (p < 0.05) (Figure 1). Moreover, GSNDVIC6

showed increasing trends over more areas than GSNDVIC5 (Figure 3). These greening trends may
result from the removal of sensor degradation, which can lead to a decline in NDVI, as previous
studies suggested [12,13]. Zhang et al. [17] also reported that the annual NDVI from Terra C6 showed
larger greening vegetation area than Terra C5 at global scale, which was consistent with the result of
our study. Besides, in a comparative study of cross-product NDVI dynamics in a tropical region in
Tanzania, significant increasing trends in NDVI also became more apparent in Terra C6 NDVI than
C5 NDVI [20]. In this study, the regional average GSNDVIC6 was significantly lower than GSNDVIC5

(Figure 1). At spatial scale, the multi-year average GSNDVIC6 was lower than the GSNDVIC5 in most
areas (Figure 2). These could cause the change of the NDVI curve shape, resulting in some differences
between phenology derived from C5 and C6 NDVI [32].

The identified vegetation phenology can be affected by the phenology extraction methods [28].
To avoid the bias of a single phenology extraction method [21], this study applied four common
methods to identify the vegetation phenological metrics. The identified SOSs from the earliest to the
latest ranked by MCC, DT2, MS, and DT5 (Table 2), which was almost consistent with the study of
Shen et al. [25]. Meanwhile, the order of the identified EOSs from the earliest to the latest was DT5,
MS, DT2, and MCC (Table 3). The difference in average SOS and EOS could be more than one month
among different methods. White et al. [28] found that individual methods differed in average SOS
by ±60 days, and the spatial phenological patterns derived from different methods often differed
among ecoregions by comparing 10 commonly used methods for estimating the SOS based on the
Advanced Very High Resolution Radiometer (AVHRR) NDVI in North America. Such differences
in phenology among methods were also found in other previous studies [33–35]. In our study, the
differences between phenology derived from C5 and C6 NDVI varied among methods (Tables 2 and 3,
Figures 6–9). Generally, most pixels showed an earlier multi-year average SOSC6 than SOSC5 and later
EOSC6 than EOSC5 (Figures 6 and 7). From C5 to C6, pixels with a SOS (EOS) trend changed from
significant to insignificant, or from insignificant to significant accounted for at least 14.58% (9.07%) of
the total pixels (Figures 8 and 9). This further confirmed the influence of the change in NDVI values
originated from sensor degradation and calibration methods on vegetation phenology monitoring.
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By comparing the satellite-derived with the ground-observed phenology, SOS identified by MCC
and DT2 methods was more consistent and correlated with the ground-observed GU than that by
MS and DT5 methods for both C5 and C6 NDVI (Table 4), implying that MCC and DT2 methods
were more suitable to monitor GU for the alpine grassland on the TP. Yu et al. [36] also found that
SOS that was extracted by DT2 from AVHRR NDVI was close to the ground observations on the
TP. Moreover, smaller differences and higher correlations were found between SOSC5 and GU than
between SOSC6 and GU (Table 4), implying that SOSC5 might be more consistent than SOSC6 with
the ground-observed GU. C5 NDVI may be more appropriate for monitoring SOS than C6 NDVI
in this area, but more ground-observed phenology records are needed to confirm it due to only
four available sites in our study. However, regarding EOS, large differences and poor correlations
between EOSC5, as well as EOSC6 and BLC, were found for all of the phenology extraction methods
(Table 4). When compared with SOS, EOS is much difficult to be monitored [37–39]. Many factors
can influence the evaluation of vegetation phenology shifts based on remote sensing data [38,40].
When comparing the satellite-derived with the ground-observed phenology, due to the difference in
observation scale (pixel versus individual plant) and content (spectral response of plant versus specific
phenological event of plant), the satellite-derived phenology (e.g., EOS) is considered to be related,
but not identical, to the ground-observed phenology (e.g., BLC) [28,41,42]. Therefore, it brings much
uncertainty to the validation of the satellite-derived phenology. Besides, plants often experience a
longer and slower change in canopy greenness in autumn than in spring [38,39,43], which may result
in a lower inter-annual variability of changes in EOS relative to SOS and consequently make it more
difficult to detect EOS from remote sensing time-series data [38]. Therefore, there is a need to use
near-surface remote sensing data with a higher resolution, including digital camera data [44–46] and
corresponding validation methods, for further evaluating the uncertainty in monitoring vegetation
phenology with MODIS C5 and C6 NDVI products.

This study aimed to compare the differences between MODIS C5 and C6 NDVI time series
in monitoring vegetation phenology on the TP. Based on the same selected grassland pixels, the
same data pre-processing methods and phenology extraction methods, the differences in phenology
derived from the two products were found to be mainly due to the sensor degradation and different
calibration methods. However, it should be noted that the selection criteria for grassland pixels and the
data pre-processing methods might influence the values of the satellite-derived phenological metrics.
Besides, the satellite-derived phenology is also influenced by the temporal [47,48], spatial [49], and
spectral resolutions [21] of remote sensing data.

5. Conclusions

This study conducted a comparative analysis of MODIS C5 and C6 NDVI-derived phenology for
the alpine grassland on the TP. Although the regional average SOSC5 and SOSC6 (EOSC5 and EOSC6)
showed consistent inter-annual variations, large spatial differences in trends between SOSC5 and SOSC6

(EOSC5 and EOSC6) were found. From C5 to C6, pixels with a SOS (EOS) trend changed from significant
to insignificant, or from insignificant to significant, accounted for at least 14.58% (9.07%) of the total
pixels. By comparing the satellite-derived phenology with the ground-observed phenology, SOSC5

was found to be more consistent than SOSC6 with the ground-observed green-up dates. C5 NDVI
may be more appropriate for monitoring SOS than C6 NDVI in this area, but more ground-observed
phenology records are needed to confirm it due to the only four available sites. However, both EOSC5

and EOSC6 showed large differences and poor correlations with the ground-observed beginning of
leaf coloring. The accuracy of vegetation phenology derived from remote sensing data was impacted
by many factors. Therefore, there is a need to use near-surface remote sensing data with a higher
resolution and corresponding validation methods for further evaluating the uncertainty of MODIS C5
and C6 NDVI products in monitoring vegetation phenology.
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