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Abstract: Sparse unmixing is widely used for hyperspectral imagery to estimate the optimal fraction
(abundance) of materials contained in mixed pixels (endmembers) of a hyperspectral scene, by
considering the abundance sparsity. This abundance has a unique property, i.e., high spatial
correlation in local regions. This is due to the fact that the endmembers existing in the region are highly
correlated. This implies the low-rankness of the abundance in terms of the endmember. From this
prior knowledge, it is expected that considering the low-rank local abundance to the sparse unmixing
problem improves estimation performance. In this study, we propose an algorithm that exploits the
low-rank local abundance by applying the nuclear norm to the abundance matrix for local regions
of spatial and abundance domains. In our optimization problem, the local abundance regularizer
is collaborated with the L2,1 norm and the total variation for sparsity and spatial information,
respectively. We conducted experiments for real and simulated hyperspectral data sets assuming
with and without the presence of pure pixels. The experiments showed that our algorithm yields
competitive results and performs better than the conventional algorithms.

Keywords: sparse unmixing; hyperspectral; local abundance; nuclear norm

1. Introduction

The need to extract more detailed information from remote-sensing imagery has expanded
from multispectral images to hyperspectral images that enable pixel-constituent-level analysis.
Hyperspectral images have better spectral resolution than multispectral images due to their large
number of narrow and contiguous spectral bands [1]. The detailed information provided by sensors
faces a trade-off in which the sensors capture distinct materials on the Earth’s surface mixed in one
pixel. This is affected by one of the following factors [2–4]. The first factor is due to the low spatial
resolution of the sensors; two or more separate materials occupy the same pixel. The other factor
occurs when the sensors capture some distinct substances that have merged into a homogeneous
mixture on the Earth’s surface. This condition leads to a compelling solution, i.e., spectral unmixing.

The procedure of spectral unmixing works by decomposing the measured hyperspectral data into
a collection of spectral signatures (spectral library) and a set of corresponding fractions (abundances)
that represent the proportion of each spectral signature contained in the pixels [2,5–7]. The spectral
signatures that exist in the mixed pixels are called endmembers. In general, endmembers correspond
to familiar macroscopic objects in a scene, such as water, metal, and vegetation, as well as constituents
of intimate mixtures in microscopic scale. Hyperspectral unmixing can be reconstructed from the
linear mixture model (LMM) and nonlinear mixture model [2,8–10]. With the LMM, it is assumed
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that the spectra of each mixed pixel are linear combinations of the endmembers contained in the pixel.
Despite the fact that it holds only for macroscopic mixture conditions [8,11], it is widely used due to its
computational tractability and flexibility in various applications.

With the LMM, several unmixing techniques have been introduced based on either
geometry [12,13], statistics [12,14], nonnegative matrix factorization (NMF) [4,15–17], or sparse
regression [12,18–21]. Although the geometry and statistical techniques are unsupervised and require
only a little prior information about the data, they require an assumption that at least one pure pixel
(a pixel containing only one endmember) exists for each endmember [22]. The NMF techniques
do not require this assumption, however, they can obtain virtual endmembers with no physical
meaning [22,23]. On the other hand, in the sparse regression techniques, additional informations are
introduced as prior knowledge that are added to the objective functions in the optimization problems
and called regularizers, e.g., considering the abundance sparsity [24–26], information of endmembers
known to exist in the data [22], or total local spatial differences [27]. An abundance sparsity regularizer
algorithm, called sparse unmixing by variable splitting and augmented Lagrangian (SUnSAL), was
introduced by Iordache et al. [26]. They applied the L1 norm (the sum of the absolute values of the
matrix columns) to the abundance matrix, substituting the L0 norm (the number of nonzero elements
of the matrix) to impose the sparsity. With the algorithm known as collaborative SUnSAL (CLSUnSAL),
it is assumed that the pixels of a hyperspectral scene share the same active set of endmembers [28].
This assumption does not hold when an endmember is contained in several pixels instead of all pixels
in the scene. For example, when the hyperspectral scene captures a location that contains locally
homogeneous regions. Zhang et al. [29] proposed a local approach of the CLSUnSAL considering
the fact that endmembers tend to be distributed uniformly in local spatial regions. Qu et al. [30]
adopted joint sparsity combined with the low-rank model under the bilinear mixture model (BMM).
The low-rank term corresponds to the low number of linearly independent columns of a matrix.
They applied a local sliding window to the abundance matrix as the neighboring pixels tend to be
homogeneous and constituted from the same materials.

Iordache et al. [27] proposed a spatial regularizer algorithm called sparse unmixing with the
total variation regularizer (SUnSAL-TV), which uses an unmixing technique that is more powerful
than the conventional unmixing ones. Nevertheless, this semi-supervised algorithm may produce
over-smoothed results and blur in the edges. The spatial information is also imposed in the sparse
unmixing task in a nonlocal procedure [11]. Tang et al. [22] introduced an algorithm called sparse
unmixing using a priori information (SUnSPI). The required prior knowledge is that some spectral
signatures (endmembers) in the hyperspectral scene are known in advance. Despite the fact that
the performance is superior compared to that of conventional unmixing algorithms, it is difficult to
guarantee whether the assumption can always hold. Field investigation or prior hyperspectral-data
analysis may be needed to provide such information.

In a region with high spatial similarity, e.g., local spatial region, the correlation among pixels’
spectral signatures can be reflected as linear dependence among their corresponding abundance vectors.
The abundance matrix that is composed of these vectors should be low rank. This low-rankness has
been recently applied for hyperspectral image denoising and recovery tasks [31–33], which results
in superior performances. Furthermore, the low-rankness of the data also indicates high correlation
among the abundance vectors corresponding to the pixels in such regions [30]. Giampouras et al. [34]
proposed ADSpLRU algorithm by exploiting the low-rankness of abundance to the sparse unmixing
problem to consider the spatial correlation of the abundance. However, they considered the
low-rankness in the nonlocal fashion of the abundance dimension. In practice, to consider the local
low-rankness of an image, Ono et al. [35] proposed the local color nuclear norm (LCNN). However,
they locally applied the nuclear norm (the sum of the matrix singular values) only to the spatial
dimension of RGB images. Yang et al. [36] also imposed the low-rank constraint for coupled sparse
denoising and unmixing problems. However, the use of the nuclear norm is not local, and superior
performance is more dominant in the denosing task rather than the unmixing one. To the best of our
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knowledge, there is no sparse unmixing algorithm that takes into account the low-rankness of local
spectral signatures (endmembers) in the abundance dimension, whereas the high correlation between
the spectral signatures can be guaranteed by the spectral angle (SA), which is a spectral similarity
assesment defined as the angle between two spectral vectors. In turn, one can observe the linearity of
the data distribution in local regions in terms of spatial as well as abundance dimension. This priori
may lead to a novel approach for the sparse unmixing algorithm.

In this study, we developed an algorithm, which is called joint local abundance sparse unmixing
(J-LASU), in which we proposed the local abundance regularizer and implanted it to the sparse
unmixing problem using the nuclear norm for 3D local regions and evaluated the effect. We used
the 3D local block sliding through the three dimensions of the abundance maps and imposed the
nuclear norm to promote the low-rank structure of the local abundance cube. We preserve the use of
the total variation (TV) regularizer for spatial consideration. The proposed algorithm was tested on
simulated data as well as real hyperspectral data and compared with other sparse unmixing algorithms,
i.e., CLSUnSAL, SUnSAL-TV, and ADSpLRU. The major contribution of this study is imposing our
local abundance regularizer to a hybrid of state-of-the-art unmixing techniques that take into account
collaborative sparsity and spatial difference. We also applied the proposed J-LASU to several scenes
with and without pure pixels.

In Section 2, we discuss the problem formulation of hyperspectral unmixing as an introduction to
the problem formulation of our proposed algorithm. In Section 3, we describe the proposed J-LASU
algorithm starting with convincing evidence of the proposed concept. In Section 4, we describe the
experiment and analysis. In Section 5, we discuss the results and findings. Finally, we conclude the
paper in Section 6.

Variables and notation: Column vectors are represented as boldface lowercase letters, e.g., y,
whereas matrices are represented as boldface uppercase letters, e.g., Y. The following variables are
frequently used in this paper:

• Y is the hyperspectral data,
• A is the spectral library,
• X is the abundance matrix,
• X̂ is the 3D abundance data,
• m is the number of spectral signatures,
• l is the number of spectral bands,
• n is the number of pixels in X̂,
• nc is the number of columns in X̂,
• nr is the number of rows in X̂,
• B is the number of all local blocks in X̂,
• N is the number of pixels in each local abundance matrix,
• X̂b is the b-th local block,
• Hx̂b is the b-th local abundance matrix.

2. Hyperspectral Unmixing

2.1. Sparse Unmixing

Let Y ∈ Rl×n be the observed hyperspectral data, where l is the number of bands, and n is the
number of pixels. The LMM for a hyperspectral image is based on the assumption that each pixel
y ∈ Rl in any given spectral band is a linear combination of m spectral signatures in the spectral library
A ∈ Rl×m, that is,

y = Ax + e (1)

where x ∈ Rm is the abundance vector, and e ∈ Rl is the vector of noise and model error.
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With sparse unmixing, it is assumed that the abundance vector x is sparse because the number
of endmembers contained in a pixel is much lower than the number of spectral signatures in the
library, which implies the vector x contains many intensities of zero. Figure 1 illustrates the LMM
and sparse unmixing. Considering the ground truth, x has a constraint that needs to be imposed to
the sparse unmixing model, i.e., the value of x can never be negative which is called the abundance
nonnegativity constraint (ANC). The sparse unmixing problem based on the LMM for each mixed
pixel can be formulated as

min
x
‖x‖0 s.t. ‖y−Ax‖2 ≤ δ, x ≥ 0 (2)

where ‖x‖0 denotes the number of nonzero elements in x ∈ Rm, and δ is the error tolerance value
determined from the noise and model error. The nonconvexity of the L0 term induces an NP-hard
problem; however, it has been proven that a nonconvex optimization problem can be relaxed to a
convex one by replacing L0 with L1 [11,37]. Thus, the problem can be written as

min
x
‖x‖1 s.t. ‖y−Ax‖2 ≤ δ, x ≥ 0 (3)

Figure 1. Illustration of hyperspectral image and sparse unmixing for pixel (top) and image (bottom).

Applying this formula to the whole image, we estimate the abundance matrix X ∈ Rm×n for all
the pixels in the hyperspectral data Y using the respective Lagrangian function as

min
X

1
2‖AX− Y‖2

F + λ‖X‖1 s.t. X ≥ 0 (4)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and λ is the sparsity regularizer. This problem
can be solved through optimization by using alternating direction method of multipliers (ADMM).

2.2. Spatial Regularization

Despite taking into account sparsity, SUnSAL ignores spatial correlation. In SUnSAL-TV,
the relationship between each pixel vector and its adjacent pixel vectors is taken into account.
The regularizer is defined in [27] as

TV(X) = ∑
{i,j∈κ}

‖xi − xj‖1 (5)
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which is the anisotropic TV with κ denoting the set of horizontal and vertical neighbors in X.
Adding the TV regularizer to the problem in Equation (4) gives the optimization problem

min
X

1
2
‖AX− Y‖2

F + λ‖X‖1 + λTVTV(X) s.t. X ≥ 0. (6)

3. Proposed Algorithm

3.1. Local Abundance Correlation

Hyperspectral data Y ∈ Rl×n have linearity in their spectral [38] and spatial [30] domains.
Qu et al. [30] provided prior knowledge that the high spatial correlation of the hyperspectral data,
implies linearly dependent abundance vectors in the abundance matrix X ∈ Rm×n. The high correlation
also holds among the pixel members of a local region due to the spatial similarity. In a physical sense,
the pixels in such regions contain the same materials, either in the same or different fractions. Hence,
the abundance matrix of the region can be estimated by the low-rank property [30,34].

However, the success of sparse regression techniques is affected by the low sparsity as well as low
correlation between spectral signatures in the library [27]. The former is represented by the number
of endmembers existing in the scene, namely, the degree of sparsity [26]. The latter can be defined
by an indicator representing the difficulty to accurately solve a linear system equation i.e., mutual
coherence. The mutual coherence is defined as the largest cosine among endmembers in the library.
In the hyperspectral case, the degree of sparsity is often low, but the mutual coherence is close to one.
In fact, higher mutual coherence decreases the quality of the solution [28].

To overcome the high mutual coherence as well as consider the low-rank property of the
abundance, we exploit the high correlation of library’s spectral signatures by using our LA regularizer.
In our experiment with simulated data, we confirmed the idea by observing the linearity of the data
distribution in abundance domain by taking the local maximum singular value of the true abundance
matrix for each local block (a block refers to the three dimensions (3D), in which the third dimension
has a local coverage in the endmember direction). We found that there is one value that dominates
others (the ratio is close to one) in each local block. On the other hand, the value will be less dominant
as the region becomes the whole matrix (nonlocal). This implies that the linearity in abundance
domain is satisfied for the abundance matrix with the local point of view. Thus, we introduce our LA
regularizer using the nuclear norm for the local blocks. Instead of the image, our algorithm uses the
nuclear norm to the abundance matrix that constitutes the image. Another difference is that our local
block slides through all dimensions, i.e., the two spatial dimensions and the endmember direction in
the abundance dimension. Figure 2 illustrates the endmember direction. The block moves within the
abundance maps of the 3D abundance cube.

In addition, we guarantee high correlation by selecting endmembers from the United States
Geological Survey (USGS) library to form the spectral library A based on the SA. The USGS library
is a collection of the measured spectral signatures of hundreds of materials and used as references
for material identification in hyperspectral images. We can find the most similar signatures to each
endmember of the simulated data by calculating the SA, besides the mutual coherence. This parameter
represents the absolute value of spectral correlation [39]. The value ranges between 0–90 degrees.
The lower the SA value, the more similar the compared signature vectors are. In the simulated-data
experiment, we adjusted the SA as one of our parameter settings.
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Figure 2. Illustration of endmember (m) direction in abundance dimension. 3D local block moves
through pixels (n) as well as m direction of abundance maps.

3.2. Collaborative Sparsity Regularization

In practice, the abundance matrix X has only a few endmembers (rows) with nonzero entries.
Simultaneously, all the column entries of X share the same active set of endmembers. In other words,
X is sparse among the rows while dense among the columns. To implement this prior, L2,1 norm is used
instead of L1. It takes the sum of the L2 norm of the abundance entries to promote the collaborative
sparsity of the abundance matrix.

‖X‖2,1 =
m

∑
i=1
‖xi‖2 (7)

where xi represents the i-th row of X.

3.3. Local Abundance Regularizer

First, let X̂ ∈ Rnr×nc×m be the abundance data in 3D form, where m is the number of abundance
matrices of the endmembers, nc and nr are the numbers of columns and rows, respectively, that satisfy
n = nc× nr, where n is the number of pixels in each abundance matrix. Then, for each abundance matrix
X̂i ∈ Rnr×nc (i = 1, . . . , m), stacking the column on top of one another gives x̂i ∈ Rn, the vectorized
form of the matrix.

In local regions, let X̂b ∈ Rnb×nb×mb denote the b-th local block, where b = 1, . . . , B. The B is
the number of all local blocks in X̂. Then, for each abundance of each local block X̂j,b ∈ Rnb×nb

(j = 1, . . . , mb), we vectorize it into x̂j,b ∈ RN , where N is the number of pixels in each local abundance
matrix that satisfies N = nb × nb , and j is the index of local abundance matrices. Figure 3 illustrates
the procedure. With this in mind, we introduce the local abundance matrix w. r. t the b-th block

Hx̂b = (x̂1,b, . . . , x̂mb ,b) ∈ RN×mb . (8)

Finally, the function of our proposed LA regularization is defined as follows

‖X‖LA∗ =
B

∑
b=1
‖Hx̂b‖∗ (9)

where ‖ · ‖∗ denotes the nuclear norm, X 7→
rank(X)

∑
i=1

σi(X), with σi denotes the i-th singular value.
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Figure 3. Process of vectorizing and arranging local abundance matrix of hyperspectral image.

3.4. J-LASU

We formulate the new problem by adding the LA term with Equation (7) and the additional TV
term. Thus, the problem of the proposed J-LASU algorithm in a convex form becomes

min g(X) = 1
2‖AX− Y‖2

F + λ‖X‖2,1 + γ‖X‖TV + ρ‖X‖LA∗ s.t. X ≥ 0 (10)

where λ, γ, and ρ are the regularization parameter for the collaborative sparsity, TV, and LA term,
respectively. We use the anisotropic TV, which is used in SUnSAL-TV [27], defined as

‖X‖TV = ‖DX‖1 (11)

where D = [Dh; Dv], Dh : Rm×n → Rm×n and Dv : Rm×n → Rm×n, are horizontal and vertical
differential operators, respectively. The DhX computes the differences between the components of X
and the corresponding right-side adjacent pixels with cyclic boundary assumption, and the same way
for DvX, which corresponds to the differences with the up-side adjacent pixels [27].

We estimate the abundance matrix X by solving problem in Equation (10) by using ADMM.
The cost function in Equation (10) written in ADMM form becomes

f1(X) + f2(V) s.t. V = GX (12)

where
f1(X) =

1
2
‖AX− Y‖2

F (13)

f2(V) = λ‖V1‖2,1 + γ‖V2‖1 + ρ‖V3‖LA + ιR+(V4) (14)

V =


V1

V2

V3

V4

 , and G =


I
D
I
I

 . (15)

Here, the ιR+ term projects the solution onto the nonnegative orthant (ιR+(x) = 0 if x ≥ 0 and
ιR+(x) = +∞ otherwise), and I is an identity matrix with a proportional size. The constraint in
Equation (12) satisfies the relations

V1 = X; V2 = DX; V3 = X; V4 = X. (16)
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Using a positive constant µ and the Lagrange multipliers B/µ corresponding to the constraint
V = GX, the cost function is minimized using ADMM. Then, the steps for the proposed algorithm are
as follows

X(k+1) = arg min
X

f1(X) +
µ

2
‖GX−V(k) − B(k)‖2

F (17)

V(k+1) = arg min
V

f2(V) +
µ

2
‖GX(k) −V− B(k)‖2

2 (18)

B(k+1) = B(k) − (GX(k+1) −V(k+1)). (19)

To find the solution for X of the augmented Lagrangian formula, we calculate the solution of
Equation (17) by taking the partial derivative as follows:

X(k+1) = arg min
X

1
2‖AX− Y‖2

F +
µ
2 ‖GX−V(k) − B(k)‖2

F

=
(
ATA + µGTG

)−1
(

ATY + µGT(V(k) + B(k))
) (20)

The detailed steps for computing the values of variables V1, V2, V3, and V4 for each iteration are
written in general form of the proximal operator (General form of the proximal operator is as follows:
proxγh(x̄) = arg min

v∈RN
h(v) + 1

2γ‖v− x̄‖2
2 ) [40,41].

V(k+1)
1 = prox λ

µ ‖·‖2,1
(R1)

= arg min
V1

λ‖V1‖2,1 +
µ
2 ‖V1 −R1‖2

2

(21)

V(k+1)
2 = prox γ

µ ‖·‖1
(R2)

= arg min
V2

γ‖V2‖1 +
µ
2 ‖V2 −R2‖2

2

(22)

V(k+1)
3 = prox ρ

µ ‖·‖LA∗
(R3)

= arg min
V3

ρ‖V3‖LA∗ +
µ
2 ‖V3 −R3‖2

2

(23)

V(k+1)
4 = prox 1

µ (ιR+)
(R4)

= arg min
V4

ιR+(V4) +
µ
2 ‖V4 −R4‖2

2

(24)

where R1 = X(k) − B(k)
1 , R2 = DX(k) − B(k)

2 , R3 = X(k) − B(k)
3 , and R4 = X(k) − B(k)

4 , and B =

[B1; B2; B3; B4].
For V(k+1)

1 , since the L2,1 norm is not differentiable, the solution is obtained by the shrinkage for
the group lasso as follows:

v(k+1)
1(i) =

{
r1(i) − λ

µ

r1(i)
‖r1(i)‖2

if ‖r1(i)‖2 > λ
µ

0 otherwise
(25)

where v(k+1)
1(i) and r1(i) denote the i-row of V(k+1)

1 and R1, respectively. This operation is denoted as
group− lasso(·, τ), where τ is the threshold.
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The TV term in Equation (22) is solved by soft-thresholding on each element of V(k+1)
2 .

v(k+1)
2(i,j) =


r2(i,j) −

γ
µ if r2(i,j) >

γ
µ

r2(i,j) +
γ
µ if r2(i,j) < −

γ
µ

0 if − γ
µ ≤ r2(i,j) ≤

γ
µ

(26)

where v(k+1)
2(i,j) and r2(i,j) denote the (i, j)-element of V(k+1)

2 and R2, respectively. This operation is
denoted as so f t(·, τ), where τ is the threshold.

The solution of V(k+1)
3 in Equation (23) is acquired by constructing the LA matrices, applying

singular value shrinkage to each matrix, and reconstructing the output abundance matrix, which is
denoted as

V(k+1)
3 = shr(X(k) − B(k)

3 , ρ
µ ) (27)

where shr(·, τ) denotes the singular value shrinkage (y 7→ diag(max{SVD(y) − τ, 0})) of the LA
matrices Hx̂b , where the singular value decomposition SVD(·) produces a vector containing the
singular values in decreasing order and τ is the threshold.

Let v(k+1)
4(i,j) denotes the (i, j)-element of V(k+1)

4 , finally, the solution of V(k+1)
4 is obtained by

v(k+1)
4(i,j) = max(r4(i,j), 0) (28)

where r4(i,j) denotes the (i, j)-element of R4.
The whole procedure of ADMM is summarized in Algorithm 1.

Algorithm 1: ADMM in pseudocode for solving problem in Equation (10)

1 Initialization: set k = 0, V0 = 0, B0 = 0, choose µ > 0, λ, γ, ρ;
2 while the stopping criterion is not satisfied do

3 X(k+1) ←
(
ATA + µGTG

)−1
(

ATY + µGT(V(k) + B(k))
)

;

4 V(k+1)
1 ← group− lasso(X(k) − B(k)

1 , λ/µ) ;

5 V(k+1)
2 ← so f t(DX(k) − B(k)

2 , γ/µ) ;

6 V(k+1)
3 ← shr(X(k) − B(k)

3 , ρ/µ) ;

7 V(k+1)
4 ← max(X(k) − B(k)

4 , 0) ;

8 B(k+1)
1 ← B(k)

1 − X(k+1) + V(k+1)
1 ;

9 B(k+1)
2 ← B(k)

2 −DX(k+1) + V(k+1)
2 ;

10 B(k+1)
3 ← B(k)

3 − X(k+1) + V(k+1)
3 ;

11 B(k+1)
4 ← B(k)

4 − X(k+1) + V(k+1)
4 ;

12 Update iteration: k← k + 1 ;
13 end

4. Experiment and Analysis

We tested the proposed algorithm on several simulated data sets for three signal-to-noise ratio
(SNR) levels, i.e., 10, 20, and 30 dB, and two real data sets. We evaluated the results by conducting a
fair comparison with the CLSUnSAL [28] and SunSAL-TV [27]. State-of-the-art low-rank algorithm is
also compared, which is sparse and low-rank unmixing by using ADMM (ADSpLRU) [34].
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4.1. Simulated Data Sets

To simulate the condition of hyperspectral data with and without the presence of pure pixels,
we used two types of data distribution for data generation. Both use the same library generated
from 240 types of minerals selected randomly from the splib06 USGS library [42], which consists of
224 spectral bands ranging between 0.4–2.5 µm. The mutual coherence among the spectral signatures is
very close to one, but we set the SA to be larger than 4.4 to make the sparse regression problem easier.

The first data set, DS, is a representation of the data with pure pixels and adopted from that
of Iordache et al. [27] consisting of 224 bands for 75 × 75 pixels. The data generation follows the
LMM with the abundance sum-to-one constraint imposed on each pixel. Five spectral signatures are
randomly selected from the library as the endmembers and distributed spatially in the form of distinct
square regions. In some pixels, the endmembers stay pure and in others they are mixed with two
until there are five endmembers. In Figure 4, the red squares in each abundance map represent 100%
intensity which means the pure pixel regions of each endmember. The background consists of mixed
pixels with randomly fixed fractional abundance values of 0.1149, 0.0741, 0.2003, 0.2055, and 0.4051 for
the five endmembers.
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Figure 4. True abundance matrix of simulated data set 1 (DS). (a) Endmember 1; (b) Endmember 2;
(c) Endmember 3; (d) Endmember 4; (e) Endmember 5.

To demonstrate the proposed algorithm under the condition without the presence of pure pixels,
the distribution with a distinct spatial pattern and mixture was selected. We used the fractal database
(FR) [39] consisting of five data sets, namely FR1, FR2, FR3, FR4, and FR5. Each is composed of
100 × 100 pixels with 224 spectral bands for each pixel and contains no completely pure pixels
that are close to the ground-truth characteristic in which completely pure pixels are rarely found.
The distribution is generated such that pixels near the edges of regions are more highly mixed than
those in the center of the regions. These center pixels have a purity index between 0.95–0.99, directly
proportional to the broadness of the regions. In this experiment, we set the number of endmembers
to 9. Figure 5 shows FR1, FR2, FR3, FR4, and FR5 represented in pseudocolor.

(a) (b) (c) (d) (e)

Figure 5. Fractal data sets represented in pseudocolor. (a) FR1; (b) FR2; (c) FR3; (d) FR4; (e) FR5.

4.2. Real Data Sets

For the real-data experiment, we used two real data from different sensors. The first hyperspectral
scene is the widely used data set of Cuprite mining district, Nevada in 1997 [43]. We used a subscene
with the size of 150× 130 pixels whose area is shown in Figure 6a. The data are composed of 224 spectral
bands with 3.7 m spatial resolution from the AVIRIS sensor. Prior to analysis, several bands were
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removed due to the low SNR; thus, remaining 188 bands. In this experiment, we used the USGS library
of 498 spectral signatures as the standard spectral library for the data, with the corresponding bands
removed. Figure 6b shows the USGS mineral distribution map of the Cuprite area [44]. From the
figure, the area of interest contains at least three types of minerals: alunite, chalcedony, and kaolinite.
The mineral map was produced using Tricorder 3.3 software in 1995, while the AVIRIS Cuprite data
were collected in 1997. Hence, in our experiment, the mineral map was used only for visual qualitative
evaluation, compared with the abundance maps of different sparse unmixing algorithms.

(a) (b)

Figure 6. (a) Cuprite data generated in pseudocolor. Black rectangle shows area of our experiment;
(b) USGS mineral distribution map of Cuprite mining district in Nevada [44].

The second hyperspectral scene is Urban data captured by the HYDICE sensor over an area
located at Copperas Cove near Fort Hood, TX, U.S., in October 1995. It consists of 307× 307 pixels with
2 m of the pixel resolution. The wavelengths range from 0.4 to 2.5 µm divided into 210 spectral bands.
After some bands with low SNRs due to dense water vapor and atmospheric effects are discarded,
it remains 162 bands. We used a subscene with the size of 100 × 100 pixels. Figure 7a shows the
subscene used in the experiment. The ground truth of the Urban data set is not available, however,
we used the reference abundance maps obtained from [45]. The maps are achieved via the method
provided in [46–48] and consist of four endmembers, i.e., asphalt, grass, tree, and roof. Figure 7b shows
the spectral signatures of the four endmembers.
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(a) (b)

Figure 7. (a) A subscene of Urban data used in our experiment, generated in pseudocolor; (b) Spectral
signatures of the endmembers[48–50], x-axis and y-axis represent the band number and reflectance
unit (0–1), respectively.

4.3. Parameters Setting and Evaluation Metrics

In the simulated-data experiment, to build spectral library A, the spectral signatures in the USGS
spectral library were selected and sorted such that the SAs between the spectral signatures were not less
than 4.4 degrees in increasing order. The parameter settings of J-LASU are for the collaborative sparsity
(λ), TV (γ), and LA nuclear norm (ρ) regularizer. For the compared algorithms, λSP is the sparsity
term for CLSUnSAL, SUnSAL-TV, and ADSpLRU [34]. For SUnSAL-TV, the TV term is controlled
by λTV . The low-rank regularizer parameter is denoted as λLR for ADSpLRU. These parameters are
adjusted for every data set under different SNR levels. However, we used the same parameter settings
for the five fractal data sets since the characteristics of the scenes tend to be similar. Table 1 summarizes
these settings. The values of λLR were the optimal ones after the experiment for some recommended
values. For the LA regularization, the block size is another parameter to be set to control the coverage
of adjacent pixels in the spatial and the endmember directions. After several trials in this experiment,
the optimum size was found to be [5 5 5] with no overlap.

Table 1. Parameter Settings.

Data SNR CLSUnSAL SUnSAL-TV ADSpLRU J-LASU
λSP λSP λTV λSP λLR λ γ ρ

DS
10 dB 1 × 101 1 × 10−1 1 × 10−1 1 × 101 1 × 100 5 × 10−1 5 × 10−1 5 × 10−1

20 dB 1 × 100 5 × 10−4 5 × 10−2 1 × 101 1 × 100 2.5 × 10−1 5 × 10−2 3 × 10−1

30 dB 1 × 100 5 × 10−4 1 × 10−2 1 × 100 1 × 10−1 5 × 10−2 1 × 10−2 8 × 10−2

FR
10 dB 1 × 101 5 × 10−2 1 × 10−1 1 × 101 5 × 100 5 × 10−1 1 × 10−1 2.5 × 10−1

20 dB 1 × 100 5 × 10−3 5 × 10−2 1 × 101 3 × 100 2.5 × 10−1 1 × 10−2 1 × 10−1

30 dB 1 × 100 5 × 10−3 2.5 × 10−2 1 × 101 1 × 10−2 5 × 10−2 5 × 10−3 5 × 10−2

Cuprite - 5 × 10−3 5 × 10−4 1 × 10−2 1 × 101 1 × 100 5 × 10−2 5 × 10−4 1 × 10−3

Urban - 1 × 10−4 1 × 10−4 1 × 10−4 1 × 10−2 1 × 10−2 1 × 10−4 1 × 10−4 1 × 10−4

We evaluated the performance of the algorithms using root mean square error (RMSE) [39,51]
and signal-to-reconstruction error (SRE) [26]. The RMSE measures the error between the original
and reconstructed abundance matrices. The lower the RMSE, the more accurate the estimation is.
The RMSE formula for the i-th endmember is defined as

RMSEi =

√
1
n

n

∑
h=1

(Xi,h − X̄i,h)2, (29)

where n, X and X̄ represent the number of pixels, true abundance matrices, and estimated abundance
matrices, respectively. Then, we compute the mean value of all endmembers’ RMSEs.



Remote Sens. 2017, 9, 1224 13 of 22

The SRE represents the ratio between the reconstructed abundance matrix and error, and is
defined as

SRE = 10 log10

(
‖X‖2

F/‖X− X̄‖F
2

)
. (30)

For the simulated data, the original abundance matrix was generated for each data set. We
compared the visual appearance among the maps of the estimated abundance matrix in addition to
RMSE and SRE comparison. As for the first real data set, Cuprite, the comparison was among the
estimated abundance maps of the sparse unmixing algorithms and the mineral map of each expected
endmembers. For the second real data set, Urban, RMSE and SRE of each method are calculated with
the ground truth abundance maps as the reference value.

4.4. Simulated-Data Experiment

Tables 2 and 3 show the RMSE and SRE values, respectively, of estimated abundances from the
compared algorithms. The proposed J-LASU algorithm achieved better RMSE for all the simulated
data. For the same level of SNR, J-LASU performed better than CLSUnSAL and SUnSAL-TV as well
as ADSpLRU. The improvement also can be clearly seen in the DS data set from Figure 8. J-LASU
preserved the square regions better than the others. Compared with the TV results, difference can
be recognized in the small square regions in which J-LASU reconstructed the squares better. For
the FR data sets, visually, the ADSpLRU abundance maps showed the most similar intensity with
the corresponding true abundance maps. However, J-LASU is superior in preserving the gradation
of intensity from edge to center of an abundance region, which is the drawback of the ADSpLRU.
Compared with SUnSAL-TV, J-LASU was more accurate in determining whether an abundance is an
outlier or just a low-intensity edge abundance. In addition, SUnSAL-TV produced stronger smoothing
effects than J-LASU. In this case, J-LASU results are more similar with the true abundance map, which
can easily be compared in the FR2 data set.

Table 2. RMSE Comparison Result.

Data SNR CLSUnSAL SUnSAL-TV ADSpLRU J-LASU

DS
10 0.0084 0.0078 0.0097 0.0035
20 0.0102 0.0046 0.0053 0.0013
30 0.0039 0.0023 0.0038 0.0008

FR1
10 0.0130 0.0119 0.0140 0.0103
20 0.0129 0.0087 0.0107 0.0075
30 0.0062 0.0068 0.0073 0.0050

FR2
10 0.0140 0.0119 0.0149 0.0104
20 0.0138 0.0083 0.0115 0.0076
30 0.0062 0.0061 0.0066 0.0052

FR3
10 0.0136 0.0118 0.0130 0.0099
20 0.0128 0.0077 0.0107 0.0069
30 0.0056 0.0058 0.0057 0.0044

FR4
10 0.0123 0.0120 0.0135 0.0103
20 0.0126 0.0089 0.0090 0.0074
30 0.0057 0.0075 0.0058 0.0049

FR5
10 0.0118 0.0112 0.0139 0.0092
20 0.0119 0.0080 0.0106 0.0065
30 0.0049 0.0062 0.0061 0.0043
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Figure 8. Estimated abundance maps for simulated data sets DS and FR1–5 for SNR 30 dB (row a–f,
respectively) using CLSUnSAL, SUnSAL-TV, ADSpLRU, and J-LASU (column 1–4, respectively)
compared to the true abundance (column 5).
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Table 3. SRE Comparison Result.

Data SNR CLSUnSAL SUnSAL-TV ADSpLRU J-LASU

DS
10 2.5467 5.1021 0.3110 7.2571
20 2.1617 6.3470 4.5515 15.2631
30 6.3299 10.5770 6.1799 20.0581

FR1
10 0.6435 2.018 0.851 2.3625
20 1.3116 3.5071 2.1257 4.2158
30 4.2204 4.8625 4.0937 6.0185

FR2
10 0.3457 2.2395 0.2493 2.4491
20 1.1915 3.8690 1.0974 4.3822
30 4.4628 5.604 4.5908 6.3273

FR3
10 1.6928 4.0113 2.1009 4.3074
20 3.1706 5.8611 2.3815 6.5586
30 6.8354 6.9782 7.0605 8.7567

FR4
10 0.3417 1.3213 0.2092 1.6307
20 1.0942 2.5735 0.3275 3.5269
30 4.1734 3.263 3.5545 5.4870

FR5
10 1.005 2.4054 0.2591 3.0209
20 1.5711 4.1026 1.228 5.4771
30 6.3324 5.6279 6.0702 7.7098

4.5. Real-Data Experiment

The visual comparisons among the five sparse unmixing algorithms and the mineral maps for
the Cuprite data can be observed in Figure 9. The images in the first column show the comparison
for alunite abundance maps. Among the results of the compared algorithms, The proposed J-LASU
produced the map that was the most similar to the mineral map, with less outliers found in the
lower-left side of the map. The same superiority was also found among the chalcedony and kaolinite
abundance maps in the second and third columns, respectively. Compared to SUnSAL-TV, J-LASU
had less outliers or lower intensity of outliers, most of which were found on the left-side region of
the maps.

It should be noted that the estimated abundance maps of any sparse unmixing algorithm are
not exactly the same as the mineral maps generated from the Tricorder software in terms of intensity.
The software produced the pixel-level classification maps, while the sparse unmixing algorithms
executed subpixel-level classification. However, the comparison of outliers in this paper refers to the
abundances that no longer exist in the mineral map. Overall, J-LASU estimated abundance maps had
smooth gradation of intensity from the edge of a detected region to the center, and removed tiny regions
that were found in the other algorithms’ map, which seems to be the outliers in J-LASU algorithm.

For the Urban data, Figure 10 shows the ground truth and abundance maps of the four
endmembers estimated by the compared algorithms. J-LASU algorithm resulted in the most similar
maps to the ground truth, especially for the asphalt abundance map which is easier to be compared
with those of the other algorithms. The quantitative comparisons also show that J-LASU yielded
the best performance, with the highest SRE and lowest RMSE, as shown in Table 4. Compare to the
simulated data, the Urban data experienced relatively high RMSEs for all compared algorithms. This is
due to the fact that the ground truth abudance maps used for the Urban data are not achieved from a
ground measurement, but from a method in which error possibly exists in term of method accuration.



Remote Sens. 2017, 9, 1224 16 of 22

(a1) (a2) (a3)

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(b1) (b2) (b3)

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(c1) (c2) (c3)

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(d1) (d2) (d3)

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

20 40 60 80 100 120

20

40

60

80

100

120

140

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(e1) (e2) (e3)

Figure 9. Estimated abundance maps of Cuprite data subscene for endmember alunite, chalcedony, and
kaolinite (column 1–3) using CLSUnSAL, SUnSAL-TV, ADSpLRU and J-LASU (row b–e). First row (a)
shows classification maps of endmembers from USGS Tetracorder.
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Figure 10. Estimated abundance maps of Urban data subscene for endmember asphalt, grass, tree, and
roof (column 1–4) using CLSUnSAL, SUnSAL-TV, ADSpLRU and J-LASU (row b–e). First row (a)
shows the ground truth abundance maps.
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Table 4. RMSE and SRE Comparison Result for Urban data.

Algorithms CLSUnSAL SUnSAL-TV ADSpLRU J-LASU

RMSE 0.2135 0.2003 0.2077 0.1948
SRE 4.6831 5.4738 5.0805 5.8719

5. Discussion

5.1. Sensitivity Test

We evaluated the performance of the proposed J-LASU algorithm when λ, γ, and ρ were not
set to the optimal values. In the experiment, when a parameter was adjusted from 0 to 10, the other
parameters were set to their optimal values. When the parameter increases from 0 to the optimal
value, the RMSEs decrease and the SREs increase gradually. When it reaches a higher value, the results
worsen. Hence, we can conclude that each parameter influences the performance of J-LASU.

To clearly evaluate the contribution of the LA regularizer, we conducted an experiment of our
optimization problem with ρ = 0, which means no contribution of the LA regularizer. Figure 11
represent the RMSE of this condition at the three levels of SNR compared to those of J-LASU, where
ρ > 0. For each simulated data set, other parameters were set to the optimum values. For all data,
it was observed that when ρ = 0, the RMSE was higher than the condition when the LA regularizer
was used. In other words, adding our LA regularizer with an optimal regularization parameter will
contribute improvement in RMSE.

We found that improvement in visual quality corresponds to the additional low-rank
regularization. Figure 12 shows visual improvement due to the abundance regularizer. The abundance
maps in the figure belong to endmember 5 of the DS data set and endmember 7 of the FR 2 data set.
For the FR abundance maps, one can see that after applying our LA regularizer with an optimal ρ,
the active abundances have higher intensities. The active abundances in the left-edge of the map and
around the speckles clearly appear, although in lower intensities than in the true abundance map.
For the DS data set, when ρ is set to the optimal value, the small squares are preserved better than
when ρ = 0.

Figure 11. Effect of the LA regularizer represented by improvement in RMSE when ρ > 0.



Remote Sens. 2017, 9, 1224 19 of 22

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

10 20 30 40 50 60 70

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a1) (a2) (a3)

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b1) (b2) (b3)

Figure 12. Effect of LA regularizer represented by improvement in RMSE when ρ > 0 for (a) DS data
set and (b) FR 2 data set. (a1) and (b1) Before, (a2) and (b2) after, (a3) and (b3) true abundance.

5.2. Effect of Block Size

The coverage of the local region affects the optimization results. In this region, the highly
correlated abundance of the endmembers is taken into account by the local abundance nuclear norm.
We conducted experiments to find the optimum size of the sliding block. We also observed the effect
of the block size. Figure 13 shows the RMSE and SRE when the block size was adjusted in the DS data
set. From the curves, we could determine that the radius of spatial similarity in the abundance map
affects the optimum size of the sliding block. The distribution of spatial similarity in the DS data set,
as shown in Figure 8, has a distinct pattern in which every 5 × 5 pixel has the same abundance value,
giving the optimum block size in turn. However, the correlation does not hold for the data in which
the spatial similarity is not represented in a square region, e.g., the FR and Cuprite data sets. In this
circumstance, some trials were conducted prior to the experiment. After the trials, we found that the
optimum size is 5 pixels. Hence, we selected [5 5 5] as the optimum block size for all data.

Figure 13. RMSE and SRE in relation to block size.
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5.3. Computational Complexity

The running-time comparison among the algorithms is summarized in Table 5. The experiment
was conducted for the DS simulated data, which has 75 × 75 pixels, 224 bands, and 240 spectral
signatures in the library. The algorithms ran on a desktop computer with 3.50-GHz Intel
Core i5 processor and 8 GB of RAM. From the table, J-LASU was the slowest due to its high
computational complexity.

For the complexity analysis, recall that n, m, N, and mb are the number of pixels, spectral
signatures in the library, pixels in each LA band, and local endmembers, respectively. For each iteration
of J-LASU, the computation of X and the SVD step in the computation of V3 incur the most cost.
The complexity of X computation is due to the use of conjugate gradient solver, which costs O(m)

per iteration. The conjugate gradient is a popular iterative technique for solving the system of linear
equation Ax = b, where the matrix A must be symmetric possitive definite (SPD), large and sparse.
The SVD step costs O(m2

b N); however, this step is repeated as many times as the number of blocks (B)
due to the sliding of the local block. Since B is calculated by mn/mbN, the total cost of V3 is O(mbmn),
which is more complex than the computation of X. Hence, the overall complexity costs O(mbmn).

Table 5. Comparison of running times for DS-data experiment.

Algorithms CLSUnSAL SUnSAL-TV ADSpLRU J-LASU

Time/iteration (s) 0.92 0.54 0.24 2.77

6. Conclusions

We proposed the local abundance regularizer algorithm for the sparse unmixing problem
to improve the accuracy of abundance estimation. By imposing the term to state-of-the-art
unmixing algorithms, our algorithm incorporates both spatial and abundance correlation by using
the low-rankness of the abundance. We implemented the nuclear norm to the local abundance
matrix, which defines the local region not only in the spatial, but also in the abundance dimension.
The algorithm was run at certain SNR levels for several simulated data sets, which represent
the conditions with and without pure pixels, and for two real data sets. The experimental results
indicate that our proposed algorithm performs better than SUnSAL-TV and yields better results than
the other state-of-the-art algorithms. Relevant future research will be concerned with exploitation of
the low-rankness of abundance for overlapping local regions.
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