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Abstract: Hyperspectral image (HSI) possesses three intrinsic characteristics: the global correlation
across spectral domain, the nonlocal self-similarity across spatial domain, and the local smooth
structure across both spatial and spectral domains. This paper proposes a novel tensor based
approach to handle the problem of HSI spatial super-resolution by modeling such three underlying
characteristics. Specifically, a noncovex tensor penalty is used to exploit the former two intrinsic
characteristics hidden in several 4D tensors formed by nonlocal similar patches within the 3D HSI.
In addition, the local smoothness in both spatial and spectral modes of the HSI cube is characterized
by a 3D total variation (TV) term. Then, we develop an effective algorithm for solving the resulting
optimization by using the local linear approximation (LLA) strategy and the alternative direction
method of multipliers (ADMM). A series of experiments are carried out to illustrate the superiority
of the proposed approach over some state-of-the-art approaches.

Keywords: hyperspectral image super-resolution; low-rank tensor approximation; nonlocal
self-similarity; folded-concave regularization; total variation; ADMM

1. Introduction

Hyperspectral images (HSIs) are recordings of reflectance of light of some real world scenes or
objects including hundreds of spectral bands ranging from ultraviolet to infrared wavelength [1,2].
The abundant spectral bands of HSIs could possess fine spectral feature differences between various
materials of interest and enable many computer vision and image processing tasks to be more
successfully achievable. However, due to various factors, e.g., the constraints of imaging sensor and
time constraints, the acquired HSIs unfortunately are of low spatial resolution, which cannot provide
any further help for high precision processing requirements in many fields including mineralogy,
manufacturing, environmental monitoring, and surveillance. Therefore, the task of enhancing the
spatial resolution of HSIs is a valuable research issue and has received much attention in recent years.

Super-resolution is a widely-used signal post-processing technique for image spatial resolution
enhancement, which produces the high resolution (HR) image from the observed low resolution (LR)
image or sequence that are noisy, blurred and downsampled [3,4]. Tsai and Huang [5] presented
the first algorithm for the reconstruction of the HR image from a set of undersampled, aliased and
noise-free LR images. Then, Kim et al. [6] extended the work to consider observation noise as
well as the spatial blurring effect. Along this line, several frequency domain methods have been
proposed. See, e.g., [7,8]. However, such methods cannot utilize the prior information in the spatial
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domain. Therefore, to overcome their weaknesses, many kinds of spatial domain approaches have
been developed. For instance, Ur et al. [9] proposed a non-uniform interpolation by exploiting the
structural information in the spatial domain; Irani et al. [10] proposed an iterative back projection
method, which can be considered as solving a simple least square problem.

In the last few years, incorporating the prior information of HR auxiliary images into the
process of HSI super-resolution. In particular, multispectral and hyperspectral data fusion have
been becoming more and more popular. See, e.g., [11–14] and references therein. Due to the limitations
of remote sensing systems, however, it is not easy to get such HR images. Therefore, single HSI
super-resolution has still attracted much interest in many real world scenarios. In [2], Akgun et al.
proposed a novel hyperspectral image acquisition model, with which a projection onto convex sets
based super-resolution method was proposed to enhance the resolution of HSIs. Guo et al. [15] used
the unmixing information and total variation (TV) minimization to produce a higher resolution HSI.
By modeling the sparse prior underlying HSIs, a sparse HSI super-resolution model was proposed
in [16]. Zhang et al. [17] proposed a maximum a posteriori based HSI super-resolution reconstruction
algorithm, in which PCA is employed to reduce computational load and simultaneously remove
noise. Huang et al. [18] presented a novel super-resolution approach of HSIs by joint low-rank and
group-sparse modeling. Their approach can also deal with the situation that the system blurring
is unknown. In a recent study, Li et al. [19] explored sparse properties in both spectral and spatial
domains for HSI super-resolution. Recently, sparse representation and compressed sensing have
successfully been used in various real image super-resolution applications. See, e.g., [20,21]. Actually,
such methods can be naturally used to enhance the spatial resolution of one single HSI cube in a
band-by-band manner.

In this paper, following the ideas of our preliminary work [22] and the work [23] for MRI
super-resolution, we consider the HSI cube as the tensor with three modes, namely, width, height,
and band, and then exploit the underlying structures in both spatial and spectral domain by using
direct tensor modeling techniques to achieve the spatial resolution enhancement. Precisely, the spectral
bands of an HSI commonly have global strong correlations, and for each local fullband patch of an
HSI (which is stacked by patches at the same location of HSI over all bands), there are many same
size fullband patches similar to it; this spatial-and-spectral correlation is modeled by a nonconvex
low-rank tensor penalty. In addition, for each voxel, its intensity seems to be almost equal to those in
its neighbourhood from both the spatial and the spectral viewpoints; this local spatial-and-spectral
smoothness is exploited by using the 3D TV penalty. As such, the HSI super-resolution task resorts to
solving a nonconvex optimization problem, which could be effectively solved by combing the local
linear approximation (LLA) strategy and the alternative direction method of multipliers (ADMM) that
we shall show later.

This paper is organized as follows. Section 2 introduces some notations and preliminaries of
tensors, which will be used for presenting our procedure. In Section 3, the proposed tensor model
and its motivations are introduced. Then, an effective algorithm is developed for solving the resulting
nonconvex optimization problem in Section 4. Extensive experiments on three real datasets are carried
out in Section 5 to illustrate the outperformance of our model over several state-of-the-art ones. Finally,
we conclude this paper with some discussions on future research in Section 6.

2. Notation and Preliminaries

It is known that a tensor can be regarded as a multi-index numerical array, and its order is
defined as the number of its modes or dimensions. A real-valued tensor of order K is denoted by
X ∈ RI1×I2×...×IK and its entries by xi1,i2,...,iK . We then can consider an n× 1 vector x as a tensor of
order one, and an n×m matrix X as a tensor of order two. Following [24], we shall provide a brief
introduction on tensor algebra.
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The inner product of two same-sized tensors X ,Y is defined as

〈X ,Y〉 := ∑
i1,i2,...,iK

xi1,i2,...,iK · yi1,i2,...,iK . (1)

Then, the corresponding Frobenius norm can be defined as ‖X ‖F =
√
〈X ,X 〉.

The so-called mode-n matricization or unfolding of the tensor X is denoted as X(n),
where the tensor element (i1, i2, . . . , iK) is mapped to the matrix element (in, j) satisfying
j = 1 + ∑K

k=1,k 6=n(ik − 1)Jk with Jk = ∏k−1
m=1,m 6=n Im. Then, the operation “fold" is defined as

foldn(X(n)) := X . The mode-n multiplication of X with the matrix U is denoted by X ×n U
and, elementwise, we have(X ×n U)i1,...,in−1 jin+1 ...,iK = ∑in xi1,i2,...,iN · uj,in . The multi-linear rank is
defined as an array (r1, r2, . . . , rK), where rn = rank(X(n)), n = 1, 2, . . . , K.

Following [25], for a given matrix X, its folded-concave norm is defined as ‖X‖Pλ
:=

∑r
j=1 Pλ

(
σj(X)

)
, where σj(X) is the j-th singular value of X and r is its rank, and Pλ is the so-called

folded-concave penalty function defined by [26]. In this work, we use one popular folded-concave
penalty i.e., the minmax concave plus (MCP) penalty, which has the form:

Pλ(t) =

{
aλ2/2, if |t| ≥ aλ,

λ|t| − t2

2a , otherwise..
(2)

Here, a is a fixed constant. Then, similar to the tensor nuclear norm defined in [27], we can define
the tensor MCP penalty by applying the MCP penalty function to each matricization X(i):

‖X ‖Pλ
=

N

∑
i

αi‖X(i)‖Pλ
, (3)

where αi ≥ 0 and satisfies ∑N
i αi = 1.

3. HSI Super-Resolution via Nonlocal Low-Rank Tensor Approximation and TV Regularization

In this section, we firstly propose the observation model. Then, we use the 3D TV regularization
to describe local smoothness of one HSI, and adopt a path-based tensor folded-concave penalty to
characterize both the global correlation and the nonlocal self-similarity of the HSI. Finally, we propose
a novel regularization model for dealing with the HSI super-resolution task. The detailed framework
of our procedure is presented in Figure 1.
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Figure 1. The framework of our proposed procedure.

3.1. Observation Model

The low spatial resolution HSI is expressed by the following observation model:

Y = DSX + E , (4)

where the tensor Y ∈ Rwl×hl×B denotes the observed low spatial resolution HSI, D is the
downsampling operator, S is the blurring operator, X ∈ Rwh×hh×B is the HR image to be reconstructed
and E represents the observation noise with the same size of Y , and can be considered as the additive
Gaussian noise with zero-mean and variance σ2. It is easy to see that this is an ill-posed problem
(wlhl < whhh), and some regularization terms of X based on its prior knowledge, denoted by R(X ),
can be introduced to make this problem to be well-posed, leading to:

X̂ = arg min
X
{‖DSX −Y‖2 + λR(X )}, (5)

where λ is a regularization parameter to balance the fidelity term and the regularization term. Then, the
main objective is to design suitable regularization terms to explore the underlying priors of X .

3.2. 3D TV Regularization

Total variation (TV) has been widely used to explore the spatial piecewise smooth structure for
tackling various HSI processing tasks [15,28,29]. It has the ability of preserving local spatial consistency
and suppressing observed noise. Considering that the high spatial resolution HSI to be reconstructed
is treated as a 3rd-tensor, its local spatial-and-spectral smoothness can be exploited by a weighted 3D
TV term, which has the form:

TV(X ) = ∑
ijk

w1|xijk − xij,k−1|+ w2|xijk − xi,j−1,k|+ w3|xijk − xi−1,j,k|, (6)

where xijk is the (i, j, k)-th element of X , and wj(j = 1, 2, 3) is the weight along the j-th mode of X
that controls its regularization strength. This weighted 3D TV models the piecewise smooth structure
in both spatial and spectral domains. For simplicity, we fix the value of wj(j = 1, 2) to 1 since the
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spatial dimensions have similar effect, and tune the spectral weight w3 between 0 to 1. We find that
the reconstruction performance is stable when 0.4 ≤ w3 ≤ 0.8. As such, we fix the value of w3 to 0.6 in
the experimental study presented in this paper.

3.3. Nonlocal Low-Rank Tensor Approximation

Nonlocal self-similarity [30–32] is a patch-based useful prior, which means that, for a given local
patch in one image, there are many patches similar to it. Motivated by [33], separating X into a set of
image patches Ω = {Xn ∈ Rb×b×B}P

p=1 (where b is the patch size, P is the number of 3D patches with
overlap), and by performing block matching [34], a group of patches that is most similar to each patch
Xp can be extracted. By stacking all these patches together, we can get a clustered 4th-order tensor
Tk with size b× b× B× d, where d is the number of 3D patches in the kth cluster. The global spectral
correlation among all the bands implies that Tk(3) is low-rank. In addition, the observation that the
patches in each cluster possess very similar structures implies that Tk(4) is also low-rank. Combining
these two points with the certain correlations in both spatial modes, we can measure the low-rank
structure of each 4th-order tensor Tk by a weighted sum of the rank of each unfolding, that is,

Rank(Tk) =
4

∑
i=1

αirank(Tk(i)), (7)

where αi ≥ 0 and satisfies ∑4
i=1 αi = 1. Since minimizing the rank function (7) is generally intractable,

and the matrix nuclear norm is usually used as a tight convex surrogate of the matrix rank [35], the
rank function (7) can be replaced with the tensor nuclear norm [27]:

‖Tk‖∗ =
4

∑
i=1

αi‖Tk(i)‖∗, (8)

where ‖Z‖∗ := ∑
min(m,n)
r=1 σr(Z) is so-called the nuclear norm of matrix Z with size m× n.

Although a convex tensor nuclear norm, such as (8), could provide satisfactory results in various
tensor recovery problems, studies like [35] demonstrated that the matrix nuclear norm over-penalizes
large singular values, and thus gives a biased estimator in low-rank structure learning. Fortunately, a
folded-concave penalty [26] can be considered to remedy such modeling bias [25,26]. Thus, we use the
tensor MCP penalty defined by (3) to exploit the low-rank structure of Tk, namely,

‖Tk‖Pλ
=

4

∑
i=1

αi‖Tk(i)‖Pλ
, (9)

where Pλ is the so-called MCP penalty function defined in (2).
Thus far, we have only considered how to model the low-rank characteristic of one cluster

Tk. Basically, it should be necessary to exploit the spatial-and-spectral correlation of X by the
following form:

‖X ‖Nonlocal−Pλ
=

N

∑
k=1
‖Tk‖Pλ

, (10)

where N is the number of clustered groups.

3.4. Proposed Model

With the above discussions, we now propose the following regularization model for the HSI
super-resolution task:

min
X
‖DSX −Y‖2

F + ‖X ‖Nonlocal−Pλ1
+ λ2TV(X ), (11)
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where the scalars λ1 and λ2 are regularization parameters. It is not hard to see that (11) is a nonconvex
optimization problem due to the nonconvexity of MCP penalty function. Thus, we only wish to find a
good local solution. Specifically, as is shown in Figure 1, by choosing the direct upsampled version of
observered LR tensor Y as the intilization point, we would like to estimate a good HR tensor X via
the ADMM.

4. Optimization Procedure

The model (11) can be rewritten as the following equivalent form:

min
X
‖Y − DSX‖2 + ∑

k

4

∑
i=1

αi‖Tk(i)‖Pλ1
+ λ2‖Gw(X )‖1, (12)

where Gw(·) = [w1 × Gh(·); w2 × Gv(·); w3 × Gt(·)] is the so-called weighted three-dimensional
difference operator, and Gh, Gv, Gt are the first-order difference operators with respect to three
different directions of HSI cube. Define the operator P that first extracts patches within a 3rd-order
HSI cube and then applies nonlocal block matching on these 3rd-order patches to form a 4th-order
tensor. Thus, we can denote that P k

X = Tk. By introducing some auxiliary variables, i.e., {M}4
i=1, F

into (12) leads to

min
X ,{Mn}

4
i=1,F
‖Y − DSX‖2 + ∑

k

4

∑
i=1

αi‖P k
Mi (i)

‖
Pλ1

+ λ2‖F‖1

subject to X =Mi, F = Gw(X ), i = 1, ..., 4.

(13)

Based on the methodology of ADMM [36], the augmented Lagrangian function of the above
problem is written as follows:

Lµ,ν(X ,M1, ...,M4,U1, ...,U4,F ,V)

= ‖Y − DSX‖2
F +

4

∑
i=1

(
∑
k

αi‖P k
Mi (i)

‖
Pλ1

+ 〈X −Mi,Ui〉+
µ

2
‖X −Mi‖2

F

)
+ λ2‖F‖1 + 〈F − GwX ,V〉+ ν

2
‖F − GwX‖2

F,

(14)

where {Ui}4
i=1 and V are the Lagrangian parameters. We will transform (14) into three subproblems

and iteratively update each variable by fixing the other ones. Let l denote the lth iteration step; then,
in the (l + 1)th iteration, variables involved in model (13) can be updated as follows:

Update X . Extracting all items related to X from (14), it can be easily deduced that:

X (l+1) = arg min
X

‖Y − DSX‖2
F +

4

∑
i=1

(
〈X −M(l)

i ,U (l)
i 〉+

µ

2

∥∥∥X −M(l)
i

∥∥∥2

F

)
+ 〈F (l) − GwX ,V (l)〉+ ν

2
‖F (l) − GwX‖2

F,

(15)

which equals solving the following linear equation:

2S̃D̃DSX + 4µX + νG′wGwX = 2S̃D̃Y +
4

∑
i=1

(µM(l)
i −U

(l)
i ) + G′wV l

n + νG′wF l
n, (16)

where S̃, D̃ are the transposes of S and D, respectively, and G′w indicates the adjoint of Gw. This linear
system can be efficiently solved by using the well-known preconditioned conjugate gradient method.
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Update {Mi}4
i=1. Similar to the works [22,25], we adopt the LLA algorithm to transform the

MCP penalization problem into a weighted nuclear norm penalization problem. Specifically, we need
to solve

min
{Mi}4

i=1

4
∑

i=1

(
∑kαiQPλ1

(
σ(P k

Mi (i)
)

∣∣∣∣ σ(P k
X (l+1) (i)

)
)
+ 〈X (l+1) −Mi,U

(l)
i 〉+

µ
2

∥∥∥X (l+1) −Mi

∥∥∥2

F

)
, (17)

where QPλ1
(σ(X|X(l))) is the locally linear approximation of ‖X‖Pλ

for a given matrix X when X(l) is
given. For solving (17), we can first consider the following problem for each kth patch set:

min
{P k
Mi
}4

i=1

4
∑

i=1

(
αiQPλ1

(
σ(P k

Mi (i)
)

∣∣∣∣ σ(P k
X (l+1) (i)

)
)
+ 〈P k

X (l+1) −P k
Mi

,P k
U (l)

i

〉+ µ
2

∥∥∥P k
X (l+1) −P k

Mi

∥∥∥2

F

)
. (18)

Then, according to [27], we can update each P k
Mi

by solving

min
{P k
Mi
}4

i=1

αiQPλ1

(
σ(P k

Mi (i)
)

∣∣∣∣ σ(P k
X (l+1) (i)

)
)
+ 〈P k

X (l+1) −P k
Mi

,P k
U (l)

i

〉+ µ
2

∥∥∥P k
X (l+1) −P k

Mi

∥∥∥2

F
. (19)

Thus, by applying the Theorem 3.1 in [25], we can get the following closed-form solution:

P k
M(l+1)

i
= foldi

Sλ1αi/µ,Wi

(
P k
X (l+1) (i)

+

P k
U (l)

i (i)

µ

) , i = 1, 2, 3, 4. (20)

Here, the singular value shrinkage operator Sτ(X) is defined by Sτ(X) := UXDτ(ΣX)VT
X ,

where X = UXΣXVT
X is the singular value decomposition of the matrix X and for a given

matrix A, [Dτ(A)]ij = sgn(Aij)(|Aij| − τ)+. Additionally, the weight matrix Wi is defined by

Wi = Diag((λ− (σ(X (l+1)
(i) )/a))+) for some fixed a > 1. Then, as shown in Figure 1, by aggregating

all such patch sets {P k
M(l+1)

i

}k, we can update eachMi as

M(l+1)
i = ∑

k
P k
M(l+1)

i
. (21)

Update F . Extracting all terms containing F from (14), we can get

F (l+1) = arg min
F

4

∑
i=1

(
λ2βi

∥∥∥F(i)

∥∥∥
1
+ 〈F − GwX (l+1),V (l)〉+ ν

2

∥∥∥F − GwX (l+1)
∥∥∥2

F

)

= arg min
F

4

∑
i=1

(
λ2βi

∥∥∥F(i)

∥∥∥
1
+

ν

2

∥∥∥F − GwX (l+1) +
V (l)
(i)

ν

∥∥∥2

F

)
.

(22)

By introducing the so-called soft-thresholding operator:

Soft∆(x) =


x− ∆, i f x > ∆,

x + ∆, i f x < ∆,

0, otherwise,

where x ∈ R and ∆ > 0, and then we update F (l+1) as

F (l+1) = foldi

Softλ2βi/ν

(
GwX

(l+1)

(i) −
V (l)
(i)

ν

) . (23)
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Update {Ui}4
i=1 and V . The multipliers are updated by

U (l+1)
i = U (l)

i + γ · µ(X (l+1) −M(l+1)
i ), i = 1, . . . , 4,

V (l+1) = V (l) + γ · ν(F (l+1) − GwX (l+1)),
(24)

where γ is the parameter with a fixed value, namely, 1.05, and the penalty parameters µ and ν follow a
certain adaptive updating scheme, which can facilitate the convergence of the proposed optimization
procedure. Take µ as an example. We first initialize µ as a small value, i.e., µ = 10−3, and then update
it by the scheme:

µ← c1 · µ if Res > c2 · Respre, (25)

where Res = ‖Y − DSX (l+1)‖F and Respre = ‖Y − DSX (l)‖F, and c1 and c2 can be taken as 1.15 and
0.95, respectively.

5. Experimental Study

Three popular real-world HSI data sets were used in our experiments, i.e., the Airborne
Visible/Infrared Imaging Spectrometer (AVIRIS) Moffett Field data set [37], the Hyperspectral Digital
Imagery Collection Experiment (HYDICE) Urban data set [38] and the HYDICE Washington DC
Mall data set [39]. After removing seriously polluted bands and cropping images for each data set,
the HSI cube used for the experiments are of 256× 256× 146, 256× 256× 140 and 256× 256× 140,
respectively. To thoroughly evaluate the performance of the proposed approach, we considered three
popular super-resolution methods for comparison, that is, the nonlocal autoregressive model (NARM)
proposed by [21], the spatial–spectral group sparsity method (SSGS) proposed by [19], the low-rank
and total variation regulariztions (LRTV) method proposed by [23]. We also considered the nearest
neighbor interpolation (NN) method that is used to achieve the upsampled HSI for comparison. For
brevity, our proposed approach is dubbed as NLRTATV. In this set of experiments, the blurring kernel
is chosen as the popular Gaussian kernel and all the LR HSIs are obtained by downsampling the
original HR HSIs with a factor of 2 or 3, i.e., the LR HSIs are of spatial size 128× 128 or 85× 85.
In the following experiments, similar to [19], the gray values of each band of HSI were normalized
to [0, 255] to facilitate the numerical calculation, though this operation may change the relative spectral
properties of the HSI bands. In addition, the parameters a and αi in (2) and (3) were fixed to 5 and
1
4 , respectively. For another two regularization parameters λ1 and λ2 of the model (12), though they
should be carefully tuned, based on the analysis presented in Section 5.3, we set λ1 as 0.3 and λ2 as
0.04. For the ease of interested readers to reproduce the results of NLRTATV, we have released the
codes at http://vision.sia.cn/our%20team/Hanzhi-homepage/vision-ZhiHan%28English%29.html.

5.1. Quantitative Comparison

Tables 1 and 2 give the super-resolution reconstruction results by all the compared methods under
noise free setting and noisy setting with σ = 5, respectively, in terms of three image quality measures,
including the mean peak signal-to noise ratio (MPSNR) and the mean feature similarity (MSSIM),
as used in [40], and spectral angle mapper (SAM) [41]. The PSNR (in dB) [42] and SSIM [43] are
two traditional image quality measures in image processing and computer vision, which are used
to evaluate the similarity between the target image and the reference image based on mean squared
error and structural consistency, respectively. Note that, despite its popularity, PSNR may not be a
very good image quality measure for HSI based problems. SAM (in rad) calculates the average angle
between spectrum vectors of the target HSI and the reference one across all spatial positions. It is
well-known that the higher the value of PSNR or SSIM is, the better the image quality is; the lower the
value of SAM is, the smaller the spectral distortion.

As shown in Tables 1 and 2, firstly, the proposed NLRTATV method significantly outperforms
other competing ones in terms of the aforementioned three quality measures. This clearly shows that

http://vision.sia.cn/our%20team/Hanzhi-homepage/vision-ZhiHan%28English%29.html
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more fine priors underlying the HSI cube were exploited by NLRTATV. Secondly, LRTV illustrates
a superior performance over NN, SSGS and NARM because of the use of a direct tensor sparse
representation of the hyperspectral cube. Both of these findings demonstrate the power of tensor
modeling techniques for tackling HSI super-resolution tasks.

Table 1. Super-resolution reconstruction results by different methods under noise free setting.

NN NARM SSGS LRTV NLRTATV

MPSNR (dB) 19.6357 20.1774 21.2733 27.7744 34.3935
DC Mall (factor 2) MSSIM 0.6771 0.7575 0.8142 0.8380 0.9665

SAM (rad) 0.0998 0.0913 0.0875 0.0805 0.0487

MPSNR (dB) 20.1281 21.5613 22.7087 28.2954 35.2754
Urban (factor 2) MSSIM 0.6924 0.7770 0.8092 0.8485 0.9663

SAM (rad) 0.0971 0.0837 0.0789 0.0710 0.0470

MPSNR (dB) 19.9535 20.3799 21.4042 29.8499 35.9816
Moffett Field (factor 2) MSSIM 0.6836 0.7621 0.8042 0.8349 0.9545

SAM (rad) 0.0958 0.0820 0.0754 0.0630 0.0365

MPSNR (dB) 24.9190 25.1116 26.0086 27.4270 33.1308
Moffett Field (factor 3) MSSIM 0.6888 0.7130 0.7139 0.7955 0.9301

SAM (rad) 0.0963 0.0915 0.0901 0.0810 0.0476

Table 2. Super-resolution reconstruction results by different methods under noisy setting (σ = 5).

NN NARM SSGS LRTV NLRTATV

MPSNR (dB) 19.4578 20.1558 21.2191 27.2824 32.8701
DC Mall (factor 2) MSSIM 0.6346 0.7575 0.7901 0.8126 0.9329

SAM (rad) 0.1034 0.0913 0.0889 0.0845 0.0473

MPSNR (dB) 20.8761 21.4544 21.6906 27.7523 31.8675
Urban (factor 2) MSSIM 0.6263 0.7770 0.8090 0.8148 0.9042

SAM (rad) 0.0928 0.0897 0.0835 0.0745 0.0628

MPSNR (dB) 19.7640 20.3251 20.4034 29.1580 32.5487
Moffett Field (factor 2) MSSIM 0.6107 0.7621 0.7982 0.8158 0.8834

SAM (rad) 0.0905 0.0720 0.0695 0.0635 0.0470

MPSNR (dB) 24.4130 25.0118 25.0782 26.8280 29.4416
Moffett Field (factor 3) MSSIM 0.6223 0.7130 0.7247 0.7458 0.8441

SAM (rad) 0.0929 0.0915 0.0864 0.0839 0.0660

To provide more detailed quantitative comparison, we also show in Figures 2 and 3 the PSNR and
SSIM values of each band for all four of the cases listed in Tables 1 and 2, respectively. As can be seen,
the tensor methods including LRTV and the proposed NLRTATV can get much higher values of SSIM
and PSNR than other ones for almost every band. In addition, NLRTATV can provide significantly
improved reconstruction results over LRTV, especially for noise free cases. All of these show that the
proposed NLRTATV can discover more intrinsic structures of HSIs than other competing ones, and
thus it possesses a better reconstruction ability.
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Figure 2. Detailed quantitative evaluation of different methods for each band under noise free setting:
(a,b) DC Mall (factor 2), (c,d) Urban (factor 2), (e,f) Moffett Field (factor 2), (g,h) Moffett Field (factor 3).
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Figure 3. Detailed quantitative evaluation of different methods for each band under noisy setting with
σ = 5: (a,b) DC Mall (factor 2), (c,d) Urban (factor 2), (e,f) Moffett Field (factor 2), (g,h) Moffett Field
(factor 3).

5.2. Visual Quality Comparison

In terms of visual quality, one representative band of recovered HSIs in three typical cases obtained
by all of the compared methods are shown in Figures 4–6. It is evident that the images shown by (f) in
the Figures 4–6 recovered by our NLRTATV method preserve clearer and sharper edges compared
with the other images shown by (b–e) in Figures 4–6. One can zoom in on each figure for more visual
comparison details.
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(a) (b) (c) (d)

(g)(e) (f)

Figure 4. Reconstruction results on band 137 of noise free DC Mall data with downsampling factor 2:
(a) LR band with downsampling factor 2, (b) NN, (c) NARM, (d) SSGS, (e) LRTV, (f) NLRTATV,
(g) original band.

(g)(e) (f)

(a) (b) (c) (d)

Figure 5. Reconstruction results on band 34 of noise free Moffet Field data with downsampling factor 2:
(a) LR band with downsampling factor 2, (b) NN, (c) NARM, (d) SSGS, (e) LRTV, (f) NLRTATV,
(g) original band.
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(a) (b) (c) (d)

(g)(e) (f)

Figure 6. Reconstruction results on band 56 of noisy Urban data with downsampling factor 2:
(a) LR band with downsampling factor 2, (b) NN, (c) NARM, (d) SSGS, (e) LRTV, (f) NLRTATV,
(g) original band.

5.3. Analysis of the Parameters

In the proposed NLRTATV model, there exist two regularization parameters λ1 and λ2 that need
to be carefully identified. Thus, we provide some experimental analysis to show how we can choose
them for practical use. (a) and (b) in Figure 7 describe the relationship between MPSNR and the
regularization parameters λ1 and λ2 when NLRTATV performed on DC Mall data under noise free
setting, respectively, with the other parameters fixed at optimal values. It can be observed that, as λ1

and λ2 vary in a wide range, the MPSNR value is rather stable and relatively stable correspondingly.
Actually, we performed NLRTATV on several other experimental cases and found a similar behaviour
as shown in Figure 7. Therefore, λ1 can be chosen as a value in [0.1, 1] and λ2 can be chosen as a value
in [0.005, 0.05] in real implementation. For simplicity, in all the experiments conducted in this work,
we set λ1 and λ2 as 0.3 and 0.04, respectively.

Since the nonlocal block matching operation is used in NLRTATV, the number of similar patches
in each group is another important parameter that needs to be carefully considered. Figure 8 depicts
the MPSNR and MSSIM gains versus the number of similar patches when NLRTATV performed on
DC Mall data under a noise free setting. Here, we can observe that, as the number of similar patches
increases to a value larger than 10, the curves of MPSNR and MSSIM both became stable. For simplicity,
in all of the experiments, the number of similar patches was fixed to 30.
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Figure 7. Sensitivity analysis of two regularization parameters: (a) the MPSNR value versus λ1; (b) the
MPSNR value versus λ2.
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Figure 8. Sensitivity analysis of the number of similar patches: (a) change in the MPSNR value;
(b) change in the MSSIM value.

6. Conclusions

In this paper, we have proposed a novel method named NLRTATV for dealing with the problem
of HSI super-resolution by using tensor structural modeling. The proposed method has considered
the global correlation across spectral domain, the nonlocal self-similarity across spatial domain, and
the local smooth structure across both spatial and spectral domains of the HSI cube by combining the
low-rank tensor and 3D total variation regularizations. Extensive experimental study on three HSI
datasets have demonstrated the superior performance of the proposed NLRTATV over several popular
methods, which clearly shows the advantages of NLRTATV in exploring the intrinsic characteristics of
the HSI cube.

Along this line, several desirable research directions can be conducted for future study. Firstly,
though the proposed NLRTATV has only tested on the experiments with Gaussian blurring kernel,
which is the situation in which no prior information on the blurring operator is known, a similar
idea used in [18] could be incorporated into our model for tackling HSI super-resolution tasks with
unknown blurring kernels. Secondly, it could be interesting to extend the deep learning ideas of [44]
and [45] to design a deep tensor architecture to learn the more intrinsic characteristics of the HSI cube,
and, as a result, to provide much better super-resolution reconstruction results. Thirdly, the problem
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of hyperspectral and multispectral data fusion has received much attention in recent years. It would
be also interesting to extend the presented tensor modeling technique for dealing with such problems,
which could give more effective methods for enhancing the spatial resolution of hyperspectral data.
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