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Abstract: Because of the use of outdated terrestrial datasets, regional climate models (RCMs) have 
a limited ability to accurately simulate weather and climate conditions over heterogeneous  
oasis-desert systems, especially near large mountains. Using actual terrestrial datasets from satellite 
products for RCMs is the only possible solution to the limitation; however, it is impractical for long-
period simulations due to the limited satellite products available before 2000 and the extremely 
time- and labor-consuming processes involved. In this study, we used the Weather Research and 
Forecasting (WRF) model with observed estimates of land use (LU), albedo, Leaf Area Index (LAI), 
and green Vegetation Fraction (VF) datasets from satellite products to examine which terrestrial 
datasets have a great impact on simulating water and heat conditions over heterogeneous  
oasis-desert systems in the northern Tianshan Mountains. Five simulations were conducted for  
1–31 July in both 2010 and 2012. The decrease in the root mean squared error and increase in the 
coefficient of determination for the 2 m temperature (T2), humidity (RH), latent heat flux (LE), and 
wind speed (WS) suggest that these datasets improve the performance of WRF in both years; in 
particular, oasis effects are more realistically simulated. Using actual satellite-derived fractional 
vegetation coverage data has a much greater effect on the simulation of T2, RH, and LE than the 
other parameters, resulting in mean error correction values of 62%, 87%, and 92%, respectively. LU 
data is the primary parameter because it strongly influences other secondary land surface 
parameters, such as LAI and albedo. We conclude that actual LU and VF data should be used in the 
WRF for both weather and climate simulations.  

Keywords: MODIS; Weather Research and Forecasting model; oasis-desert system; oasis effects; 
Northern Tianshan Mountains; Central Asia 

 

1. Introduction 

The arid region of Central Asia (CA), which includes Kazakhstan, Kyrgyzstan, Tajikistan, 
Turkmenistan, Uzbekistan, and the Xinjiang Province of China [1,2], is located deep inside the 
continent and has unique geomorphological characteristics, including mountain–basin systems. In 
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this area, elevations can increase dramatically, from a few hundred metres above sea level in the basin 
areas to over 5000 m above sea level in the mountainous areas, over a horizontal distance of less than 
200 km; thus, there is high heterogeneity in land cover types [3]. Water is scarce and is valuable for 
both human livelihoods and ecosystems in CA [4]; water resources are largely derived from the 
mountainous areas, whose rivers are fed by hydrologic processes of snow and glacial melt and 
precipitation [5]. These rivers flow into artificial lakes and then disappear into the desert areas in the 
basin [6]. Given the limited amount of runoff [7] and unrestricted groundwater exploitation in the 
area [8], oases form at the foothills of large mountains [6,9–12]. The geographical and ecological 
characteristics differ significantly between these oases and the surrounding deserts, causing 
significant differences in energy budgets, the exchange rate of momentum, and water vapor levels. 
These differences produce typical oasis effects [13] such as the “cold–wet” island effects of oases (an 
oasis is a wet, cold island capped by warm–dry air), and the thermal differences between oases and 
the surrounding deserts result in oasis breeze circulation (OBC). Such oasis effects increase in 
complexity both in and near mountain ranges. Although oases account for only a small proportion 
of the land surface (e.g., a proportion of 4–5% in Xinjiang, a typical region of the hinterland of the 
CA), more than 90% of the population and 95% of the socioeconomic wealth are concentrated there 
[14]. Therefore, CA, because of its large elevation differences and the importance of oases, can be 
divided into mountainous region, oases, and desert areas, often named the Mountain–Oasis–Desert 
System (MODS). 

The northern Tianshan Mountains (NTM), the core section of the Silk Road, is a typical 
geomorphological part of CA; it is also sensitive to climate change [15]. Recent studies have indicated 
that annual mean air temperature in the NTM has been increasing at an average rate of 0.8 °C decade−1 
[16], which is greater than the average rate in CA (0.39 °C decade−1 from 1979 to 2011) and the global 
land surface (0.27–0.31 °C decade−1 from 1979 to 2005) [1]. Precipitation and the frequency of extreme 
precipitation show a rate of 11.3% in the NTM [16] amid a longer-term drying trend [17,18]. Other 
areas in CA generally show a slight decrease in average annual precipitation [4,19]. Additionally, the 
region has been experiencing distinct intense oases expansion since the 1950s [20–22]. Oases have 
expanded more than 400% in the past 60 years (from 121.0 × 10  ha in 1949 to 512.5 × 10  ha in 
2010). A series of ecological problems have appeared as a result, including soil salinization, oasis 
degradation, and desertification [23–26]. Horton [27–29] found that regional climate change was 
largely independent or potentially related to land cover change processes. The abnormal regional 
temperature and precipitation changes in the NTM may be due to the rapid oases expansion. 
Therefore, understanding the mechanisms of oasis effects and quantitatively investigating the climate 
effects of oases expansion on the regional climate are important for ensuring the sustainable 
development and ecological stability of oases, and will also provide useful information for regional 
climate change assessments [30].  

Numerical simulation using regional climate models (RCMs) is the most effective method to 
explore both oasis effects and climatic effects of the oases expansion in the complex mountain–basin 
systems of CA because RCMs can account for climatic mechanisms not included in field 
measurements [31,32] and Global Circulation Models (GCMs) [33,34]. GCMs are unable to adequately 
resolve many important meso-microscale processes, like wind patterns and precipitation due to 
orographic effects based on large-scale convective parameterization schemes, and simpler land 
surface processes [35]. The Weather Research and Forecasting model (WRF) is an RCM that has been 
widely used to simulate regional climatic patterns, particularly over the past 10 years [36,37]. Because 
the default terrestrial datasets in RCMs are generally derived from Advanced Very High Resolution 
Radiometer (AVHRR) data from 1992–1993, the ability of RCMs to accurately simulate weather and 
climate conditions is limited by the use of these outdated terrestrial datasets [38,39]. Integrating actual 
terrestrial datasets from satellite products or observation in the model simulations is a novel way to 
overcome these limitations. Many numerical simulations have used MODerate resolution Imaging 
Spectroradiometer (MODIS) products, including land use (LU), albedo, leaf area index (LAI), and 
green vegetation fraction (VF), to improve the boundary layer meteorology simulation and to explore 
the climatic effects of land use cover change (LUCC) [14,37,40–43]. The results from the simulations 
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using actual albedo, LAI, and VF indicated that LUCC led to local cooling of 1 °C in the summer and 
local warming exceeding 0.8 °C in the winter. By contrast, simulations using default terrestrial 
datasets showed random changes in temperature. However, these actual datasets mainly came online 
in the early 2000s; most numerical simulations, especially long-period simulations (many years, even 
hundreds of years) [40] and downscaled GCM runs, have to be performed using [44] default 
terrestrial datasets provided by RCMs. This choice is motivated by the fact that terrestrial datasets 
from satellite products are scarce and field measurements are temporally and spatially limited, 
especially in complex terrain. In addition, simulations using real-time, even monthly, actual various 
satellite terrestrial datasets in RCMs are very time- and labor-consuming processes. The question 
remains as to whether simulations using RCMs that update several key observed datasets can meet 
expected results in various applications, especially for land surface modelling or climate modelling, 
while reducing the time and labor cost, and also partly overcome the limitation of scarce observations 
and satellite products in such a complex region.  

Therefore, this study aims both to quantitatively examine which actual terrestrial datasets 
(including LU, albedo, LAI, and VF) have a great impact on WRF performance, and to improve the 
simulation of weather and climate conditions over complex and heterogeneous oasis–desert systems 
near to large mountains. Our specific research objectives are as follows: (1) to compare the differences 
between the actual LU, albedo, LAI, and VF datasets and the corresponding default terrestrial 
datasets over MODS; (2) to quantitatively examine the impacts of using each actual terrestrial dataset 
on WRF performance and to determine which is key for the WRF simulations with a complex 
underlying surface; and (3) to comprehensively assess oasis effects including temperature, humidity, 
energy flux, and circulation patterns. 

2. Materials and Methods 

2.1. Study Area 

CA is characterized by typical mountain–basin systems. Due to its unique topography, runoff 
generated from snow- and glacier-melt and precipitation processes [7] in mountainous areas flows 
into the basin and, by the time these surface waters reach oasis and desert areas, has completely 
evaporated in the basin. CA is influenced by the westerly circulation at the middle–high latitudes and 
the polar air masses [7], and experiences an arid continental climate with scarce and concentrated 
rainfall (less than 250 mm in the basin regions and 900 mm in the mountains). The NTM is 
representative of the microcosm of the terrain and climate of CA and it includes the southern part of 
the Tianshan Mountains and the northern part of the Gurban Tonggut Desert (Figure 1). The oasis 
area is in the groundwater overflow zone and the surrounding deserts in the basin. Two nested grid 
systems are used in this study (Figure 1). The coarse outer domain (D01) covers the entire area of the 
NTM and spans a total area of 890 km × 975 km with a grid spacing of 18 km in both horizontal 
directions. The inner domain (D02), our main region of interest, covers a total area of 530 km × 465 
km with a grid spacing of 6 km (Figure 1).  
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Figure 1. Location of the northern Tianshan Mountains (NTM) in Central Asia, including land surface 
elevations, meteorological sites, and simulation domain over the NTM (the blue dashed line is the 
analysis range). 

2.2. Datasets 

2.2.1. Forcing Data and In Situ Measurements 

The latest global atmospheric reanalysis product, ERA-Interim, provided by the European 
Centre for Medium-Range Weather Forecasting Reanalysis [45], was used for the initial and lateral 
boundary conditions for WRF simulations in this study; it was chosen because it matches well with 
most of the local climate records, especially in the low-lying plain areas [1]. We used geopotential, 
relative humidity, temperature, and U and V wind component data at 30 pressure levels and surface 
forcing datasets including 10 m U wind, 10 m V wind, 2 m dewpoint temperature, 2 m temperature, 
mean sea level pressure, sea surface temperature, sea-ice cover, skin temperature, snow density, 
snow depth, 4-layer soil temperature, and soil water. The dataset has a spatial resolution of  
0.75° × 0.75° and is based on 6 h intervals.  

Six meteorological stations were used to validate the simulation results (Table 1). These are 
distributed across the oasis and the surrounding desert areas (Figure 1). Qualified T2, RH at 2 m, 
wind speed (WS) and wind direction (WD) at 10 m, and precipitation on an hourly scale were 
retrieved. In addition, we validated simulations of latent heat flux (LE) over the oases using 
observations from one eddy covariance system installed at station S2 (no effective observations of 
sensible heat flux were available because the radiation sensor was damaged). Because no surface 
energy observations were available for the desert areas, we only validated temperature and relative 
humidity over the desert areas.  

Table 1. Meteorological stations’ names, locations, elevations, and available elements. 

ID Longitude/°E Latitude/°N Altitude/m LU Measurements Time 
S1 86.20 44.32 473.10 Crop/Urban T2, P, RH, WS, WD 2012 
S2 85.82 44.28 469.30 Crop T2, RH, SW, LW, LE 2010, 2012 
S3 85.25 44.85 338.10 Crop T2, P, RH, WS, WD 2012 
S4 86.10 45.02 347.80 Crop T2, P, RH, WS, WD 2012 
S5 87.93 44.29 476 Desert T2, RH 2010, 2012 
S6 87.92 44.48 448 Desert T2, RH, 2010, 2012 

Note: LU represents land use; T2 represents 2 m air temperature; RH represents 2 m relative humidity; 
LE represents latent heat flux; WS and WD represent the wind speed and direction at 10 m, 
respectively; SW and LW represent the downward shortwave and longwave radiation, respectively. 
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2.2.2. LU  

The default LU data included in WRF model are originally from the U.S. Geological Survey 
(USGS), which classifies LU into 24 categories (Table S2) [42]. A high-resolution LU image was 
produced for 2012 (2012LU) using visual interpretations based on Landsat images and a 1:1,000,000 
scale topographic map. This image was generated by the Xinjiang Institute of Ecology and 
Geography, Chinese Academy of Sciences [46]. The 2012LU has a spatial resolution of 30 m and 
adopts a hierarchical classification system with a spatial resolution of 30 m, including 6 categories 
and 25 subcategories (Table S1). We converted it into the USGS classification system according to the 
relationships shown in Table S2 (please see the Supplementary Materials).  

2.2.3. Albedo Product (MCD43A4)  

The MODIS Bidirectional Distribution Reflectance Model (BRDF) 16 Day surface albedo 
standard products have been validated by comparison to in situ measurements [47,48]. The high-
quality primary algorithm for the MODIS standard albedo product (MCD43) has also been shown to 
produce consistent global quantities over a variety of land surface types and snow-covered 
conditions [49]. We used the nadir BRDF-adjusted reflectance MCD43A4 (MODIS Terra+Aqua Nadir 
BRDF-Adjusted Reflectance 16 Day L3 Global 500 m SIN Grid V005), which is computed for each 
MODIS spectral band (1–7) at the mean solar zenith angle. MCD43A4 images, with the strip numbers 
h23v04 and h24v04 for 3 July 2010 and the same day in 2012, were downloaded from the MODIS 
website. We reprocessed them using the same coordinate systems and resolutions via numerical 
simulations. 

2.2.4. LAI Product (MYD15A2)  

The MODIS global LAI product has been validated into stage 2 by the Committee on Earth 
Observation Satellites (CEOS) [50,51], and has been determined to have high continuity and 
consistency for all biome types. On global and regional scales, earth observation (EO)-based estimates 
of LAI serve as valuable inputs for climate and hydrologic modelling [52]. In this study, the level 4 
MODIS global LAI MYD15A2 (MODIS/Terra+Aqua LAI/FPAR 8 Day L3 Global 1 km SIN Grid V005) 
was used. The data were downloaded from the website listed in Section 2.2.3 and reprocessed using 
the same coordinate system and resolution as in the numerical simulation. 

2.2.5. VF Data from MODIS Vegetation Indices (VI) (MOD13A2) 

Currently, validation to stage 3 has been achieved for MODIS VI data (MOD13), and analyses 
produced by various airborne and field validation campaigns demonstrate that, over most biomes, 
MODIS near-nadir satellite VI shows strong agreement with top-of-canopy nadir VI and land surface 
biophysical properties [53,54]. Using this qualified MODIS Normalized Difference Vegetation Index 
(NDVI), the VF can be calculated as follows [33,41,55]: VF = NDVI − NDVINDVI − NDVI  (1) 

where NDVI denotes the NDVI value for each pixel from the MODIS NDVI; NDVIS is the NDVI value 
for a sparsely vegetated or barren vegetation area; and NDVIV is the NDVI value corresponding to a 
full vegetation cover type. Both NDVIV and NDVIS are constant, allowing the pixel-level VF to reach 
theoretical values of 0.0 to 1.0 for any LU. Previous studies [56–59] have empirically determined 
NDVIS and NDVIV values of 0.05 and 0.87, respectively. These two parameters serve as global bounds 
to ensure that the derived VFs vary from 0.0 to 1.0 (i.e., VF = 1.0 when NDVI > 0.87 and VF = 0.0 when 
NDVI < 0.05 in Equation (1)). The MOD13A2 [60] Version 6 product (MODIS/Terra VI 16 Day L3 
Global 1 km Grid SIN V006) was downloaded from the MODIS website [60].  
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2.3. Model Configuration and Experimental Design 

WRF is an advanced mesoscale numerical weather prediction system designed for both 
atmospheric research and operational forecasting needs. It is jointly administered by the National 
Center for Atmospheric Research and the National Centers for Environmental Prediction. In this 
study, simulations used WRF version 3.6 coupled with the Noah land surface model.  

WRF was configured for fine-scale simulation with two nested domains (D01 and D02 in Figure 
1). In the vertical direction, 35 unevenly spaced full eta levels were defined, and the model top was 
fixed at 50 hPa. The WRF model was forced by ERA-Interim reanalysis data and was updated every 
6 h. Qiu et al. [44] performed a series of analyses examining the model’s sensitivity to different 
parameterizations of the physical atmospheric processes operating over the study region. In this 
study, we used the optimal WRF configuration. Planetary boundary layer processes were resolved 
with the Yonsei University (YSU) scheme [61], microphysics were elucidated via WRF Single 
Moment-3 (WSM3) [62], cumulus clouds were simulated using the Kain–Fritsch Scheme [63], and the 
Community Atmospheric Model (CAM) scheme was used to calculate longwave and shortwave 
radiation [64].  

We designed five sets of numerical experiments to investigate using the impact of each of actual 
LU, albedo, LAI, and VF on model results for 2010 and 2012. The experiments were as follows: the 
def simulation used default LU, albedo, LAI, and VF provided by the WRF itself; the LU simulation 
using only actual 2012LU [46]; the Alb simulation used actual LU and albedo datasets; the LAI 
simulation used actual LU, albedo, and LAI datasets; and the VF simulation used all of actual LU, 
albedo, LAI, and VF data. The model simulation was initialized from 00:00 UTC on 1 July to 18:00 
UTC on 31 July in each year. During this period, the interaction of water and energy between oases 
and deserts are often the strongest, and oasis crops are at their growth peak. The simulation results 
were stored hourly with a 60 s time step for integration. Generally, in the absence of accurate, gridded 
initial soil moisture conditions, a spin-up period is needed to allow the soil moisture within Noah to 
approach equilibrium within the hydrological cycle [36]. The optimal spin-up period for any 
particular application is uncertain and may require years to reach equilibrium [65]. In this study, the 
soil moisture values of oasis and desert areas were initialized via interpolation from observed soil 
moisture data from similar oasis and desert regions referenced in a previous paper [42] (Table 2). In 
addition, following previous simulations that were similar for mesoscale water, surface energy, and 
circulation [14,66,67], the simulation results for the first 21 days were discarded as spin-up, and only 
simulations for 19:00 UTC on 22 July to 18:00 UTC on 31 July were used for the analysis. According 
to observation and simulations, 22–31 July were with anticyclonic and clear-sky conditions (Figure 
S1); thus, the effects of cloud distribution on results were excluded. 

Table 2. Soil moisture values for the oasis and desert areas in the four Noah soil layers [42]. 

Land Use Type Noah Soil Layer Soil Moisture (cm3 cm−3) 
Oasis  0–10 cm 0.38 (at 5 cm) 

 10–40 cm 0.47 (at 25 cm) 
 40–100 cm 0.33 (at 70 cm) 
 100–200 cm 0.26 (at 150 cm) 

Desert 0–10 cm 0.07 (at 5 cm) 
 10–40 cm 0.10 (at 25 cm) 
 40–100 cm 0.05 (at 70 cm) 
 100–200 cm 0.06 (at 150 cm) 

3. Results 

3.1. Differences between Actual Terrestrial Datasets and the Default Datasets 

We first examined the differences between the actual LU, albedo, LAI, and VF data and the 
corresponding default datasets one by one. Both the defaults and the actual satellite images showed 
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generally correct land surface information for MODS. However, there were significant differences, 
especially in oasis and desert areas, that were strongly impacted by human activities.  

Large areas of cropland and barren desert in oases and north-eastern desert areas are apparent 
in the actual LU data (Figure 2a), while the default data show grassland and shrubland in these oases 
and desert areas. The default LU data in WRF is based on AVHRR satellite data for 1992–1993 [42], 
which represents the original oasis and desert land cover. There has been a large expansion in urban 
areas and irrigated cropland in the NTM at the expense of sparse shrubland during the last 20 years 
[68]. In addition, the default LU data shows a large area of forest in the Ili River basin and did not 
indicate that ice was found on the mountaintops. These areas are misclassified, because dense 
grassland and cultivated lands have accounted for the largest areal proportion in this river basin over 
the past 40 years [69], and glaciers are common at the mountaintops in CA. The spatial consistency 
was only 38.42% between the actual and default LU data using a rough pixel-by-pixel comparison 
(Figure 2i) [70].  

 
Figure 2. Comparison between actual LU (a), albedo (b), leaf area index (LAI) (c), and green 
vegetation fraction (VF) data (d) and the corresponding default data (e–h), with differences shown in 
(i–l). The red line indicates the border of the key oasis areas, and the black rectangle indicates the 
region strongly influenced by human activities in oases and desert areas over the past 20 years. 

The default albedo, LAI, and VF are based on inter-annual averages of monthly climatology for 
1986–1991 [71]. Figure 2b,f,j respectively show the spatial distributions of the actual and default 
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albedo data and the difference between the two. The actual albedo level is overall higher than the 
default data, ranging from 0.05–0.25 (Figure 2j); the difference between the two datasets mainly 
occurs in the oasis areas and the northern desert areas (Figure 2b, black rectangle). There is also a 
slight difference in the values of approximately 0.10 occurring at mountaintops. It is difficult to 
explain why albedo would be greater in the actual image than in the default dataset; we would expect 
albedo to decrease with an increase in crop cover. Albedo is influenced by multiple factors, including 
LU, VF, dynamic roughness lengths, solar elevation angle, soil color, and humidity [72]. The 
difference in albedo in the oasis area could be related to the severe salinization caused by irrigation 
[73,74] as well as the expansion of plastic-mulched areas [75] over the past 20 years. The greater 
albedo in the northern desert area (black rectangle) in Figure 2j can be attributed to the degradation 
of the desert flora following drawdown of groundwater levels in the oasis–desert transition zone 
[23,24], which implies that land reclamation and groundwater extraction have led to serious 
ecological problems in CA oases. In addition, the albedo over crops in the actual image is higher than 
over the surrounding northern desert area (black rectangle in Figure 2b), but this is not the case for 
the default data. This indirectly confirms our speculation that oasis salinization and larger areas with 
plastic mulching could increase the actual albedo levels. The possible reason for slight differences at 
the mountaintops between the actual and default albedo is that the surface reflectance estimation 
from different satellite images has large uncertainties over rugged terrain [42,76–80]. The spatial 
distributions of the actual versus default LAI and VF data, as well as the differences between them, 
are shown in Figure 2c,d,g,h,k,l, respectively. The differences between actual LAI and VF data and 
the corresponding default data range from 0 to 3 and from 0 to 85%, respectively. Major differences 
are evident across the basin, especially near the Ili River basin and the northern oasis border (black 
rectangle in Figure 2k,l), consistent with the expanded oasis region. There are few differences in the 
desert and mountainous areas between the actual and default LAI data. In contrast, there are 
noticeable differences between the actual and default VF data in the desert area, indicating that the 
default data do not realistically represent VF conditions in this region. Field verification shows that 
there are sparse desert plants (e.g., Haloxylon and Tamarix ramosissima) with a coverage of 
approximately 20%. The differences between the actual and default terrestrial datasets confirm that 
the default datasets are outdated and are less representative of land surface information. 

3.2. Validation and Impacts of Actual LU, Albedo, LAI, and VF Data on Atmospheric Modelling 

The validation of simulated results is one focus of this paper. We use several statistical measures, 
including the mean bias error (MBE), root mean squared error (RMSE) and coefficient of 
determination (R2), to comprehensively evaluate the simulation results [81]. These measures describe 
the direction of the error bias, and indicate the average error magnitude. We also assess spatial 
patterns of temperature, humidity, energy, and circulation and determine the difference in their 
daytime and night-time values by averaging daytime simulations from 19:00 to 2:00 UTC and 
nocturnal simulations from 08:00 to 14:00 UTC.  

3.2.1. Radiation and Surface Energy Fluxes 

Figure 3 shows the WRF performance in simulating LE from five simulations over cropland at 
S2 in 2010 and 2012. The daily average LE from five simulations correctly reproduces the overall 
shape of the observations (Figure 3a,c), and a strong linear relationship is obtained from all of 
simulations with coefficients of determination (R2) larger than 0.73 (p < 0.05) (Figure 3b,d). The 
difference between the five simulations and observations mainly occurs during daytime from 17:00 
to 6:00 UTC. The observed daily average maximum value in LE is 244.67 W/m2 in 2010, while the 
peak values of LE from the def, LU, Alb, LAI, and VF simulations are 158.78 W/m2, 161.81 W/m2, 
150.63 W/m2, 176.70 W/m2, and 355.06 W/m2, respectively (Figure 3a). In 2012, the daily average 
maximum value of LE from observation and the def, LU, Alb, LAI, and VF simulations are 371.50 
W/m2, 192.50 W/m2, 191.51 W/m2, 182.74 W/m2, 211.46 W/m2, and 427.27 W/m2, respectively (Figure 
3c). The VF simulation slightly overestimates LE and the other four simulations underestimate LE 
during the daytime in both of the two years. However, the RMSE value of the simulations decreases 
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and R2 increases in the following order: def, LU, Alb, LAI, and VF simulations. The R2 increased from 
0.73 to 0.74 in 2010 (Figure 3b) and from 0.92 to 0.94 in 2012 (Figure 3d). The RMSE reduced from 
75.81 to 69.05 W/m2 in 2010 (Figure 3b) and from 87.64 to 53.52 W/m2 in 2012 (Figure 3d). These results 
indicate that the performance of WRF is improved in simulating the surface energy budget by the 
inclusion of actual LU, albedo, LAI, and VF data in the model. The VF simulation in particular shows 
considerable improvements in both years; the daily maximum LE value has a much closer 
resemblance to observations after approximately 1:00 UTC. The VF simulation may have 
overestimated LE because plastic mulching resulted in lower evaporation [82,83]. This process is not 
considered in the simulations [14,42].  

 

Figure 3. Comparisons of hourly averaged latent heat flux (LE) between observations and five 
simulations, and corresponding scatter diagram at the S2 site in (a,b) 2010 and (c,d) 2012. The five 
simulations are as follows: def (using default LU, albedo, LAI, and VF data); LU (using actual LU 
data), Alb (using actual LU and albedo data), LAI (using actual LU, albedo, and LAI), and VF (using 
all of actual LU, albedo, LAI, and VF data). 

Using the actual LU, albedo, LAI, and VF datasets during the night-time results in similar spatial 
patterns of average sensible heat (H) flux. Thus, Figures 4 and 5 only show the daytime spatial 
patterns of average H and LE from the def, LU, Alb, LAI, and VF simulations and the differences of 
H and LE resulting from using each of the actual LU, albedo, LAI, and VF datasets. The VF simulation 
(Figures 4 and 5e) indicates an obvious difference in spatial patterns of H and LE in the basin, 
compared with that from the other four simulations (Figures 4 and 5a–d). Since evident differences 
with values of 0–85% are across the Ili River basin and the oases areas between the actual and default 
VF (Figure 2l), the VF simulation considerably decreases simulation of H by a value of approximately 
50–150 W/m2 (Figure 4i) and considerably increases LE by approximately 90–270 W/m2 (Figure 5i) 
over these areas. Although the def, LU, Alb, and LAI simulations present relatively similar overall 
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spatial patterns of H and LE, some detailed differences have to be noted. Since there is no urban 
representation in the default LU (Figure 2e), the value of H (LE) is obviously underestimated 
(overestimated) by approximately 100–150 W/m2 (Figures 4 and 5f) over corresponding grids in the 
def simulation. Since the default LU data includes a large area of shrubland over the oasis region, 
and forest in the Ili River valley rather than cropland in the actual LU data, the misclassification 
results in the def simulation overestimating (underestimating) LE (H) by approximately 50 W/m2 
over the corresponding grids (Figures 4 and 5f). In addition, since there is no ice found in the default 
LU compared with the actual LU, the def simulation overestimates (underestimates) H (LE) in the 
corresponding areas. These results indicate that the outdated default LU results in an incorrect energy 
response, especially over the oasis area, the Ili River valley basin, and the glacier region. Realistic 
representation of LU is important for energy budget simulation, since it determines secondary 
parameters such as LAI, albedo, emissivity, and surface roughness length. Given that the actual 
albedo values are slightly greater than the default values, ranging from 0.05–0.25 (Figure 2j), this 
decreases H and LE in the Alb simulation compared with the LU simulation (Figures 4 and 5c), 
especially in mountainous areas. Slight differences in H and LE result from using the actual LAI data, 
with the most obvious differences in the Ili River basin and the northern oasis border (black rectangle 
in Figure 2k,l).  

3.2.2. Air Temperature, Humidity at 2 m  

Figures 6 and 7 show aspects of the WRF performance in simulating T2 and RH, respectively, 
from the five simulations. All of the def, LU, Alb, LAI, and VF simulations reproduce the shape and 
peak of T2 and RH, and produce a strong linear relationship of T2 and a relatively moderate 
relationship of RH with the observations at six stations in the two years. The R2 of T2 ranges between 
0.71 and 0.95 (p < 0.05), and that of RH ranges between 0.44 and 0.75 (p < 0.05) obtained from all of 
the five simulations. Although the T2 (RH) from all of the simulations, compared with the 
observations, is overestimated (underestimated) over both cropland sites (S1, S2, S3, and S4) and over 
desert sites (S5 and S6) throughout all times of the day, a stronger relationship (increasing R2 
progressively) and similar magnitudes of T2 and RH (decreasing RMSE progressively) are observed 
when each of actual LU, albedo, LAI, and VF datasets was used in the simulations. In particular, at 
S2, S3, and S4, the bias of temperature was corrected by up to 0.35–2.25 °C and that of relative 
humidity was corrected by up to 8.85%. Thus, using actual terrestrial datasets improves the WRF 
performance.  

Note that the improvements are relatively smaller at station S1 compared with those at stations 
S2, S3, and S4. This can be attributed to the fact that the S1 station is located in an urban area, so using 
actual vegetation parameters such as the LAI or VF does not affect the performance of the WRF model 
in these areas. The overestimations of T2 and underestimations of RH over oasis areas could be 
attributed to the cooling or wetting effects of soil evaporation from irrigation; these cannot be 
simulated by lake irrigation schemes in WRF. All five simulations (the def, LU, Alb, LAI, and VF) 
captured the rain event that occurred on 28 July 2012 at S1, S3, and S4 (not shown). However, it is 
difficult to determine whether the use of actual LU, albedo, LAI, and VF data improved the 
simulation of precipitation due to the limited statistics. 
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Figure 4. Daytime spatial patterns of sensible heat flux (H) from the (a) def, (b) LU, (c) Alb, (d) LAI 
and (e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d (these difference pixels 
are statistically significant at p < 0.05). The def simulation used default LU, albedo, LAI, and VF 
provided by WRF itself; the LU simulation used only actual LU data; the Alb simulation used only 
actual LU and albedo data; the LAI simulation used actual LU, albedo, and LAI data, and the VF 
simulation used all of the actual terrestrial datasets. The red line represents the border of the key oasis 
area. 
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Figure 5. Daytime spatial patterns of latent heat flux (LE) from the (a) def, (b) LU, (c) Alb, (d) LAI and 
(e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d (these difference pixels 
are statistically significant at p < 0.05). The def simulation used default LU, albedo, LAI, and VF 
provided by WRF itself; the LU simulation used only actual LU data; the Alb simulation used only 
actual LU and albedo data; the LAI simulation used actual LU, albedo, and LAI data, and the VF 
simulation used all of the actual terrestrial datasets. The red line represents the border of the key oasis 
area. 
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Figure 6. Comparisons of hourly averaged 2 m air temperature (T2) between observations and five 
simulations (a,c,e,g,i,k), and corresponding scatter diagram (b,d,f,h,j,l) at six stations (S1–S6) in 2010 
and 2012. The five simulations are as follows: def (using default LU, albedo, LAI, and VF data); LU 
(using actual LU data), Alb (using actual LU and albedo data), LAI (using actual LU, albedo, and 
LAI), and VF (using all of actual LU, albedo, LAI, and VF data). 
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Figure 7. Comparisons of hourly averaged 2 m relative humidity (RH) between observations and five 
simulations (a,c,e,g,i,k), and corresponding scatter diagram (b,d,f,h,j,l) at six stations (S1–S6) in 2010 
and 2012. The five simulations are as follows: def (using default LU, albedo, LAI, and VF data); LU 
(using actual LU data), Alb (using actual LU and albedo data), LAI (using actual LU, albedo, and 
LAI), and VF (using all of actual LU, albedo, LAI, and VF data).  

Figures 8 and 9 present spatial patterns of T2 and Q2 from the def, LU, Alb, LAI, and VF 
simulations, and their differences (the differences of pixels are statistically significant at p < 0.05) 
using each of actual LU, albedo, LAI, and VF data, respectively. Overall, all of the simulations (the 
def, LU, Alb, LAI, and VF) generally suggest continuous stripelike T2 increases from the 
mountainous areas to the basin due to the lapse rate of temperature resulting from the elevation 
gradient difference. In addition, the simulations show lower Q2 in the mountainous regions as 
compared to basin areas due to the large difference of temperature in each. Focusing on the difference 
between oases and desert regions, in accordance with spatial patterns of H and LE, the spatial 
patterns of T2 and Q2 from the def (Figures 8 and 9a,a1) and VF (Figures 8 and 9e,e1) simulations 
differ from the LU, Alb, and LAI simulations during the daytime (Figures 8 and 9b–d) and night-time 
(Figures 8 and 9b1–d1).  

Specifically, as indicated by the difference of T2 and Q2 between the LU and def simulations 
(Figures 8 and 9f,f1), the averaged T2 differences over the oasis area and Ili River valley from the LU 
simulation decrease up to approximately −0.5 °C in the daytime (Figure 8f) and −1.2 °C at night-time 
(Figure 8f1), and the averaged Q2 over these areas increases (decreases) 0.25 g kg−1 during the daytime 
(in night-time) when actual LU data is used in the WRF model (Figure 9f,f1). The differences most 
likely result from the fact that the default LU over these areas includes sparse shrubland and forest, 
while the actual LU data show cropland. Since the default LU data do not include urban areas or ice 
(Figure 2b), there are also large differences in T2 and Q2 over these grids. In addition, there are also 
obvious differences in T2 and Q2 in the northeast desert when actual LU data was used. Although 
the LU, Alb, and LAI simulations can simulate the cold–wet island effects of the area during the 
daytime, this effect is more intense in the VF simulation than in the other three simulations. Using 
actual VF data results in a significant decrease in T2 of −0.5 to −1.5 °C during the day (Figure 8i) and 
−0.5 to −4.5 °C (Figure 8i1) at night; similarly, there is a large increase in Q2 by 0.5–2.5 g kg−1 during 
the day (Figure 9i) and a decrease of 1.0 g kg−1 at night (Figure 9i1) over the oasis area and Ili River 
Valley. Using actual albedo data results in a slight decrease in T2 of approximately −0.45 °C (Figure 
8g1) and a decrease in Q2 of approximately 0.5 g kg−1 (Figure 9g1) over the north-eastern desert at 
night, as shown by the difference between the Alb and LU simulations. Using actual LAI data results 
in a slight decrease in T2 by approximately −0.15 °C (Figures 8h,h1), and an increase in Q2 by 
approximately 0.25 g kg−1 over the oasis region for the whole day (Figures 9h,h1). Overall, actual LU 
and VF data strongly influence the simulations of T2 and Q2 patterns in the oasis–desert system, 
while albedo and LAI have a lesser impact.  
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Figure 8. Daytime spatial patterns of 2 m air temperature (T2) from the (a) def, (b) LU, (c) Alb, (d) LAI 
and (e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d (these difference pixels 
are statistically significant at p < 0.05). And corresponding patterns during the night-time, which are 
labelled with the corresponding daytime label and the number 1. The def simulation used default LU, 
albedo, LAI, and VF provided by WRF itself; the LU simulation used only actual LU data; the Alb 
simulation used only actual LU and albedo data; the LAI simulation used actual LU, albedo, and LAI 
data, and the VF simulation used all of the actual terrestrial datasets. The red line represents the 
border of the key oasis area. 
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Figure 9. Daytime spatial patterns of 2 m specific humidity patterns (Q2, g kg−1) from the (a) def, (b) 
LU, (c) Alb, (d) LAI and (e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and (i) e–d 
(these difference pixels are statistically significant at p < 0.05). And corresponding patterns during the 
night-time, which are labelled with the corresponding daytime label and the number 1. The def 
simulation used default LU, albedo, LAI, and VF provided by WRF itself; the LU simulation used 
only actual LU data; the Alb simulation used only actual LU and albedo data; the LAI simulation used 
actual LU, albedo, and LAI data, and the VF simulation used all of the actual terrestrial datasets. The 
red line represents the border of the key oasis area. 

3.2.3. Surface Circulation 

Figure 10 shows comparisons of the simulated 10 m horizontal WS and WD from the def, LU, 
Alb, LAI, and VF simulations with observations at three meteorological stations over cropland. 
Station S1 is located in the upper part of the oasis, near its southern border, and stations S3 and S4 
are located in the lower part of the oasis, near its northern border. Although the RMSE (R2) of the WS 
decreases slightly (increases) as actual data are added in the def, LU, Alb, LAI, and VF simulations, 
most of the simulated WS values are higher than the observed values by approximately 2 m/s; 60% 
of the simulated WS range from 2–6 m/s, whereas the observed values range from 2–4 m/s. The reason 
for this bias in WS is that the uncertainty of randomized turbulence processes results in difficulties 
in the accurate simulation of wind patterns [84]. The trends in WD are consistent with the 
observations. The dominant WD is WNW or NW during the daytime and WSW or SW during the 
night-time for all stations; these directions are observed in all simulations and in the observations, 
and reflect the circulation characteristics in a mountain–valley region.  

Figure 11 shows the WS and WD patterns from the def, LU, Alb, LAI, and VF simulations and 
the differences caused by using each of the actual LU, albedo, LAI, and VF datasets. Overall, the 
simulations (def, LU, Alb, LAI, and VF) reflect the characteristics of mountain–valley winds, which 
have WDs to the WNW or NW during the day and to the WSW or SW at night. Using actual LU, 
albedo, and LAI data has very little impact on the spatial patterns of WD (Figure 11f–h1), but using 
actual VF data causes slight differences in the oasis center and the surrounding desert (Figure 11i,i1). 
These results suggest that using actual VF data increases the intensity of oasis effects (cold–wet island 
effects, and OBC).  
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Figure 10. Comparisons of hourly 10 m (a,c,e) wind speed (WS) and (b,d,f) wind direction (WD) 
between observations and five simulations at three stations (S1, S3, S4) 

 
Figure 11. Daytime spatial patterns of 10 m wind speed (WS) and wind direction (WD) from the (a) 
def, (b) LU, (c) Alb, (d) LAI and (e) VF simulations, and their differences (f) b–a, (g) c–b, (h) d–c and 
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(i) e–d (these difference pixels are statistically significant at p < 0.05). And corresponding patterns 
during the night-time, which are labelled with the corresponding daytime label and the number 1. 
The def simulation used default LU, albedo, LAI, and VF provided by WRF itself; the LU simulation 
used only actual LU data; the Alb simulation used only actual LU and albedo data; the LAI simulation 
used actual LU, albedo, and LAI data, and the VF simulation used all of the actual terrestrial datasets. 
The red line represents the border of the key oasis area. 

3.2.4. Impacts of Using Actual Datasets on Atmospheric Modelling 

To quantitatively discern which terrestrial datasets have the strongest influence on the 
meteorological elements simulated in this region, the bias percentage was calculated as the general 
regional influence index, following the approach in [85]. After land surface parameters are replaced, 
the equation is as follows: 	 = 1 ∑ ( ( ) − ( ))1 ∑ . (2) 

In the current study, n is the number of stations, ( )  is the simulated meteorological 
variables (e.g., temperature) with updated actual land surface parameters from experiment j, and 

 is the observed value at each station. Four modelled predictors (T2, RH, WS, and LE) are 
analyzed. 

Figure 12 presents the bias percentage of the simulated T2, RH, WS, and LE due to using each 
actual dataset. The y axis shows the mean bias percentage for 2010 and 2012, which represents the 
impact of using each actual dataset on atmospheric simulations. Using actual LAI and VF data mainly 
affects the LE (Figure 12g,h), while using actual LU and albedo data affects the WS (Figure 12c,f). T2 
(RH) decreases (increases) by a total of −3.5% (10.2%) from using actual LU, albedo, LAI, and VF data. 
In total, −2.26% (8.85%) of the change in T2 (RH) is contributed by using actual VF data, and the 
remainder comes from using actual data for albedo and the other two parameters (Figure 12a,b). The 
WS decreases by −13.31% when actual LU, albedo, LAI, and VF data are used; of that total, LU and 
albedo contribute −5.51% and −4.47%, respectively—far more than the other two parameters (Figure 
12c). The LE first decreases due to the use of actual LU and albedo data and then increases with the 
addition of actual LAI and VF data; the total change is 58.19%, of which VF contributes 54.94%, which 
is far more than the other three parameters (Figure 12d). In general, using actual land surface 
parameters alters the near-surface meteorology simulation in the lower atmospheric layer (Figure 
12e–h). Using actual VF data has a large influence on the simulation of T2, RH, and LE in the oasis–
desert system, which contributes to error correction values of 62%, 87%, and 92%. Thus, using actual 
VF data is very important for simulating near-surface meteorology. Using actual LU is the principal 
parameter for near-surface water and heat simulation, since it determines the value of secondary 
parameters such as LAI, albedo, emissivity, and surface roughness length. 
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Figure 12. Average bias percentages of simulated meteorological variables at six stations due to using 
each actual terrestrial dataset: (a) T2, (b) RH, (c) WS, (d) LE, (e) biases due to using actual LU data, (f) 
biases due to using actual albedo data, (g) biases using actual LAI data, and (h) biases due to using 
actual VF data. 

4. Discussion 

Outdated default terrestrial datasets in WRF, including LU, albedo, LAI, and VF, limit this 
model’s ability to accurately simulate the meteorological characteristics of the complex oasis–desert 
system in NTM. In this study, we examined the impact of using actual LU, albedo, LAI, and VF data 
from satellite products in WRF on the model performance. Five simulations were conducted with the 
same meteorological forcing data and model schemes: def (using default LU, albedo, LAI, and VF 
data), LU (using actual LU data only), Alb (using actual LU and albedo data only), LAI (using actual 
LU, albedo, and LAI), and VF (using all of actual LU, albedo, LAI, and VF together). 

WRF simulations of temperature, humidity, energy, and WS are improved by the incorporation 
of actual LU, albedo, LAI, and VF into the model, as evidenced by the decrease in RMSE values and 
increase in R2 in both 2010 and 2012. Using actual VF data greatly affects the simulation of T2, RH, 
and LE in the oasis–desert system, contributing to error correction values of 62%, 87%, and 92%, 
respectively. LU data is a primary parameter and it determines the values of many secondary 
parameters. Although all of the simulations conducted in this study produce the characteristic of the 
“wet–cold” island effect over the oasis area, as reported previously [7,14,71,72], WRF can more 
accurately reflect the intensity of the oasis cold–wet effects when using all actual LU, albedo, LAI, 
and VF data. The results of this study contribute to a greater knowledge of the impacts of land surface 
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parameters on the performance of WRF [42], which is beneficial for various applications, especially 
for land surface and climate modelling. Our results are also critical to accurately understanding the 
intensity of cold–wet effects of oases and the OBC. 

We note that our simulations have several limitations. For example, overall, we found that the 
simulations overestimated (underestimated) T2 (RH), and the VF simulation overestimates the LE 
relative to the observations. These errors can be attributed to the fact that soil evaporation resulting 
from irrigation and plastic mulching effects are not considered in the simulations of WRF [14,42]. 
Adding irrigation and plastic mulching schemes may help to correct these errors.  

5. Conclusions 

The current study used WRF with actual LU, albedo, LAI, and VF data derived from satellite 
products to improve the simulation of weather and climate conditions in the oasis–desert system of 
the NTM in 2010 and 2012. Model evaluations for temperature, humidity, and energy demonstrated 
that our simulations, which were performed using actual terrestrial datasets, improved the 
performance of WRF, as evidenced by the decrease in RMSE and the increase in R2. All of the 
simulations exhibit the “wet–cold” island effects of the oases. However, the intensity of the wet–cold 
effect varies depending on the use of actual LU, albedo, LAI, and VF data. Using actual VF data 
results in error correction values of 62%, 87%, and 92%, respectively, for simulated T2, RH, and LE in 
the oasis–desert system. Using actual LU data is crucial for near-surface water and heat simulation, 
since it determines the values of additional secondary parameters. We conclude that it is important 
to use, at least, actual LU and VF data for weather and climate simulations in WRF. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/12/1273/s1,  
Table S1: Shows LU types and codes of for the 2012LU; Table S2: Land use type and its categories for WRF and 
the 2012LU. 
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Abbreviations  

AVHRR Advanced Very High Resolution Radiometer 
BRDF Bidirectional reflectance distribution function 
CA Central Asia 
LAI Leaf area index 
LE Latent heat flux 
LU Land use 
MBE Mean bias error 
MM5 Fifth-generation Penn State/NCAR Mesoscale Model 
MODIS MODerate Resolution Imaging Spectroradiometer 
NCAR National Center for Atmospheric Research 
NCEP National Centers for Environmental Prediction 
NTM North Tianshan Mountains 
OBC Oasis breeze circulation 
Q2 Specific humidity at 2 m 
R2 Coefficient of determination 
RMSE Root mean squared error 
RH 2-m relative humidity 
RCMs Regional climate models 
T2 2-m air temperature 
TIL Temperature inversion layer 
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USGS U.S. Geological Survey 
VF Vegetation fraction 
WRF Weather Research and Forecasting model 
WS Wind speed 
WD Wind direction 
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