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Abstract: Accurately quantifying gross primary production (GPP) is of vital importance to
understanding the global carbon cycle. Light-use efficiency (LUE) models and process-based models have
been widely used to estimate GPP at different spatial and temporal scales. However, large uncertainties
remain in quantifying GPP, especially for croplands. Recently, remote measurements of solar-induced
chlorophyll fluorescence (SIF) have provided a new perspective to assess actual levels of plant
photosynthesis. In the presented study, we evaluated the performance of three approaches, including the
LUE-based multi-source data synergized quantitative (MuSyQ) GPP algorithm, the process-based boreal
ecosystem productivity simulator (BEPS) model, and the SIF-based statistical model, in estimating the
diurnal courses of GPP at a maize site in Zhangye, China. A field campaign was conducted to acquire
synchronous far-red SIF (SIF760) observations and flux tower-based GPP measurements. Our results
showed that both SIF760 and GPP were linearly correlated with APAR, and the SIF760-GPP relationship
was adequately characterized using a linear function. The evaluation of the modeled GPP against the
GPP measured from the tower demonstrated that all three approaches provided reasonable estimates,
with R2 values of 0.702, 0.867, and 0.667 and RMSE values of 0.247, 0.153, and 0.236 mg m−2 s−1 for the
MuSyQ-GPP, BEPS and SIF models, respectively. This study indicated that the BEPS model simulated the
GPP best due to its efficiency in describing the underlying physiological processes of sunlit and shaded
leaves. The MuSyQ-GPP model was limited by its simplification of some critical ecological processes and
its weakness in characterizing the contribution of shaded leaves. The SIF760-based model demonstrated
a relatively limited accuracy but showed its potential in modeling GPP without dependency on climate
inputs in short-term studies.
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1. Introduction

As the underlying process for plant growth, photosynthesis serves as an essential indicator of
plant efficiency and agricultural management practices. Spatially and temporally explicit estimations
of photosynthesis at the ecosystem scale (Gross Primary Production, GPP) can provide important
information used to study the terrestrial carbon budget [1,2].
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Traditionally, GPP studies have focused on field-based observations of specific species at
individual sites [3–5], which are usually time-consuming and laborious. In addition, these sparsely
distributed measurements are difficult to extend over large scales due to the spatial heterogeneity
of the land surface. At the landscape or regional scale, GPP is generally obtained using models
and algorithms that integrate ground observations with remotely sensed data [6]. Over the past
several decades, a variety of approaches have been developed to estimate the GPP of terrestrial
ecosystems, and they can be grouped into four categories [7]: (1) light use efficiency (LUE)
models; (2) process-based models; (3) data-driven models upscaled from eddy covariance (EC)
data; and (4) models based on sun-induced chlorophyll fluorescence (SIF). In general, LUE models
are well-known for their simplicity and efficiency when using remotely sensed data, but they
lose the links to some critical ecological processes by using empirical relationships and constants.
These models are represented by Carnegie, Ames, Stanford approach (CASA) [8], global production
efficiency model (GLO-PEM) [9], vegetation photosynthesis model (VPM) [10], moderate resolution
imaging spectroradiometer (MODIS) GPP [11], and multi-source data synergized quantitative
(MuSyQ) GPP [12]. Process-based biogeochemical models usually employ the enzyme kinetics
theory encapsulated by Farquhar et al. [13] for C3 plants and its modification for C4 plants [14].
However, these process-based models generally suffer from high complexity, large computational
demands, and calibration difficulties. The boreal ecosystem productivity simulator (BEPS) [15,16],
terrestrial ecosystem model (TEM) [17], simple biosphere (SiB) model [18], and biome biogeochemical
cycle (Biome-BGC) model [19] can be categorized as process-based models. By employing EC-derived
GPP data, data-driven models use various algorithms, such as model tree ensembles (MTE) [20]
or regression tree [21,22] approaches, and provide a practical way to upscale GPP from individual
sites to regional scales. These data-driven methods establish a series of rules using data mining
that relate in situ flux observations to satellite-based indices and climate data. SIF provides a new
perspective to assess plant photosynthesis and estimate regional GPP due to its inherent link to the
photosynthesis process [23–25]. However, the application of SIF is limited because of the difficulty
in obtaining high quality SIF data, including proper spatial and temporal resolution, and because
of the difficulty in quantitatively assessing the factors that affecting the relationship between SIF
and GPP. Although various methods have been developed to model GPP, it should be noted that
large uncertainties remain regarding the spatial distribution and seasonal dynamics of GPP [26,27],
and model comparison is also necessary to address to what extent the GPP models can capture the
spatial and temporal patterns of GPP.

Remote sensing has provided fundamental data to support the study and monitoring of GPP over
regional and global scales in recent years. It usually provides reflectance-based spectral measurements
of vegetation conditions. However, reflectance-based indices are proxies for vegetation “greenness”
and photosynthetic capacity, they often have a relatively low sensitivity to short term variation
in plant photosynthetic functioning and cannot be used to reflect the actual photosynthesis [28].
In addition, vegetation parameters derived from surface reflectance have little link to actual plant
photosynthetic functions [29]. To our knowledge, only the photochemical reflectance index (PRI),
which is based on the sensitivity of the reflectance at 531 nm to xanthophyll pigments, has been shown
to be sensitive to tracking actual photosynthesis through its correlation with the non-photochemical
quenching (NPQ) [30]. The PRI was designed to track NPQ that is related to the de-epoxidation cycle
of xanthophyll at leaf level [30]. The potential of PRI as a remote sensing proxy of photosynthetic
capacity has been demonstrated [31]. However, the PRI has also been proven to be very sensitive
to soil background, canopy structure and viewing angle [32]. Additionally, PRI has been shown to
be controlled by the changes in leaf pigments rather than NPQ over seasonal scales [33]. Unlike the
PRI, the SIF signal is emitted by the photosynthetic machinery of vegetation and is thus linked
to the actual photosynthesis. Although canopy SIF can also be affected by canopy structure [34],
viewing angle [35] and leaf pigment contents [36], SIF observations can provide an additional way
to track the functional status of plant photosynthesis. Recent field studies have demonstrated that
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SIF shows strong links to the GPP at the canopy level [25,37–39]. As SIF be successfully retrieved
using orbiting platforms such as the Japanese Greenhouse gases Observing SATellite (GOSAT) [23,40],
the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) [41],
the Global Ozone Monitoring Experiment-2 (GOME-2) [42], and the Orbiting Carbon Observatory-2
(OCO-2) [43], high correlations between SIF and GPP at ecosystem, landscape and regional scales
have been shown by Frankenberg et al. [23], Guanter et al. [24,44], Zhang et al. [7], and Cui et al. [45],
and simple regression models between remotely sensed SIF and GPP have been established. On the
other hand, SIF has also been considered to be more sensitive in tracking the GPP than the traditionally
used normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) [34,46].
In addition, some studies have also shown the potential use of SIF data to calibrate parameters
(maximum carboxylation capacity, Vcmax) in the photosynthesis model and provide an accurate
estimation of agricultural productivity [47,48].

Despite the experimental evidence of the direct and highly linear correlation between SIF and
GPP, the applications of SIF-based GPP models are relatively rare when compared to other GPP models
due to data availability and quality. Moreover, little research has been conducted to compare the
performances of SIF-based models and other GPP models. To the best of our knowledge, there is only
one study that has compared SIF-based, LUE-based, and process-based GPP models [49], in which
they used satellite-derived data combined with field observations to derive the daily GPP of crops.
However, some uncertainties arise due to spatial mismatches between satellite remote sensing data
and EC footprints and temporal mismatches between instant SIF and daily GPP measurements.
These mismatches should be reduced before assessing the performance of GPP models. In this
context, the objective of this study is to compare the performance of three GPP modeling approaches,
SIF-based, LUE-based MuSyQ-GPP and process-based BEPS models, in estimating the diurnal courses
of GPP for cropland. We focus on field observations with relatively small spatial and temporal scales
in this study, and data-driven models are beyond the scope of our research. This study lays the
foundation for accurately estimating the GPP of croplands at larger spatial and temporal resolutions.

2. Materials and Methods

2.1. Study Site Description

A field experiment was conducted near an eddy flux tower in the Zhangye oasis irrigation area
located in the middle of the Heihe watershed, northwestern China (100.372◦E, 38.856◦N, altitude 1556 m)
(Figure 1). This station was funded in May 2012 with the support of the Heihe Watershed Allied
Telemetry Experimental Research (HiWATER) (http://westdc.westgis.ac.cn/data) [50,51]. It was
dominated by maize during our experimental period. The research area is characterized by a mean
annual temperature of 6 ◦C and a mean annual precipitation of 114.9 mm, which falls mostly from June
to September. During our campaign, the average height of the canopy was approximately 1.8 m.

http://westdc.westgis.ac.cn/data


Remote Sens. 2017, 9, 1267 4 of 23
Remote Sens. 2017, 9, 1267  4 of 22 
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temperature, and the CO2/H2O analyzer monitored the CO2/H2O density. Both sensors were placed 
4.5 m above the ground and separated 17 cm away from each other in the horizontal direction. They 
were connected to a data logger (CR1000, Campbell Scientific Inc., Logan, UT, USA) that recorded 
the measurements with a sampling frequency of 10 Hz. The EC measurements were processed to 
half-hourly averages using the EddyPro software package [50,51].  

Measurements of air temperature and relative humidity were taken close to the EC system at 
seven heights (3 m, 5 m, 10 m, 15 m, 20 m, 30 m, and 40 m). All data were processed to 10 min intervals 
[51]. To match the EC measurements, we used measurements at a height of 5 m in this research.  

The diurnal courses of GPP (mg m−2 s−1) during our experiment period were obtained by 
partitioning the observed net ecosystem exchange (NEE) into GPP and ecosystem respiration (Re) 
according to Coops et al. [52] and Zhang et al. [53]. 

2.3. Field Data Collection 

Spectral measurements at the canopy level were carried out under clear-sky conditions in July 
and August 2015, when the maize plants were at the late big trumpet period and the ripening stage, 
respectively. The vegetation fraction during our campaign is greater than 0.8. A calibrated HR4000 
high-resolution spectroradiometer (Ocean Optics Inc., Dunedin, FL, USA) was installed at 
approximately 20 m from the eddy flux tower to measure the diurnal cycles of the canopy radiometric 
response (Figure 2a). It records reflected radiation within the spectral domain of 647–1087 nm with a 
full width at half maximum (FWHM) bandwidth of 0.13 nm. During our experiment, the 
spectroradiometer was housed in a thermally regulated box (SteadiQ, Ocean Optics Inc., Dunedin, 
FL, USA) and the internal temperature was maintained at 25 °C to reduce dark current drift. 
Spectralon reflectance standards (WS-1-SL, Ocean Optics Inc., Dunedin, FL, USA) were used to 
measure the incident irradiance. 

Figure 1. Location of the study site.

2.2. Eddy Covariance Measurements

The EC system that was installed within our study area collected continuous
measurements beginning on 25 May 2012. It consisted of a three-dimensional sonic anemometer
(CSAT3, Campbell Scientific Inc., Logan, UT, USA) and an open path CO2/H2O analyzer
(LI7500A, LI-COR Biosciences, Lincoln, NE, USA). The anemometer measured the three-dimensional
wind velocity and temperature, and the CO2/H2O analyzer monitored the CO2/H2O density.
Both sensors were placed 4.5 m above the ground and separated 17 cm away from each other in
the horizontal direction. They were connected to a data logger (CR1000, Campbell Scientific Inc.,
Logan, UT, USA) that recorded the measurements with a sampling frequency of 10 Hz. The EC
measurements were processed to half-hourly averages using the EddyPro software package [50,51].

Measurements of air temperature and relative humidity were taken close to the EC system at seven
heights (3 m, 5 m, 10 m, 15 m, 20 m, 30 m, and 40 m). All data were processed to 10 min intervals [51].
To match the EC measurements, we used measurements at a height of 5 m in this research.

The diurnal courses of GPP (mg m−2 s−1) during our experiment period were obtained by
partitioning the observed net ecosystem exchange (NEE) into GPP and ecosystem respiration (Re)
according to Coops et al. [52] and Zhang et al. [53].

2.3. Field Data Collection

Spectral measurements at the canopy level were carried out under clear-sky conditions in
July and August 2015, when the maize plants were at the late big trumpet period and the ripening
stage, respectively. The vegetation fraction during our campaign is greater than 0.8. A calibrated
HR4000 high-resolution spectroradiometer (Ocean Optics Inc., Dunedin, FL, USA) was installed
at approximately 20 m from the eddy flux tower to measure the diurnal cycles of the canopy
radiometric response (Figure 2a). It records reflected radiation within the spectral domain of
647–1087 nm with a full width at half maximum (FWHM) bandwidth of 0.13 nm. During our
experiment, the spectroradiometer was housed in a thermally regulated box (SteadiQ, Ocean Optics
Inc., Dunedin, FL, USA) and the internal temperature was maintained at 25 ◦C to reduce dark current
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drift. Spectralon reflectance standards (WS-1-SL, Ocean Optics Inc., Dunedin, FL, USA) were used to
measure the incident irradiance.Remote Sens. 2017, 9, 1267  5 of 22 
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Figure 2. Overview of the spectral measurements: (a) spectral measurement system; and (b) positions of
the standard reflectance panels (S) and the four canopy targets (T1–T4).

For the canopy measurements, the instrument’s fiber optic was attached to a swiveling mount
that was elevated approximately 1 m above the canopy and adjusted for nadir view. The daily cycles
of the reflectance spectra under clear sky conditions at four different canopy locations were collected
in our campaign. As the FOV (Field of View) of the instrument is 25◦, each measurement can acquire
a circle area of 0.5 m in diameter (Figure 2b). During the measurement, the swiveling mount was
manually controlled to acquire sequential observations of the standard reference panel and the canopy
targets. Specifically, each acquisition session consisted of the consecutive collection of spectra of
instrument dark current, radiance of the standard reference panel, canopy radiance and radiance of the
standard reference panel. After acquiring the radiance of the standard reference panel, the fiber optic
was immediately switched to the canopy target to acquire canopy radiance. Then the fiber optic was
switched to the standard reference panel to acquire its radiance again. The radiance of the standard
reference panel at the time of the canopy measurement was determined using the averaged spectrum of
the two measurements. To ensure high-quality spectral data, ten consecutive spectra were averaged as a
single spectrum at each measurement. The integration time was automatically optimized during the day
to maximize the signal-to-noise ratio (SNR). In the experiment, the spectral acquisitions were conducted
at 0.5 h intervals. Eventually, five diurnal courses of reflectance spectra were acquired (Table 1).

Table 1. Summary of the available day courses of radiometric measurements.

Period Date Time Window (hh:mm) Growth Stage

1 10 July 11:30–19:00 Late big trumpet period
2 17 July 8:00–18:30 Late big trumpet period
3 18 July 9:00–19:00 Late big trumpet period
4 21 August 8:00–18:30 Ripening stage
5 22 August 8:00–18:00 Ripening stage

In addition to the spectral measurements, the absorbed photosynthetically active radiation (APAR)
was collected simultaneously within 10 m away the FOV of the spectrometer using an LI-190SA
quantum sensor (LI-COR Biosciences, Lincoln, NE, USA) that measures PAR in the range of 400–700 nm.
APAR acquisition is based on the measurements of four radiation components: PAR reaching the
canopy, PAR reflected from the canopy, PAR transmitted through the canopy, and PAR reflected from
the ground. APAR was determined by referring to Gallo and Daughtry [54].



Remote Sens. 2017, 9, 1267 6 of 23

During our campaign, LAI was measured twice at 18 July and 22 August, respectively.
Each measurement was conducted shortly after sunset using an LI-2200 plant canopy analyzer
(LI-COR Biosciences, Lincoln, NE, USA). The measurements were conducted within a 10 m × 10 m
area around the spectral measurement instrument. The measurement at 18 July with value of 3.97 was
used for all the July studies, and the measurement at 22 August with value of 4.22 was used for all the
August studies, respectively.

2.4. SIF Retrival

Chlorophyll fluorescence is the re-emission of solar radiation absorbed by leaf chlorophyll at
longer wavelengths, and it has a distinct spectral shape with one peak at 685–690 nm (red fluorescence)
that is mainly attributed to the fluorescence emission of photosystem II (PSII) and another
at 730–740 nm (far-red fluorescence) that is attributed to both PSI and PSII [34]. The solar-induced
fluorescence (SIF) adds a weak signal to the reflected solar radiation. Depending on the wavelength,
the amount of SIF that is emitted by the canopy is approximately 8.7–21.9% and 2–5.2% of the total
reflected light at 685 nm and 740 nm, respectively [25,55,56].

The SIF signal is usually discriminated using the Fraunhofer lines in which irradiance is strongly
reduced [57,58]. Three Fraunhofer lines are generally used in the visible and near-infrared region:
Hα line (centered at 656.4 nm) due to hydrogen absorption in the solar atmosphere, O2-A (centered at
760.4 nm) and O2-B (centered at 687 nm) due to telluric oxygen absorption in the atmosphere [59–61].
As PSI emits fluorescence only in the near-infrared part of the fluorescence spectrum and PSII emits
over a wide spectrum and peaks in the red part, the two oxygen absorption lines that corresponded
with the two fluorescence emission peaks can be used to obtain SIF signal emitted mainly by PSI and
PSII, respectively [34]. Previous studies have demonstrated that red SIF is affected by the reabsorption
of leaf chlorophyll and LAI variations, which causes a lower correlation between red SIF and GPP
when compared with the far-red SIF [36,62]. Thus, we mainly consider the far-red SIF in this study.

Almost all SIF retrieval algorithms are based on the Fraunhofer line depth (FLD) principle that
was originally proposed by Plascyk [57] and Plascyk and Gabriel [58]. The principle assumes that the
reflectance signal and the SIF signal within and outside the dark line remain constant (see the review
written by Meroni et al. [59]).

In this study, we used the O2-A line to obtain the far-red SIF (SIF760) according to the modified
FLD method proposed by Maier et al. [63]. This approach, which is referred to as 3FLD, assumes that
the variations in the SIF and reflectance signals are linear. The signals at three bands, including one
within the absorption valley and two outside the valley, are used to derive the SIF. The weights of the
two outside channels are defined as

wleft =
λright − λin

λright − λleft
(1)

and
wright =

λin − λleft
λright − λleft

(2)

where λleft and λright indicate the shorter and longer wavelengths adjacent to the absorption valley,
respectively. The SIF can be generated using

SIF =

(
Eleftwleft + Erightwright

)
Lin − Ein

(
Lleftwleft + Lrightwright

)
(

Eleftwleft + Erightwright

)
− Ein

(3)

where E and L represent the ground irradiance and the canopy radiance, respectively.
Former studies have indicated that the 3FLD algorithm can generate reliable SIF signals when

used on datasets obtained using the aforementioned HR4000 (SR = 0.13 nm, SNR > 300) [64,65].
Therefore, we considered the derived SIF to be suitable for our research.
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2.5. Statistical Analysis of the SIF-GPP Relationship

According to the LUE theory proposed by Monteith [66], the GPP can be obtained by

GPP = APAR× LUEP (4)

where APAR represents the absorbed photosynthetically active radiation and LUEP refers to the
efficiency in which APAR is used in photosynthesis.

As a by-product of photosynthesis, SIF can be similarly expressed as

SIF = APAR× LUEF × fesc (5)

where LUEF is the light-use efficiency for SIF, which represents the fraction of APAR that is re-emitted
from the canopy as SIF photons and f esc is the fraction of SIF photons escaping the canopy [24].

By combining Equations (4) and (5), SIF can be theoretically linked with GPP as

GPP = SIF× LUEP

LUEF × fesc
≈ SIF× LUEP

LUEF
(6)

where f esc ≈ 1 can be assumed to be due to the low absorptance of leaves in the far-red wavelengths
and the relatively simple plant structure and high leaf area index of crops [24,67].

As shown in Equation (6), if the LUEP/LUEF ratio is constant, the SIF would be a good
constraint used to determine GPP regardless of changes in the APAR or stresses. Previous studies have
demonstrated that these two terms (LUEP and LUEF) covary in most cases, and the ratio of one to the
other tends to be constant under high light conditions, which makes it possible to establish a linear
statistical model between SIF and GPP [23,25,68]. In this study, we generated a statistical model to
assess the ability of SIF to estimate GPP.

2.6. MuSyQ-GPP Algorithm

The MuSyQ-GPP algorithm was designed as part of the multi-source data synergized quantitative
(MuSyQ) remote sensing production system [12]. It presents an LUE approach to model the GPP
using remotely sensed data and meteorological data with different spatial and temporal resolutions.
The algorithm was adopted to generate the GPP at the site level in this research.

The MuSyQ-GPP algorithm estimates GPP using the LUE theory described in Equation (4).
It employs down-regulating scalars to characterize the effects of temperature and water stress on the
LUEP as

LUEP = LUE0 × f1(T)× f2(β) (7)

where LUE0 is the potential or maximum LUEP (gC mol−1 PPFD), and f 1(T) and f 2(β) represent the
down-regulation effects of temperature and water conditions on LUE0, respectively. A theoretical
LUE0 value of 0.60 gC mol−1 PPFD that was reported in a previous study [69] was used in this study.

The temperature-limited effect on LUE0 is generated using two terms, T1 and T2

f1(T) = T1 × T2 (8)

where
T1 = 0.8 + 0.02Topt − 0.0005Topt

2 (9)

T2 = 1.1814/
{[

1 + e0.2(Topt−10−T)
][

1 + e0.3(−Topt−10+T)
]}

(10)

where Topt represents the optimum temperature, which is defined as 28 ◦C in our study as in
Kalfas et al. [70]
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The limited effect of water conditions on plant photosynthesis, which ranges between 0.5 and 1,
is derived following the algorithm

f2(β) = 0.5 + 0.5E/EP (11)

where E and EP represent the actual and potential evapotranspiration, respectively.
In the MuSyQ-GPP algorithm, a modified Penman–Monteith (P-M) approach with biome-specific

canopy conductance [71–74] is used to estimate the actual evapotranspiration (see Text S1 in
Supplementary Materials). The potential evapotranspiration is calculated using the Priestley and
Taylor (P-T) equation [75].

The original version of the MuSyQ-GPP model was established to estimate the daily GPP over
regional and global scales [12]. In our study, we deployed its original algorithms to generate half-hourly
averaged GPP at the site level to evaluate the performance of the LUE model.

2.7. BEPS Approach

The BEPS model used in our study is an hourly process-based diagnostic model [13,14,76]
that computes the canopy level GPP as the sum of the sunlit and shaded leaf groups using the
Farquhar, von Caemmerer and Berry (FvCB) photosynthesis model [18]. Although the BEPS was
initially developed for boreal ecosystems, it has been expanded and used for temperate and tropical
ecosystems in Asia [77,78], which laid the foundation for its application in croplands.

The BEPS adopts a sunlit-shaded leaves separation modeling mechanism that upscales
photosynthesis from the leaf level to the canopy level. This kind of “two-leaf” model has been proven
to be more effective in modeling canopy photosynthesis than the conventional “big-leaf” model [13,79].
The photosynthetic rate of the canopy, Ac, is modeled as the sum of the sunlit and shaded leaf groups as

Ac = AsunlitLAIsunlit + AshadedLAIshaded (12)

LAIsunlit = 2 cos θ(1− e−0.5ΩLAI/ cos θ) (13)

LAIshaded = LAI − LAIsunlit (14)

where sunlit and shaded denote the sunlit and shaded leaf groups, respectively; θ is the solar zenith
angle; and Ω is the clumping index.

The photosynthesis model in the BEPS model is suitable for C3 carbon fixation pathways.
However, maize is a C4 species according to its photosynthetic pathway. In this study, the BEPS model
was modified to be suitable for C4 species estimation according to the theory of Collatz et al. [19].
The photosynthetic rate of the leaves for C4 species, An, is assumed to be limited by the
phosphoenolpyruvate carboxylase (PEP-carboxylase)-limited rate of assimilation (Wc), the light-limited
rate of assimilation (We), and the CO2-limited rate of assimilation (Ws) [80]

An = min(Wc, We, Ws)− Rd (15)

Wc = Vcmax (16)

We = PAR× (1−ω)× ε (17)

Ws = 2× 104VcmaxCi/p (18)

Rd = 0.0025Vcmax (19)

where Vcmax is defined as the maximum carboxylation rate (mol m−2 s−1), ω is the leaf-scattering
coefficient for PAR, ε represents the intrinsic quantum efficiency of CO2 uptake (mol mol−1), and Rd is
the leaf dark respiration rate (mol m−2 s−1).
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The C4 photosynthesis model was integrated into the BEPS model to couple with the Ball-Berry
stomatal conductance model to generate the photosynthesis rate using an iteration calculating
procedure [19,81].

3. Results

3.1. Diurnal Patterns in GPP and SIF760

The diurnal courses of GPP, SIF760, and PAR during our campaign are shown in Figure 3. Since the
canopy spectra were collected at four different positions, four SIF760 values together with one GPP
value were obtained at a time. As shown in Figure 3, both SIF760 and GPP exhibit similar patterns
to that of PAR with lower values in the early morning and late afternoon and higher values in the
middle of the day. These values tend to exhibit a single peak curve that follows the variation of
PAR. The distinct decrease in GPP at midday that is commonly found in C3 species, known as the
“midday depression”, was not observed in our experiment, which is consistent with the studies by
Cheng et al. [82] and Liu et al. [25] For C3 species, higher temperatures can decrease the affinity of
enzymes for CO2 and cause the carboxylation enzyme, Rubisco, to be less active, which leads to the
midday reductions in carbon assimilation. In addition, the higher evaporative demands at midday
reduces the stomatal conductance, which also affects the assimilation rate. In contrast, for C4 species,
CO2 is delivered to Rubisco, which is localized in the bundle sheath chloroplasts, by a metabolic
pump that concentrates CO2 [19]. This mechanism can inhibit photorespiration and promote carbon
assimilation. Consequently, C4 species exhibit higher photosynthesis capacities at high temperatures
where photorespiration is stimulated. In addition, C4 species generally have lower stomatal conductance
than C3 species [19]. Lower conductance coupled with higher photosynthetic capacity in C4 species
results in higher water use efficiencies in comparison to C3 species. The similar pattern between SIF760

and PAR indicates the capacity of SIF in protecting plant tissues from light energy that may be excessive
for photosynthesis and could otherwise damage tissues. Although some research has demonstrated
that SIF will increase with PAR at low light then decrease when NPQ increases and further increase
when NPQ reaches saturation [83], we did not find this kind of variation clearly in our experiment.
Actually, only one set of data on 17 July showed slight decreases at approximately 11:30 and 14:30,
which might correspond to the aforementioned decreasing trend. However, we also noticed that the
SIF760 values of the four canopy positions had relatively higher diversity on 17 July (as well as 10 July)
than on the other days. It is not clear whether it can to be attributed to the NPQ increment or observation
bias. Thus, further studies are needed, and both data quality and quantity should be considered before
drawing such a conclusion. For our study, we found that SIF760 showed a pattern with a single peak
that followed the variation of PAR as concluded by Liu et al. [25].
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We also analyzed the relationships between APAR and both SIF760 and GPP. Both showed strong
linear correlations, and an R2 of 0.713 (Figure 4a) and 0.591 (Figure 4b) was achieved between APAR
and SIF760 and APAR and GPP, respectively. The averaged SIF760 values were also generated to reduce
some uncertainties introduced during our spectral acquisition. As our measurements were conducted
at four different canopy positions, we assumed their mean values could adequately represent the
situations of our study site. By analyzing the relationship between APAR and the averaged SIF760,
the R2 increased to 0.798 (Figure 4c). As illustrated in Figure 4, the slope of the SIF760-APAR relationship
is approximately the same LUEF, and the slope of the GPP-APAR relationship can be considered as
LUEP. Because both relations can be adequately expressed by linear equations, the ratio between LUEP

and LUEF, as described in Equation (6), can be considered nearly constant, which means that SIF760

and GPP can be directly linked.
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(a) individual SIF760; (b) GPP; and (c) averaged SIF. The error bar indicates the range of SIF760 values
for four measurements.
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3.2. Relationship between SIF and GPP

Statistical analysis was conducted to reveal the relationship between SIF760 and GPP. As shown in
Figure 5, we found a significant correlation between SIF760 and GPP, and their relationship could be
characterized by a linear function, regardless of using individual SIF760 of the four group measurements
(GPP = 0.570 × SIF760 + 0.666) or the averaged measurements (GPP = 0.621 × SIF760 + 0.614),
which suggests that SIF760 can be used as a direct proxy for GPP.
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3.3. Comparison of GPP Modeled by SIF, MuSyQ-GPP, and BEPS Models

In addition to the SIF-based GPP estimation, we also generated GPP using both the LUE-based
MuSyQ-GPP algorithm and the process-based BEPS model. As the BEPS model used in our study was
initially designed to run at hourly intervals, we modified it to a half-hourly time step to match the
observations in this study. Thus, all approaches were performed every 30 min in our analysis. As the
average of the four SIF760 measurements may represent the situations of our study site better than the
individual measurements, we only considered the statistical model generated using the averaged SIF760

values (GPP = 0.621 × SIF760 + 0.614) in this study. As shown in Figure 6, all three approaches estimate
the GPP well. Among which, the BEPS model (R2 = 0.867, RMSE = 0.153 mg m−2 s−1) performs
better than that of SIF760 (R2 = 0.624, RMSE = 0.237 mg m−2 s−1) and MuSyQ-GPP (R2 = 0.702,
RMSE = 0.247 mg m−2 s−1) models. We also modeled GPP using the statistical model generated with
SIF686 (GPP = 0.682 × SIF686 + 0.539) (see detailed results in Text S2, Figures S1–S4 in Supplementary
Materials). Compared with the SIF760-based model, SIF686-based GPP model showed a limited accuracy
with R2 = 0.456 and RMSE = 0.363 mg m−2 s−1.
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We noticed that some of the SIF-based GPP estimates were higher than the EC-based estimates
when GPP was relatively low, which corresponded to the observations at 8:30 on 21 August
and 8:30 on 22 August (dots in the red circle in Figure 6a). When these two groups of data were
excluded from the analysis, both SIF based GPP models performed better with R2 increased to 0.667 and
RMSE decreased to 0.236 mg m−2 s−1 for the SIF760-based model, and R2 increased to 0.459 and RMSE
decreased to 0.352 mg m−2 s−1 for the SIF686-based model, respectively. The MuSyQ-GPP algorithm
was found to underestimate the GPP values at high productivity, which could be attributed to the
assignment of a constant LUE0 value in the algorithm as it could not properly handle the contribution
of both sunlit and shaded leaves to the total GPP. BEPS model was found to slightly underestimate
GPP at high productivity and overestimate GPP at low productivity. Among these three approaches,
BEPS model showed better performance than that of SIF-based or LUE-based MuSuQ-GPP models,
with higher R2 and lower RMSE.

4. Discussion

4.1. Uncertainties in the SIF Measurements

The SIF retrieval accuracy is dependent on the spectral characteristics of the reflectance and
irradiance spectra around the oxygen absorption lines. According to our validation based on EC-based
data, the SIF760-based GPP at 8:30 on 21 August and 8:30 on 22 August deviate from the EC-based
values significantly (dots in the red circles in Figure 6). During our experiment, we measured four
canopy positions sequentially from T1 to T4 as illustrated in Figure 2. The spectra of the reference
panel were collected eight times: once before and once after each of the four canopy measurements.
Incident radiance at 8:30 on 21 August and 8:30 on 22 August was then obtained (Figure 7). The incident
radiance showed significant variations during our measurement, especially at the left and right
shoulders of the absorption line. Additionally, the measured irradiance did not present a gradual
increase trend as expect. This may be attributed to the instability of irradiance in the morning. As light
travels a longer path at high solar zenith angle (SZA) in the morning, the influence of atmospheric
conditions would be larger than that at lower SZA. Hence, in future studies, it is necessary to consider
the influence of air conditions and the affection of imaging geometrical conditions such as the SZA
and relative azimuth angle in SIF retrieval.
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The data quality (DQ) indicator DQs presented by Cogliati et al. [84] was adopted to evaluate the
stability of the incident radiance. DQs is defined as the percentage of variation between the first and
the second irradiance measurement

DQs = |EB − EA|/EB × 100 (20)

where EB and EA represents the incident radiance before and after the canopy measurement, respectively.
In this study, the DQs values of the three bands used in the 3FLD algorithm were averaged to

represent the irradiance stability. As shown in Figure 8, the DQs values were generally higher at
morning and evening and lower at noon, the higher values also corresponded with the higher SZA
and longer path. For the observations at 8:30 on 21 August and 8:30 on 22 August, the DQs showed the
largest values, which indicated that the irradiance changed significantly during these measurement
sessions. Therefore, data quality check is needed especially when irradiance demonstrates significant
variations, the acquisition that do not meet the quality check should be rejected and no longer
considered in the analyses.
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We used the 3FLD algorithm to generate SIF in this study. The 3FLD approach is based on the
assumption that the reflectance signal and the SIF signal vary linearly within and outside the absorption
band. However, the actual variations of reflectance and SIF signal are not being linear, which causes
a violation of the underlying assumption of the 3FLD method and lead to some uncertainties in SIF
retrieval. Additional studies are needed in generating SIF with more advanced SIF retrieval approaches
such as the improved FLD (iFLD) method [85] or the Spectral Fitting Methods (SFM) [86].

4.2. Uncertainties in the SIF-Based GPP Model

Previous studies have demonstrated that the relationship between remotely sensed SIF and GPP can
be characterized by a linear and ecosystem-specific function [23–25]. There is also evidence indicating
that the SIF and GPP relationship can be affected by various factors such as the rate of NPQ [61,87],
light conditions [46,87], nutrient availability [61], water availability [85], temperature [23,46,68],
and canopy structure [34]. Recent studies have suggested that there is a curvilinear relationship
between instantaneous SIF and GPP due to the rate of photosynthesis saturated under high
illumination, and this relationship tends to become linear when both SIF and GPP are temporally
aggregated [28,34]. However, the saturation of GPP with APAR were not found in our experiment
(Figure 4) as C4 species exhibit higher photosynthesis capacities at higher temperatures than C3 species.
Therefore, the relationship between SIF and GPP could be adequately characterized by a linear function in
our research. However, the SIF-GPP relationship may not be constant in spatial and temporal modeling,
which can be attributed to the ecosystem-specific structural and physiological characteristics as well as
the environmental situations associated with each ecosystem [34]. Therefore, for accurate quantification
and characterization of the SIF-GPP relationship, further experiments that overlap the entire growth
periods in various ecosystems are needed, especially for C3 species.

Remote measurements of SIF are likely representative of the upper layer of the canopy, which is
mainly characterized by sunlit leaves [34,59]. Although the upper layer substantially contributes to
the total GPP, there are still many layers of leaves that contribute to the canopy photosynthesis at
different rates depending on their sunlit or shaded exposure [59]. Thus, the heterogeneity of the
vertical canopy may lead to a mismatch between the SIF-based estimates and the EC-based GPP.
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Additionally, under low light unstressed conditions, there exists a competitive relationship between
leaf fluorescence and photosynthesis and a positive correlation between them under stressed and
high light conditions [87,88]. The relationships between SIF and GPP for sunlit and shaded leaves
are different as sunlit leaves receive more light and shaded leaves only receive diffuse light [88].
Therefore, additional studies are needed to address the contributions of the shaded leaf groups and
the structural sensitivities of canopy-leaving SIF signals.

Light energy absorbed by leaf chlorophyll molecules has three different pathways: photochemistry,
NPQ, and SIF. Accurately estimating any one of the de-excitation pathways require measurement
of the other two. Some researches indicated that most absorbed energy is used in photosynthesis
and both fluorescence and NPQ are low under low light conditions. Under high light and stressed
conditions, NPQ becomes dominant and the yields of fluorescence and photosynthesis decrease [87].
As a result, the relationship between SIF and GPP is influenced by NPQ. The mechanism of NPQ and
its regulation should be considered in the further studies.

Plant photosynthesis starts with absorption of light, mainly by chlorophyll molecules.
Accordingly, some mechanisms were used to modulate photosynthetic light. Former studies have
indicated that chloroplasts can change their orientation within the cell in response to the intensity
and direction of the incident light [89]. When light is limiting to photosynthesis, chloroplasts
move to positions that yielding maximum light absorption, whereas in saturating light they hide
themselves to make the light absorption minimized. The chloroplast avoidance movements can lead to
decreased light absorption and then influence the observed SIF signal, and further studies are needed.
Additionally, leaf movements and leaf angle adjustments can also significantly affect the fractions of
sunlit and shaded leaves, which should be considered in future research.

The mismatches of the spatial and temporal scales between canopy SIF and EC-based GPP also
lead to some uncertainties. The footprint of the EC tower covers 0.01 km2 to 10 km2 depending on the
measurement height, wind speed and turbulent state of atmosphere [90], whereas the canopy SIF are
instantaneously measured with a footprint less than one square meter.

The availability, quality, and spatiotemporal coverage of SIF data are expected to increase
drastically over the next few years. SIF measurements have been conducted at ecosystem,
landscape, and global scales using field spectroradiometers, airborne instruments, and satellite
platforms, respectively. The NASA’s OCO-2 [43], ESA’s Sentinel-5 Precursor (TROPOMI) [91] and
ESA’s Earth Explorer Fluorescence Explorer (FLEX) [92,93] can provide SIF data at much higher
spatial resolutions. In particular, the FLEX mission can provide auxiliary information such as NPQ
and canopy temperature along with fluorescence information. These data would improve our
estimation of the global carbon budget and our ability to track the health of terrestrial ecosystems.
Additionally, the development of the SCOPE (Soil-Canopy Observation, Photosynthesis and Energy
balance) model provides a theoretical way to model canopy SIF and photosynthesis by combing
Soil-Vegetation-Atmosphere-transfer (SVAT) model with radiative transfer models [94]. Despite this
promising scenario and the empirical evidence that SIF provides novel information to estimate
photosynthesis, as found in our study, there are still many uncertainties in relating SIF and GPP,
and further studies are needed.

4.3. Limitations of the LUE-Based Model

The basis of the LUE-based models is the initial linear relationship between the GPP and APAR of
the canopy [63]. However, this relationship is not linear at the individual leaf level and is characterized
by temporal heterogeneity associated with the variation of illumination levels [95]. Photosynthesis in
sunlit leaves is often light-saturated and limited by the level of Rubisco activity related to leaf nutrient
conditions and the ambient temperature [18], which results in a lower LUE, while photosynthesis in
shaded leaves is often not light-saturated and essentially has a linear response to APAR, which results
in a higher LUE [13,96–99]. In the LUE-based MuSyQ-GPP algorithm, LUE is determined by assigning
a constant maximum value of LUE0 and adjusting downward based on temperature and water
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conditions. Daily variability in the sunlit and shaded leaf fractions cannot be represented in this model.
Consequently, the internal physiological processes of these two leaf groups are substantially different
and the LUE of the shaded leaves is generally higher than that of the sunlit leaves [95]. As GPP can
vary greatly in space and time as a result of the variability between sunlit and shaded leaf fractions,
we argue that scaling the LUE0 without considering the difference between the sunlit and shaded leaf
groups can significantly limit the performances of the LUE-based models. There are some literature
suggests that the LUE models underestimate GPP at high productivity and overestimate GPP at low
productivity [96], and the underestimation is consistent with our research. However, the overestimation
cannot be clearly shown in our analysis. These results are not contradictory since our data at low
productivity is limited. In addition, the LUE0 used in the LUE-based models is usually defined as
a constant value for each broadly defined plant functional type (PFT). For our study, we used a
constant value of 0.60 gC mol−1 PPFD from the study by Zhang [69], which was conducted at the
same site as our study. However, other literature has suggested that LUE0 for maize at different
sites can be assigned as 1.50 gC mol−1 PPFD [67,100], 0.93 g C mol−1 PPFD [101], or 1.22 g C
mol−1 PPFD [101]. Therefore, LUE0 varies among vegetation types and study sites and should be
calibrated before using in the LUE-based approach. Moreover, the MuSyQ-GPP algorithm deploys
two down-regulating factors to represent the effects of temperature and water conditions while scaling
the LUE0. Although various strategies have been developed to characterize the impacts of temperature
and water stresses [8–11], the descriptions of their influences in the LUE-based approaches are still
empirical, which may introduce some uncertainties, especially for the water stress scalar. For the
MuSyQ-GPP algorithm, a calculation of evapotranspiration is conducted to represent water availability.
Predictably, the uncertainties existing in the evapotranspiration estimation would lead to significant
deviations in the final GPP estimation.

4.4. Uncertainties in the BEPS Model

The core idea of the BEPS model is that it adopts separate sunlit and shaded leaves modeling
mechanisms. The two-leaf model has been proven to be more efficient in simulating the daily variation
of canopy photosynthesis than the conventional “big-leaf” model [13]. The BEPS model employs the
enzyme kinetics theory for C3 plants proposed by Farquhar et al. [18] to generate the photosynthesis
rate. In this study, we adopted a modified version that was applicable for C4 species [19] and integrated
it into the BEPS model to couple with the Ball-Berry stomatal conductance model [81] to generate GPP as
well as the water and heat fluxes. Although it is designed in an explicit and tightly linked manner that
simulates the coupled hydrological, ecophysiological, and biogeochemical processes and the associated
feedback mechanisms, it should be noted that numerous parameters should be assigned before modeling.
One of the most important parameters in modeling photosynthesis, the maximum carboxylation rate
(Vcmax in Equations (16), (18), and (19)), has been proven to vary temporally [48,102–104], although it
is usually assigned as a specific value for each PFT [105]. In this study, we adopted a constant value
of 37 µmol m−2 s−1 by referring to Zhang et al. [48]. Although BEPS model simulated GPP better
than the SIF-based and LUE-based model in our study, there are still some underestimations at high
productivity and overestimations at low productivity. Therefore, additional studies are needed in
generating the seasonal variation of Vcmax. Former studies have demonstrated that Vcmax can be related
with reflectance [106] or leaf chlorophyll content [107], which made it retrievable using remotely sensed
data. Recently, a study conducted by Zhang et al. [48] presented an SIF-based approach for modeling
seasonal Vcmax, which provided a new method to assess plant photosynthesis using SIF.

5. Conclusions

In this study, we evaluated the ability of three different approaches, SIF, LUE-based MuSyQ-GPP,
and process-based BEPS, to estimate the diurnal courses of GPP at a maize site. In general,
all three approaches adequately estimated the GPP, and the process-based BEPS model had the
best performance, followed by the LUE-based MuSyQ-GPP algorithm and the SIF-based statistical
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model. The MuSyQ-GPP algorithm underestimated the GPP at high productivity, which can be
attributed to its weakness in characterizing the underlying ecological processes of vegetation and the
contribution of shaded leaves to total GPP. In contrast, the BEPS model that was established based on
the two-leaf theory and physiological mechanisms can provide more accurate estimations. Our study
indicated that the SIF760-based statistical model can provide reasonable estimates of GPP in the short
term without additional information such as climate inputs, which are required by the process-based
and LUE models.

The observational approach revealed that both SIF760 and GPP exhibited similar diurnal patterns
as PAR, both SIF760 and GPP were linearly correlated with APAR, and a linear function could well
characterize the relationship between SIF760 and GPP for maize over our study period. Despite its
limitations in applying to large area and long-term studies, SIF provided a proxy for GPP not available
from any other remote sensing measurements of vegetation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/12/1267/s1,
Text S1: Estimation of water stress factor in the MuSyQ-GPP algorithm, Text S2: Performance of the SIF686-based
GPP model, Figure S1: Diurnal patterns of PAR, GPP and SIF686 during the experiment, Figure S2: Relationship
between APAR and individual SIF686 and averaged SIF686, Figure S3: Relationship between individual SIF686 and
GPP, averaged SIF686 and GPP, Figure S4: Relationships between SIF686-based GPP and EC-based GPP during the
experiment period.
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