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Abstract: Geometric distortions and intensity differences always exist in multi-source optical satellite
imagery, seriously reducing the similarity between images, making it difficult to obtain adequate,
accurate, stable, and well-distributed matches for image registration. With the goal of solving these
problems, an effective image matching method is presented in this study for multi-source optical
satellite imagery. The proposed method includes three steps: feature extraction, initial matching,
and matching propagation. Firstly, a uniform robust scale invariant feature transform (UR-SIFT)
detector was used to extract adequate and well-distributed feature points. Secondly, initial matching
was conducted based on the Euclidean distance to obtain a few correct matches and the initial
projective transformation between the image pair. Finally, two matching strategies were used to
propagate matches and produce more reliable matching results. By using the geometric relationship
between the image pair, geometric correspondence matching found more matches than the initial
UR-SIFT feature points. Further probability relaxation matching propagated some new matches
around the initial UR-SIFT feature points. Comprehensive experiments on Chinese ZY3 and GaoFen
(GF) satellite images revealed that the proposed algorithm performs well in terms of the number of
correct matches, correct matching rate, spatial distribution, and matching accuracy, compared to the
standard UR-SIFT and triangulation-based propagation method.

Keywords: multi-source optical satellite imagery; image matching; propagation matching; geometric
correspondence matching; probability relaxation matching

1. Introduction

Image matching is the process of finding corresponding points on multi-view images of the same
region; these images can be acquired by different sensors at different times [1]. Image matching is not only
the precondition for automatic image registration [2,3], but also the foundation for three-dimensional
(3D) modeling [4], change detection [5], image fusion [6], and environmental monitoring [7,8]. The need
for multi-source-optical satellite imagery matching has quickly increased along with the increasing
diversity of available optical satellite image data. For example, China launched the ZY3-02 satellite [9]
on 30 May 2016, which is the second ZY3 series satellite. The first satellite was the ZY3-01 satellite [10],
launched on 9 January 2012. With excellent performance, ZY3-01 plays an important role in stereo
mapping. ZY3-02 uses a similar method as ZY3-01, but it includes some improvements, having a
higher resolution for the optical cameras and adding a laser range finder to improve the vertical
positional accuracy without ground control points. In addition, China initiated its high resolution
earth observation program in 2010 [11]. This program plans to launch seven high resolution satellites,
of which GF1, GF2, GF3, and GF4 satellites have been launched. GF1 and GF2 are optical remote
sensing satellites. The panchromatic and multi-spectral resolution of GF1 are 2 m and 8 m, respectively,
and those of GF2 are 1 m and 4 m, respectively. Determining how to fully use these optical satellite
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images from a variety of remote sensors has become an imperative, and the matching of multi-source
optical satellite images is one of the critical aspects in this field.

Matching corresponding points between multi-source optical satellite images is difficult due to
the geometric deformation caused by scale change, rotation, and view angle transformations, as well
as the nonlinear intensity differences caused by different radiation resolutions, and the effects of the
atmosphere and radiation noise [12]. Image matching methods, based on local invariant features,
are widely used for multi-source optical satellite images due to their robustness for image scale
transformation. The most representative image matching method is the scale-invariant feature transform
(SIFT) algorithm [13,14]. However, when the standard SIFT operator is applied to multi-source optical
satellite image matching, the number of matched feature points is limited; a large percentage of
mismatches occur and the correctly matched points are not uniformly distributed, resulting in match
failure. To improve the performance of SIFT, researchers have reformed it mainly by: (1) improving
the feature extraction operator [15–18]; (2) improving the feature descriptor [19–21]; and (3) improving
the matching strategy [22–26]. For example, to improve the feature extraction ability in textureless
areas, Sedaggat et al. [17] proposed the uniform robust SIFT (UR-SIFT) algorithm. According to the
characteristics of the image scale pyramid, the expected number of feature points of each layer and
octave was pre-defined, then the layer images were divided into grids, and the number of feature points
retained in each grid was determined by the local image information entropy, feature point contrast,
and the number of feature points in the grid. The strategy used to filter the points resulted in the
retained feature points having high robustness and were evenly distributed.

To improve the feature descriptor, Ye et al. [21] introduced gradient direction information to SIFT,
then the descriptor was constructed based on the gradient orientation restriction SIFT (GOR-SIFT)
and shape context, which describes the edge information. The Euclidean distance and the chi-squared
statistic (x2) similarity measure were used to enhance the matching success rate. Ling et al. [23]
presented a matching method integrating global Shuttle Radar Topography Mission (SRTM) and
image segmentation. Before matching, the geometric epipolar lines were determined with the aid
of SRTM, a few seed points were extracted by the Local Contrast (LC) operator, and the image was
segmented, which was first conducted by the marker-based watershed algorithm. The image was
further processed by Region Adjacency Graph (RAG), and good performance was achieved for the
matching by combining the characteristics of distance, angle, and normalized correlation coefficient
(DANCC). Triangulation-based methods, which are free of any other external data, have also been
proven to be effective for image matching [24–26]. First, a few points are matched to build the initial
triangles. Next, a certain number of feature points are detected within the corresponding triangles,
and these feature points are matched under the triangle constraint. Then, the new matched points
are inserted into the triangles, which are updated dynamically. Finally, the process is repeated until
termination conditions are met, namely that the triangles are small enough or cannot match new
points. For the matching of points in triangles, Geng [27] proposed the use of the nearest six matches
around a candidate point to calculate the affine transformation in the local area for predicting the
match. Then, the normalized correlation coefficients (NCCs) of the candidate point, with the points
around the predicted location, were computed. If the NCC of the point with the highest value was
larger than a pre-defined value, they were identified as a matching point pair.

Based on previous studies, this paper presents a multi-stage matching approach, called “EMMOSI”
(Effective Matching of Multi-source Optical Satellite Imagery) for multi-source optical satellite images,
which does not need any data other than the images themselves. The framework of the matching
method is shown in Figure 1. Firstly, well-distributed feature points at each scale were extracted by
the UR-SIFT operator. Next, the initial matching was conducted, and the transformation between
multi-source images was computed. Finally, a new matching propagation method was used that
includes the following two steps: (1) geometric correspondence matching is used to obtain some
new correct matches; and (2) probabilistic relaxation matching was used to match the feature points
that were not successfully matched in previous steps. The matches obtained in all steps were the
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final matches. Experimental results on a variety of optical satellite images showed that the proposed
method can largely improve the use of feature points and increase the number of correct matches,
which were more evenly distributed.
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Figure 1. The framework of Effective Matching of Multi-source Optical Satellite Imagery (EMMOSI).

2. Methodology

2.1. UR-SIFT Feature Extraction

UR-SIFT [17] is based on the SIFT algorithm; it improves the robustness and accuracy of feature
points by controlling the number, quality, and distribution. The main goal of the algorithm is to retain
a certain number of high-quality features across the entire range of the image. The specific steps are
as follows:

(1) Determine the approximate total number of feature points. The expected total number of
feature points is set as 0.4% of the number of image pixels, with an upper limit of 5000, but, when the
image is small, these parameters can be appropriately scaled to ensure that sufficient number of feature
points are obtained.

(2) Determine the number of feature points for each scale space image as required for the SIFT
algorithm. The initial feature points are local extreme points and 10% of which with the lowest
contrasts are usually discarded. To ensure that the retained feature points can be evenly distributed,
the number of feature points for each scale is pre-defined according to the scale coefficient, which can
be calculated by SIFT [13]. Assuming that the total number of feature points is N, the number of l
layers in the o octave is:

Nol = N × Fol

ON
∑

o=1

LN
∑

i=1
Fol = 1

(1)

where Fol is the proportion value of l layer of o octave. Fol is negatively correlated with the scale
coefficient SCol . If we set f0 = F11 as the proportion parameter of the first layer of the first octave
whose scale factor is SC11, then the proportion parameter of the l layer of o octave can be calculated by
Equation (2). In addition, the sum of all the proportion values is 1, so F0 can be computed, and the
other proportion values are obtained.

Fol =
SC11

SCol
f0 (2)

(3) Determine the number of feature points in each grid of each layer image. To ensure that the
feature points of each layer image are uniformly distributed, each layer image is divided into virtual
grids. For a grid cell Gridi whose index is k of the l layer of o octave, the number of feature points
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N_Gridk retained in the certain grid is computed by the information entropy Ek of the grid image,
the number nk, and the average contrast Ck of feature points located in the grid image.

N_Gridk = Nol

[
WEEk

∑i Ek
+

Wnnk

∑i nk
+

(1−WE −Wn)Ck

∑i Ck

]
(3)

where WE and Wn are the weight factors of entropy and feature number, respectively.
(4) Choose the feature points to be retained. Assuming that the total number of feature points

is Ncell , the detected feature points in each grid are ordered according to their contrasts, the feature
points arranged in the top 3× Ncell are retained, and the remainder discarded. Then, the locations of
the feature points are determined to sub-pixel accuracies, and the edge effects are removed according
to standard SIFT algorithm. The local entropies of the retaining feature points are then computed,
and Ncell feature points with the highest entropies are retained.

(5) Based on the standard SIFT, the main intensity slope directions of the feature points are
calculated, and the feature descriptors are constructed.

Figure 2 displays an example of the feature extraction comparison results of Standard SIFT and
the UR-SIFT algorithm. The results reveal that UR-SIFT performs well with respect to the number and
spatial distribution of extracted feature points.
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Figure 2. Feature extraction: (a) ZY3-02 image: multispectral, 338 × 429 pixels; (b) scale invariant
feature transform (SIFT) feature extraction result; and (c) uniform robust SFIT (UR-SIFT) feature
extraction result.

2.2. Initial Matching

Initial matching was conducted using the minimum Euclidean distance between descriptors.
The ration R, between the distance to the closest neighbor and that of the second-closest, was used
to eliminate the wrong matches. We set R = 0.6. For optical satellite images, many mismatches after
constraint still existed, thus a cross-matching strategy was introduced. In cross matching, if pi ∈ P in
the reference image is matched to qj ∈ Q in the input image, and qj ∈ Q is successfully matched to
pi ∈ P conversely, then the point pair (pi, qj) is temporarily retained. The Random Sample Consensus
(RANSAC) [28] algorithm was used to refine the obtained matches. The final refined matches were
used to compute the transformation matrix H between the image pair. Since the terrain elevation
variations were much smaller than the distance from the ground to the sensor, homography well
describes the transformation between two satellite images. The homography relationship between a
pair of corresponding satellite image feature points can be expressed by Equations (4) and (5). x2 = x1h11+y1h12+h13

x1h31+y1h32+1

y2 = x1h21+y1h22+h23
x1h31+y1h32+1

(4)
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x1 =

x2h′11+y2h′12+h′13
x2h′31+y2h′32+1

y1 =
x2h′21+y2h′22+h′23
x2h′31+y2h′32+1

(5)

where (x1, y1) is the coordinates of a point on the reference image, (x2, y2) is the coordinates of
its corresponding point on the input image, hij represents the parameters of homography matrix
from the reference image to the input image, and h′ij represents the parameters of the inverse of
homography matrix.

To evaluate the calculated homography matrix, we used the cost function proposed in Navy et al. [29],
expressed by Equation (6):

C(h) =
1
N

(
N

∑
i

d(h(pi), pj) +
N

∑
j

d(h−1(pj), pi)

)
(6)

where C is the cost function value, d is the distance function between two spatial points, N is number
of matches, and (pi, pj) is a pair of matching points.

2.3. Propagation Matching

As the initial matches only occupy a small percentage of the whole feature points in multi-source
optical satellite image matching, most of the feature points are wasted. Therefore, to fully use the
remaining feature points, geometric correspondence matching and probability relaxation matching
were used to complete the propagation process.

2.3.1. Geometric Correspondence Matching

Initial matching only used the local information of the feature points, but did not take advantage
of the geometric relationship between the image pair. Thus, we first used the geometric constraint to
select a few candidate points, and further used the Modified NCC (M-NCC) method to conduct feature
matching. The traditional NCC method, based on rectangle windows, is not invariant to rotation
and scale changes. However, rotation and scale changes often exist in multi-source optical satellite
images. Thus, we modified the traditional NCC method by warping the correlation windows to enable
robustness in the presence of such geometric distortions. Specifically, we opened a rectangular window
in the reference image and projected it to the input image, using the homography obtained in initial
matching, which is likely to be an irregular quadrangle. Then, we resampled the irregular quadrangle
to the same size as the rectangular window using bilinear interpolation. Finally, we calculated the
correlation coefficient for the rectangle windows according to the standard NCC. The specific steps of
geometric correspondence matching are as follows:

(1) The feature points on the reference image, which were not successfully matched in the initial
matching, were first selected out. Since the transformation matrix H was estimated in initial matching,
the corresponding locations on the input image were predicted using Equation (4). As shown in
Figure 3, P is a seed point and P′ is its corresponding point on the input image. Because H may
contain some offset, the feature point on the input image, which is nearest to P′, may not be the correct
matching point, thus we chose to retain all the points whose distances to P′ were smaller than n pixels.
If points {Q1, Q2, . . . , Qn} existed on the input image, then we calculated their M-NCCs with P.
After sampling the correlation window, the M-NCC value was calculated with Equation (7). If Qj
had the highest M-NCC value with P, and the value was larger than the threshold r, then, in reverse,
we calculated its corresponding point Q′j on the reference image using Equation (5). If the distance
between P and Q′j was smaller than n, and their M-NCC value was largest among all the feature points
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on the reference image, whose distances to Q′j were smaller than n, and the value was also larger than
r, then P and Qj were initially identified as a pair of matching points.

ρ(c, r) =
∑w

i=1 ∑s
j=1 (g(i,j) × g(i+r,j+c))− 1

w×s (∑
w
i=1 ∑s

j=1 g(i,j))(∑
w
i=1 ∑s

j=1 g′(i+r, j+c))√[
∑w

i=1 ∑s
j=1 g2

(i,j) −
1

w×s (∑
w
i=1 ∑s

j=1 g(i,j))
2
][

∑w
i=1 ∑s

j=1 g′
(i+r,j+c)

2 − 1
w×s (∑

w
i=1 ∑s

j=1 g′
(i+r, j+c))

2
] (7)

where w and s are the size of the matching window, g(i,j) is the gray value at point (i, j) on the reference
image, and ρ(c, r) is the correlation coefficient.
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Figure 3. Geometric correspondence matching. P is a seed point, P′ is its predicted point calculated by
Equation (1), Qj is the matched point, and the other points marked by a yellow circle are those points
whose distance to P are within n pixels.

(2) Mismatches elimination: We re-calculated the homography matrix H1 by using the new
matches and the initial matches. Then, the mismatches process was performed by using the global
root mean square error (RMSE). If the RMSE was larger than r1 pixels, we eliminated the points with
largest error one by one until the RMSE was smaller than r1 pixels. After that, the mean square error
σx and σy in the horizontal and vertical directions were calculated. If a point’s horizontal error was
larger than Ex, or the vertical error was larger than Ey, then the point was deleted.

(3) Taking the retained matches and H1 as input, we repeated Steps 1 and 2 until the number of
correct matches no longer changed. In general, the matches increased a little after several repetitions,
but, given the time requirement involved, this paper used three as the maximum number of repetitions.

2.3.2. Probabilistic Relaxation Matching

Due to the complexity of the local texture structures of optical satellite images, homography
cannot adequately express the transformation relationship between the images in some local areas,
resulting in an offset of correct matches larger than n pixels. The M-NCCs for correct matches may be
smaller than r, but we used strict values for n and r in geometric matching, resulting in the elimination
of some correct matches. Additionally, the problem existed where the correctly matched point might
have been close to the corresponding point but was not extracted in the feature extraction stage.
Given these problems, we used the probability relaxation method [30,31] to match those feature points.
Probability relaxation matching takes advantage of the constraints from surrounding matches to
enhance robustness against geometric distortion, and uses the points around the predicted point
as candidate points to increase the probability of finding the correct matching point, which greatly
improves the matching success rate. The specific steps are as follows:

(1) Select the feature points which may be correctly matched, and finding their candidate
matching points. If the feature points did not match successfully using geometric matching, but their
transformation errors were less than n1 pixels, then we considered that these feature points may be
correctly matched. The larger the n1, the more correct matches obtained, but the time required to
complete the matches was greater. Taking the 16 feature points around the corresponding point of
a certain point P, their M-NCCs with P were calculated point by point. The candidate points were
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selected by setting a threshold r2. If the M-NCC value of one point was larger than r1, then the point
was defined as one candidate matching point. For example, if the initial point was Ii, Ij represents its
candidate matching point, ti is the number of candidate matching points, and ρij is their corresponding
M-NCC. The initial probability that Ij is the correct matching point of Ii is:

Pij = ρij/
ti

∑
k=0

ρik ; k = 0, . . . , ti (8)

(2) Calculate the compatibility between the point pair to be matched and a neighboring match.
P(i, j) is the probability of match Ii ↔ Ij , Ik is one of the matched points located in the neighborhood
of Ii, and Ij is the corresponding point of Ii. To quantify the compatibility between the match Ii ↔ Ij
and its neighbouring match Ik ↔ Il , the following compatible coefficient function C(i, j; k, l) was
introduced:

C(i, j; k, l) =
T

exp
[
(∆p2

x + ∆p2
y)/β

]∆px = (xj − xi)− (xl − xk), ∆py = (yj − yi)− (yl − yk) (9)

where ∆px is the displacement of Ii with its neighbouring point Ik in x direction, and ∆py is the
displacement in y direction. The larger is the ∆p, the smaller is the compatibility. T and β are
constant values.

(3) Calculate the match probability for each candidate point and find the correct matching point.
The initial probability for each candidate was calculated with Equation (8). The probabilities P(i, j) are
updated by the following rule:

P(o+1)(i, j) =
P(o)(i, j)Q(o)(i, j)

∑ti
s=1 P(o)(i, s)Q(o)(i, s)

(10)

Q(o)(i, j) = ∏
Ik∈Ω(Ii)

P(o)(i, j)C(i, j; k, l) (11)

where Ω(Ii) represents the matches around point Ii, which are determined by Euclidean distances,
and o is the iteration number. The function Q(o)(i, j) is the support that Ii ↔ Ij receives at the oth
iteration from its neighboring match Ik ↔ Il . The iteration process stops when one of the following two
conditions is achieved: (a) the pre-defined number of iterations is reached, or (b) for all the candidate
points, one of the match probabilities P(i, j)(j = 1, . . . , ti ) exceeds 1− ∂, where ∂� 1. The match with
the highest probability, which is larger than 1− ∂, is retained. If the pre-defined number has been
reached and no probability meets the conditions, meaning that point Ii is a false match.

(4) Mismatches elimination: Although probabilistic relaxation matching makes full use of the
information of neighboring matches, it cannot ensure that all the new matches are correct, thus we
needed to perform error elimination. Since we needed to consider the exceptions in local areas,
RMSE could not be used, so we also used the cross matching method here. Taking one matched point
on the input image as an initial point, and corresponding points around it on the reference image as
candidate points, we repeated Steps 1–3. If the located point was the same as on the reference image,
then we retained it; otherwise, we deleted it.

3. Experiments and Analysis

We compared EMMOSI with the standard UR-SIFT and the triangulation-based propagation
method (TPM), which shares the same purpose as this paper. The concrete implementation process
of TPM was as follows: we took the matching points from standard UR-SIFT as the input to create
the initial triangulations, and then the centroids of each triangle in the reference were taken as the
candidate points for the following matching. The reason for this was to improve the distribution
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uniformity of the propagation points. Finally, the method proposed in Geng [27] was used in the
matching stage. All three methods were programmed by C++.

3.1. Description of Experimental Datasets

To evaluate the performance of EMMOSI, two series of satellite images from ZY3 and GF were
used. ZY3 experimental data included the forward-view and nadir-view images of the ZY3-01 satellite,
whose ground sampling distances (GSDs) are 3.5 m and 2.1 m, respectively, and the nadir-view,
backward-view, and multi spectral images of the ZY3-02 satellite, whose GSDs are 2.1 m, 2.1 m,
and 5.8 m, respectively. GF experimental images included one GF1 panchromatic image whose GSD is
2.0 m, and GF2 panchromatic and multi spectral images, whose GSDs are 0.8 m and 3.2 m, respectively.

All input image pairs were selected from different satellite sensors or different imaging years.
ZY3 satellite images covered the mountain topography and complex terrain with monotonous and
intense textures, and the GF satellite images covered building areas. Image pairs 1–5 are ZY3 images,
and image pairs 6 and 7 are GF images. To comprehensively evaluate the performance of the proposed
algorithm under different conditions, we used the following seven imaging condition combinations
shown in Table 1:

Table 1. Seven different imaging condition combinations.

No. Different
Remote Sensors

Different
Viewpoint Cameras

Different
Resolutions

Different
Spectral Modes

Different
Acquisition Times

1
√

2
√ √

3
√ √ √

4
√ √ √ √

5
√ √ √ √ √

6
√ √ √

7
√ √ √ √

Large illumination differences and scene changes existed. In addition, local geometric distortions
and relief displacement existed in all image pairs. Their specific parameters are shown in Table 2,
and the experimental images are displayed in Figure 4.

Table 2. Experimental image pairs.

No. Figure Satellite View View/Spectral Mode Image Size GSD (m) Acquisition Date Location

1
4a ZY3-01 Nadir-View 802 × 720 2.1 5 October 2013 China-Guangzhou
4b ZY3-01 Nadir-View 803 × 718 2.1 21 January 2014

2
4c ZY3-01 Nadir-View 932 ×1009 2.1 17 May 2016

China-Fuxin4e ZY3-02 Nadir-View 932 ×1027 2.1 5 June 2016

3
4d ZY3-01 Forward-View 600 × 603 3.5 17 May 2016

China-Fuxin4f ZY3-02 Backward-View 856 × 828 3.5 5 June 2016

4
4d ZY3-01 Forward-View 600 × 603 3.5 17 May 2016

China-Fuxin4e ZY3-02 Nadir-View 932 ×1027 2.1 5 June 2016

5
4e ZY3-01 Nadir-View 932 ×1009 2.1 17 May 2016

China-Fuxin4g ZY3-02 Multi Spectral 344 × 374 5.8 5 June 2016

6
4h GF1 Panchromatic 344 × 314 2.0 4 November 2016 China-Guangzhou
4i GF2 Panchromatic 841 × 766 0.8 30 April 2017

7
4h GF1 Panchromatic 344 × 314 2.0 4 November 2016 China-Guangzhou
4j GF2 Multi Spectral 212 × 193 3.2 30 April 2017
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Figure 4. Experimental satellite images. (a–c): nadir-view image of ZY3-01; (d) forward-view image of
ZY3-01; (e) nadir-view image of ZY3-02; (f) backward-view image of ZY3-02; (g) multi-spectral image
of ZY3-02; (h) panchromatic image of GF1; (i) panchromatic image of GF2; and (j) multi-spectral image
of GF2.

3.2. Setting of Parameters

3.2.1. Parameters in UR-SIFT Feature Extraction

The octave number of UR-SIFT is self-adaptive to the image size, and the number of layers was
set as 3. The scale layer gridding was set to approximately 100 × 100 pixels, and the values of We and
Wn were set to 0.2 and 0.5, respectively, according to Sedaghat et al. [17].

3.2.2. Parameters in Geometric Correspondence Matching

To find the proper value of n and r in the first step, different values were assigned to n, changing
from 0.5 to 3 in increments of 0.5, while the different values assigned to r changed from 0.6 to 0.9 in
increments of 0.1. Many experimental results show that when n = 1 and r = 0.8, the value of the cost
function of the final homography is always within one pixel and the matching points obtained were
considered as correct matches. In the second step, r1 was set as one, which is reliable for eliminating
the wrong matches [17]. Ex and Ey were set as 3σx and 3σy, respectively. The error was Gaussian
distribution, and the accuracy of a correct match was around 0.3–0.4 pixels. If the horizontal or vertical
error of a match was larger than 3σx and 3σy, it was probably a mismatch. This may have eliminated a
few correct matches, but it ensured the high accuracy of the retained matches.

3.2.3. Parameters in Probabilistic Relaxation Matching

n1 and r2 were used to select candidate match points. The larger the n1 and the smaller the r2,
the more candidate match points were found and the more matches were obtained, which may have
included some wrong matches. Many experiments revealed that, when n1 = 2 and r2 = 0.7, a good
balance between the number and accuracy of the matches is achieved. T and β were set as 1000 and 10
according to Zheng et al. [31].

3.2.4. Evaluation Criteria and Implementation Details

The matching quality was evaluated from the following four factors: the number of correct
matches, correct matching rate, distribution quality, and matching accuracy.

(1) The number of correct matches: For all the matches, if the residual error of one point was less
than 1.2 pixels, it was taken as a correct match, otherwise it was defined as a false match [23].

(2) Correct matching ratio: Correct matching ratio was the proportion of correct matches compared
to the total matches.
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(3) Distribution quality: To evaluate the distribution quality of matched points, the statistical
distribution quality factor Scat proposed in Goncalves et al. [32] was used. The smaller is the Scat,
the more uniform is the distribution. Scat evaluates the distribution of feature points by counting the
distance between each match and other matches, and storing the intermediate value, which was used
to evaluate distribution quality. If this value was larger than 95% of the mean of the image dimensions,
good distribution was achieved.

(4) Matching accuracy: In general, matching accuracy assessment requires ground truth. For image
matching, manually measured correspondences are always used as references. However, measuring
large numbers of correspondences manually, and the measured accuracy, depends on the accuracy
of human observation, which is subjective and may vary from person to person. Thus, we required
more practical methods. In this paper, the matching accuracy assessment method, based on RMSE of
adjustment, was used. Using the matches as tie points between images, we conducted free network
adjustment for the image pair, and the RMSE of the adjustment was taken as the image matching
accuracy. For satellite images, the imaging model used was the Rational Function Model (RFM).
We performed free network adjustment based on RFM by using the matches, then each point had a
residual error after adjustment, upon which we calculated the RMSE. Theoretically, RMSE consists of
the following three parts: image matching error, imaging model error, and image internal geometric
distortion. The image matching error is the chief component, whereas the other two are secondary
components, which can be ignored for satellite images with good geometric quality. Thus, RMSE can
objectively reflect the image matching accuracy, although the actual positional accuracy of matched
points was better than RMSE.

3.2.5. Comparative Results and Analysis

Table 3 displays the number of extracted features, number of correct matches, correct matching
rate, distribution quality measure Scat, and matching accuracy measured by RMSE for UR-SIFT, TPM,
and EMMOSI.

Table 3. Experimental results of uniform robust scale invariant feature transform (UR-SIFT),
triangulation-based propagation method, TPM and the proposed method, Effective Matching of
Multi-Source Optical Satellite Imagery (EMMOSI).

No. Algorithm
Extracted Features

Correct Matches Correct Matching Rate Scat RMSE/Pixel
Reference Image Input Image

1
UR-SIFT 4617 4630 147 100.0% 0.1117 0.314

TPM 4617 4630 268 98.5% 0.0354 0.389
EMMOSI 4617 4630 887 100.0% 0.0257 0.328

2
UR-SIFT 6548 6373 156 100.0% 0.0467 0.266

TPM 6548 6373 272 97.1% 0.0541 0.448
EMMOSI 6548 6373 696 99.1% 0.0236 0.282

3
UR-SIFT 5167 6131 49 100.0% 0.6680 0.258

TPM 5167 6131 74 92.5% 0.7430 0.399
EMMOSI 5167 6131 289 97.0% 0.5451 0.318

4
UR-SIFT 5167 6373 60 100.0% 0.1129 0.225

TPM 5167 6373 105 96.3% 0.6389 0.395
EMMOSI 5167 6373 302 97.4% 0.0806 0.320

5
UR-SIFT 6548 2067 36 94.7% 0.6780 0.343

TPM 6548 2067 42 79.2% 0.8062 0.363
EMMOSI 6548 2067 80 83.5% 0.0282 0.365

6
UR-SIFT 1553 6419 28 100.0% 0.4094 0.170

TPM 1553 6419 41 100.0% 0.4908 0.332
EMMOSI 1553 6149 77 87.5% 0.3456 0.305

7
UR-SIFT 1553 643 26 96.3% 0.0985 0.311

TPM 1553 643 35 88.6% 0.6443 0.358
EMMOSI 1553 643 59 89.4% 0.0206 0.304

From the results shown in Table 3, despite the large number of extracted features, the standard
UR-SIFT achieved few matches, because it only uses the feature descriptors, which are computed from
a small local area. Although TPM can increase the number of correct matches, the increased rate is
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limited. In contrast, the proposed method significantly increased the number of matches with the
aid of geometric correspondence between images and surrounding matched points, several orders of
magnitude above the standard UR-SIFT. The matches of UR-SIFT were basically correct, and EMMOSI
also had a high correct matching rate, which was higher than TPM in most cases.

Typically, the initial matches from UR-SIFT are unevenly distributed; they are mainly concentrated
in regions with rich texture, whereas few matches exist in low texture areas. From the value of Scat

of TPM, TPM reduces rather than increases the uniformity of feature. The matching results of TPM
are strongly dependent on the distribution of the initial feature points; the new inserted points were
all in the regions of the initial triangulations. If the initial points are not well-distributed, TPM will
not improve the uniformity of matches. Conversely, the value of Scat of EMMOSI was much lower
compared with standard UR-SIFT, indicating that a uniform distribution of the matches of EMMOSI
was achieved.

The RMSE values reveal that the matching results from UR-SIFT are accurate. UR-SIFT matches
can be reliably taken as initial points for TPM. The matching accuracies of TPM were lower than
UR-SIFT because TPM mainly relies on accurate key points. If a few new inserted points are false,
these wrong matches will seriously influence the final matching results. The result from the proposed
method proves that EMMOSI can always achieve high accuracy, higher than that achieved by TPM.
In addition to RMSE, Figure 5 shows the residual error histogram of the correct matches of EMMOSI
for all the test image pairs. The residual errors were all within 1.2 pixels, and most of the values were
within 0.8 pixel, which also proves the acceptable matching accuracy of the proposed algorithm.

Figure 6 displays the matching results of the first pair that represents the mountainous topography,
on two ZY3-01 satellite images acquired in different seasons, so the land cover changed considerably.
In Figure 6, the UR-SIFT matches have a good distribution, because the images have good texture
in mountainous areas, but the matches are relatively sparse. TPM added a few matches in the first
frame selection area, but did not add any match in the second frame selection compared to UR-SIFT.
Initial triangulations are present in the second selection area, but the reason for no new matches is that
the selected candidate feature points in these triangulations were not matched. However, regardless of
the standard used to select the candidate matching points, the failure of matching some of the selected
points will occur, and a few points that do not meet the specific criteria may match successfully.
By using the geometry relationship between the image pair, EMMOSI found more matches than
UR-SIFT in initial UR-SIFT feature points, and the probability relaxation matching propagated some
new matches. As a result, EMMOSI achieved more evenly distributed matches than UR-SIFT and
TPM, indicating that the proposed method can be applied to mountainous areas.

Figure 7 displays the matching result for the fourth image pair, which contains one forward-view
image from the ZY3-01 satellite and one nadir-view image from the ZY3-02 satellite, covering complex
terrain, and the two frame selection areas have less texture. In Figure 7, UR-SIFT failed to match in
both selection areas, because the feature points are not distinct and cannot be matched when relying
on Euclidean distance in textureless areas. TPM failed to match in the first selection area and only
achieved a few matches in the second selection area. The reason for the matching failure for the first
selection area is that there was no initial triangulation, thus no candidate feature points were selected
for matching in that area. In contrast, EMMOSI found many matches in both selection areas because our
method effectively uses UR-SIFT feature points by geometric correspondence matching, and increases
some matched points located in the surrounding areas of the matched UR-SIFT points using probability
relaxation matching. Overall, the matches of UR-SIFT and TPM were distributed unevenly. TPM only
added a small number of new matches to UR-SIFT, and EMMOSIEMMOSI achieved many more
matches than TPM and these matches were evenly distributed across the whole image, indicating that
the proposed method can be applied to complex terrain, especially in textureless regions.



Remote Sens. 2017, 9, 1249 13 of 19
Remote Sens. 2017, 9, 1249  13 of 19 

 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

(g)
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Figure 5. Residual error histogram of correct matches of EMMOSI in all test image pairs: (a) Nadir-view
image of ZY3-01 and Nadir-view image of ZY3-01; (b) Nadir-view image of ZY3-01 and Nadir-view image
of ZY3-02; (c) forward-view image of ZY3-01 and backward-view image of ZY3-02; (d) forward-view
image of ZY3-01 and Nadir-view image of ZY3-02; (e) Nadir-view image of ZY3-01 and multi-spectral
image of ZY3-02; (f) panchromatic image of GF1 and panchromatic image of GF2; and (g) panchromatic
image of GF1 and multi-spectral image of GF2.
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Figure 8 displays the matching result of the seventh image pair, including one GF1 panchromatic 
image and one GF2 multi spectral image, which cover an urban area. UR-SIFT and TPM matched few 
points in the selected areas, while EMMOSI found many matches. Overall, the EMMOSI had more 
matches than UR-SIFT and TPM. Additionally, the EMMOSI matches were evenly distributed 
throughout the image, indicating that the proposed method can be applied to urban areas. 

Figure 6. Matching results for the first experimental image pair: (Left) Nadir-view image of ZY3-01;
and (Right) Nadir-view image of ZY3-01.

Figure 8 displays the matching result of the seventh image pair, including one GF1 panchromatic
image and one GF2 multi spectral image, which cover an urban area. UR-SIFT and TPM matched
few points in the selected areas, while EMMOSI found many matches. Overall, the EMMOSI had
more matches than UR-SIFT and TPM. Additionally, the EMMOSI matches were evenly distributed
throughout the image, indicating that the proposed method can be applied to urban areas.
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image of GF1; and (Right) multi spectral image of ZY3-02.

4. Discussion

In this study, we present an effective method, EMMOSI, for multi-source optical satellite imagery
matching, using seven image pairs with different imaging combinations to evaluate its performance.
Two widely used state-of-the-art methods were compared and analyzed based on number of matches,
correct matching rate, spatial distribution, and accuracy of matched points. As the experimental results
indicated, EMMOSI is superior to UR-SIFT and TPM for number and distribution of correct matches.

Although UR-SIFT can independently extract adequate and well-distributed feature points
regardless of the image texture being dense or sparse, it only achieves few matches by using the
Euclidean distance between descriptors. These matches are too few to meet the requirements for image
registration. TPM uses the UR-SIFT matches as seed points to build initial triangulations, finds new
feature points in the initial triangulations, and matches these new points under the triangulation
constraints. UR-SIFT matches are not always well-distributed and the newly found feature points
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are all within the initial triangulations, losing the well-distributed property of the initial UR-SIFT
feature points, and adds extra feature extraction work. Then, the new matches are inserted into the
triangulations, which are dynamically updated. However, we cannot ensure that all the new matches
are correct, and if some false matches are inserted, the following building process of triangulations is
considerably influenced, and may cause more false matches.

To acquire sufficient matches with good distribution, we first used the UR-SIFT operator to extract
adequate and well-distributed feature points, laying a good foundation for the following feature
matching stage. In initial matching, we obtained a few matches and the transformation matrix between
the image pair. The value of the cost function of the transformation matrix revealed that the matrix was
reliable. To make full use of the UR-SIFT feature points, we first conducted geometric correspondence
matching basing on the transformation matrix, which uses the geometric relationship between the
image pair, rather than local image information. This process constrains the corresponding points to a
small searching area, so it can find more matches and these matches are well-distributed with high
reliability. Since many matches were obtained, we could find some matches around the unmatched
feature points from previous steps, which is the precondition of probabilistic relaxation matching.
Probabilistic relaxation matching uses spatial distance constraints to conduct matching, which is robust
for local image deformation.

To ensure a high accuracy, several constraints were implemented during the whole matching
flow. In the initial matching process, a strict value for NNDR, cross matching, and RANSAC were
used to ensure that the initial matches were correct. Then, in the geometric correspondence matching
process, we used RMSE in global, x and y directions to eliminate the wrong matches, and, in the
probabilistic relaxation matching stage, the searching area was limited to a small neighboring area,
and cross matching was used to refine the matches.

Our experimental image pairs covered diverse terrain, including mountainous topography,
complex terrain with intense and textureless regions, and urban areas. EMMOSI performed well
for all topographies. In summary, EMMOSI is effective and stable for multi-source optical satellite
imagery matching.

5. Conclusions

In this paper, EMMOSI, a multi-stage matching approach, is proposed for multi-source optical
satellite imagery. The proposed algorithm includes the following steps: UR-SIFT feature extraction,
initial matching, geometric correspondence matching, and probabilistic relaxation matching. The main
contribution is the proposed matching propagation strategy. Geometric correspondence matching
uses the geometric transformation information between the image pair, which finds the matches
that satisfy the geometric transformation. Probabilistic relaxation matching uses spatial distance
constraints from surrounding correct matches to find matches in local, distorted, and weak texture
areas. Comprehensive experiments on images derived from different sensors with different viewing
directions, geometric resolutions, spectral mode, and times proved that our method increased the
number of correct matches and the accuracy and improved their spatial distribution.

The proposed method can be applied to a variety of remote sensing applications that require
feature point matching, such as image registration and image mosaicking. In addition, the proposed
propagation method can be added to other matching methods, which will broaden its application.
For future work, a wider range of optical satellite images will be applied to evaluate the robustness of
the proposed method, and we will try to improve the algorithm efficiency.
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