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Abstract: This study explores the estimation of land surface temperature (LST) for the globe from
Landsat 5, 7 and 8 thermal infrared sensors, using different surface emissivity sources. A single
channel algorithm is used for consistency among the estimated LST products, whereas the option
of using emissivity from different sources provides flexibility for the algorithm’s implementation to
any area of interest. The Google Earth Engine (GEE), an advanced earth science data and analysis
platform, allows the estimation of LST products for the globe, covering the time period from 1984 to
present. To evaluate the method, the estimated LST products were compared against two reference
datasets: (a) LST products derived from ASTER (Advanced Spaceborne Thermal Emission and
Reflection Radiometer), as higher-level products based on the temperature-emissivity separation
approach; (b) Landsat LST data that have been independently produced, using different approaches.
An overall RMSE (root mean square error) of 1.52 ◦C was observed and it was confirmed that the
accuracy of the LST product is dependent on the emissivity; different emissivity sources provided
different LST accuracies, depending on the surface cover. The LST products, for the full Landsat 5,
7 and 8 archives, are estimated “on-the-fly” and are available on-line via a web application.

Keywords: land surface temperature; Landsat; global study; web application; MODIS emissivity;
ASTER emissivity; NDVI

1. Introduction

Land surface temperature (LST) is an important parameter for environmental studies and enables
the monitoring of landscape processes and responses [1], such as the surface energy and water
balance [2–7]. In order to better observe the changes, in climate for example, there is a need for
frequent data acquisition to obtain consistent LST time series [8]. Especially at the regional [9] and
global scales, the only way to study the surface temperature is with satellite monitoring [10].

The Landsat 5, 7 and 8 satellites carry thermal infrared radiometers and therefore their data are
suitable for LST estimation. During the last decades, there is an increasing demand for satellite-derived
surface temperature products, to be used in various studies and applications. Landsat-derived LST is
widely used for urban temperature studies and particularly for the study of the urban heat island (UHI)
phenomenon [11–13]. Recently, LST data from Landsat were used for urban energy flux estimation [3].
Landsat-derived LST is also used for monitoring the forested areas, such as the correlation of LST with
tree loss or the detection of changes in tropical forest cover [14,15]. The land cover/use changes affect
LST as well, as has been demonstrated in different studies, using different types of satellite data [16].

A large number of studies present different algorithms and approaches for LST retrieval from
Landsat [17–20]. Some of these algorithms have also been implemented in software tools. For example,
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a plugin for the open-source software QGIS [21] calculates LST from Landsat 5, 7 and 8 imagery [22].
Similar tools have been developed for ERDAS [23] software, for processing Landsat 8 thermal
acquisitions [24]. However, such tools require software installation and, most importantly, raw
satellite data downloads, which can be extremely time-consuming. It should be noted that the U.S.
(United States) Geological Survey (USGS) has announced the release of LST products from the full
Landsat archive, but these products are not yet available [25].

The objective of this work is to describe a method implemented in a web application, specifically
developed to provide fast and easy access to LST for the globe from the Landsat archive. The approach
uses a single channel (SC) algorithm [19,20] to analyse Landsat 5, 7 and 8 thermal infrared observations.
It is noted that SC approaches are not as efficient as split-window approaches [20,26], but are necessary
for satellites acquiring with only one thermal band, like Landsat 5 and 7. Three different sources of
emissivity were considered to allow more accurate LST estimates for different regions and conditions:
a global emissivity map derived from ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer) data, that refers to the period 2000–2008 and is at 100 m × 100 m spatial resolution [27,28];
the MODIS (Moderate Resolution Imaging Spectroradiometer) daily LST/emissivity product at 1 km× 1 km
spatial resolution [29]; and emissivity based on the vegetation fraction estimated from NDVI (Normalized
Difference Vegetation Index) [30].

The number of studies that use LST is growing, and satellites may provide accurate and up-to-date
LST products. Providing easy access to accurate, global and up-to-date LST data is expected to benefit
a large number of studies. In the era of information technology, this ever-growing demand for LST data
opens the path for new unexplored ways of distributing big data information through web applications.
Using online platforms, like the Google Earth Engine (GEE) [31], with access to a huge catalogue of
satellite imagery and planetary-scale analysis capabilities, it is now possible to build web applications
that do not require any pre-processing or installation of software. An application of this type, capable
of “on-the-fly” LST estimation from Landsat thermal infrared observations, for any given geographical
area and date range, has been developed and presented in this study. The LST estimation process is
performed in the background on the Google cloud computing servers, with direct access to the GEE
satellite data catalogue. Therefore, the application needs only a few seconds to produce Landsat LST
with no need for any computational resources from the user.

The following section outlines the theoretical basis of the SC methodology, describes the data
used for the LST estimation, including the different emissivity sources, describes the algorithm
implementation in GEE and the products accuracy assessment approach. In the following, the effect
of using different parameterizations of the SC algorithms are discussed and a quantitative analysis
is presented, along with the accuracy assessment results. Finally, the web application interface is
presented and followed by the conclusion of this study.

2. Materials and Methods

2.1. LST Algorithm

SC is a commonly-used approach to estimate LST from the Landsat thermal infrared
observations [19,20,32,33]. Among Landsat 5, 7 and 8, only Landsat 8 carries two thermal bands [34],
therefore the SC approach is used in this study for consistency. Table 1 presents the wavelength range
and the spatial resolution of each Landsat thermal band, along with the time period of operation.
The SC algorithm needs surface emissivity information from external sources.
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Table 1. Landsat 5, 7 and 8 thermal bands: wavelengths, spatial resolution and time period covered.

Thermal Band(s) # Wavelength (µm) Spatial Resolution (m) Time Period

Landsat 5 Band 6 10.40–12.50 120 (30) 1 March 1984–May 2012
Landsat 7 Band 6 10.40–12.50 60 (30) 1 April 1999–Present

Landsat 8 Band 10
Band 11

10.60–11.19
11.50–12.51 100 (30) 1 April 2013–Present

1 Thermal band data are acquired at lower resolution and resampled with cubic convolution at a higher spatial
resolution before distribution as products by USGS [35,36].

Using an SC approach, the LST (TS) can be calculated from the radiance-at-the-sensor in a single
band using the radiative transfer equation in the following form:

B(LST) =
Lsen − Lup − τ · (1− ε)· Ldown

π

τ · ε (1)

where B is the Planck function, Lsen is the radiance-at-the-sensor, Lup is the thermal path radiance,
Ldown is the downwelling irradiance, ε is the surface emissivity and τ is the atmospheric transmissivity.

In Equation (1) the Lup, Ldown and τ need to be known for the specific area for which
we calculate the LST. These variables make the process of establishing a single global LST
algorithm extremely difficult, since they are prone to changes, and bound only to the area under
study [19,20]. They are also heavily dependent on the total water vapour in an atmospheric
column (precipitable water (PW)), which is also easier to determine with the use of satellite data
as [37]. Jimenez-Munoz et al. [19,20] developed a methodology that uses coefficient tables (C) through
simulations with many different atmospheric profile inputs, capable of parameterizing the local
transmissivity, path radiance and downwelling irradiance, to lead to one equation that is more
convenient to use on a global scale LST calculation. In this study, LST is estimated using the approach
proposed by Jimenez-Munoz et al. [19,20]:

LST = γ · [ 1/ε · (ψ1 · Lsen + ψ2) + ψ3] + δ (2)

where:

γ =

{
c2· Lsen

Tb2 ·
[
(λ 4 · Lsen)/c1 + 1/λ

]}−1

(3)

δ = − γ · Lsen + Tb (4)

ψ = C ·

 PW2

PW
1

⇒
 ψ1

ψ2

ψ3

 =

 c11 c12 c13

c12 c22 c23

c31 c32 c33

 ·
 PW2

PW
1

 (5)

where Planck’s constant valuec1 is 1.19104 × 108 W µm4 m−2 sr−1 and c2 is 14,387.7 µm K; λ is the
central wavelength of the thermal band of the Landsat sensor in question; Lsen in W sr−1 m−2 µm−1;
Tb is the brightness temperature in Kelvin; C is the coefficients table, with cij derived by simulations
using different atmospheric profiles [19,20]; and ψx is the coefficients weighted with PW. The various
datasets that are used in this study to estimate LST from Equation (2) are described in detail below.

2.2. Data Used for LST Estimation

The main source of data in this study concerns Landsat 5, 7 and 8 acquisitions, provided by
the USGS and included in the GEE data catalogue. GEE provides easy and instant access to satellite
products and the computing resources to process them directly on the platform, with no need for
download. Data from the different sources and satellites are organized in image collections that
make their combination and simultaneous processing feasible. Table 2 presents the data used for LST
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estimation along with their GEE data catalogue identifier. Short explanations of each product are
given below.

Table 2. List of products in the GEE catalogue used to estimate the Landsat LST.

Data GEE Product Identifier

Landsat 5, Radiance at sensor from band 6 LANDSAT/LT5_L1T
Landsat 5, Brightness temperature from band 6 LANDSAT/LT5_L1T_TOA_FMASK

Landsat 7, Radiance at sensor from band 6 LANDSAT/LE7_L1T
Landsat 7, Brightness temperature from band 6 LANDSAT/LE7_L1T_TOA_FMASK

Landsat 8, Radiance at sensor from band 10 LANDSAT/LC8_L1T
Landsat 8, Brightness temperature from band 10 LANDSAT/LC8_L1T_TOA_FMASK

MODIS Daily average emissivity from bands 31 and 32 MODIS/MOD11A1

NCEP/NCAR 6-hour temporal resolution of the total column water
vapour from a single band NCEP_RE/surface_wv

ASTER 1 Global image with emissivity from 2000–2008 clear-sky
pixels from band 14 NASA/ASTER_GED/AG100_003

Landsat 5, Surface Reflectance product LANDSAT/LT5_SR
Landsat 7, Surface Reflectance product LEDAPS/LE7_L1T_SR
Landsat 8, Surface Reflectance Product LANDSAT/LC8_SR

Fmask, from extra band in GEE’s Brightness temperature products
LANDSAT/LT5_L1T_TOA_FMASK
LANDSAT/LE7_L1T_TOA_FMASK
LANDSAT/LC8_L1T_TOA_FMASK

2.2.1. Landsat Thermal Radiance-at-Sensor

The level 1T (precision Ortho-corrected) products for each Landsat, provided by the USGS,
are orthorectified images of the thermal infrared radiance-at-the-sensor. These products are available
in the form of an image collection for each Landsat in the GEE catalogue. The images in the different
collections contain digital number values, which are converted to radiance-at-sensor via a GEE function
using scaling factors. Although the Landsat thermal bands are of different spatial resolutions (Table 1),
there is consistency among different Landsat sensors, since all the products are resampled by the USGS
to 30 m × 30 m, using a cubic convolution resampling method [35,36].

2.2.2. Brightness Temperature and Cloud Mask

Although the brightness temperature can be easily estimated by directly inverting the Planck
function, the GEE catalogue includes an image collection of Landsat top-of-the-atmosphere (TOA)
brightness temperature. The Landsat brightness temperature product in the GEE catalogue contains
cloud cover information derived by the Fmask approach [38,39]. Fmask is a method for detecting
among others, clouds, cloud shadows and water surfaces in Landsat imagery. The brightness
temperature and information on the clouds, cloud shadows and water surfaces was used in this
study from these image collections.

2.2.3. Landsat Surface Reflectance

The Landsat Surface Reflectance is a higher-level product of surface reflectance information for
six bands (0.25–2.35 µm) at 30 m × 30 m spatial resolution, generated by LEDAPS (Landsat Ecosystem
Disturbance Adaptive Processing System) and distributed by the USGS [40]. The Landsat surface
reflectance is available through the GEE catalogue, in the form of image collections. The red and
near-infrared bands are used for the calculation of the NDVI, which is needed in order to estimate the
NDVI-based emissivity in the present study.
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2.2.4. Emissivity

Emissivity is a critical variable for the LST estimation, since a small uncertainty in the emissivity
(1%) can lead to large errors in the LST (up to 1 K) depending on the setting of the sensor,
the climatological conditions and geographical setting of the area [41,42]. In this study, three different
sources of emissivity are used: ASTER and MODIS emissivity that are available in the GEE catalogue
and NDVI-based emissivity estimated from Landsat red and near-infrared data. The reason for using
a variety of emissivity sources is to test their strengths and weaknesses, by comparing their impact on
the LST retrieval for different land cover types, corresponding to different landscapes and ecosystems.
Table 3 summarizes the different emissivity sources used in this study.

Table 3. Emissivity sources presented with their corresponding band number, band wavelength and
temporal resolution.

Emissivity Source Band(s) # Wavelength (µm) Temporal Resolution Spatial
Resolution (m)

ASTER

10
11
12
13
14

8.125–8.825
8.475–8.825
8.925–9.275
10.25–10.95
10.95–11.65

1 static image with
average pixel values from

2000–2008
90

MODIS 31
32

10.78–11.28
11.77–12.27 Daily, 2000–present 1000

NDVI based
Landsat 5

3 1

4 1
0.63–0.69
0.76–0.90

About every 16 days,
1984–2012 30

NDVI based
Landsat 7

3 1

4 1
0.63–0.69
0.77–0.90

About every 16 days,
1999–present 30

NDVI based
Landsat 8

4 1

5 1
0.636–0.673
0.851–0.879

About every 16 days,
2013–2017 30

1 These are the red and near-infrared bands from which the NDVI is calculated and then the NDVI-based
emissivity. Not to be confused with the MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER
(Advanced Spaceborne Thermal Emission and Reflection Radiometer) bands in this table, which directly provide
the emissivity values.

The MODIS/Terra Land Surface Temperature and Emissivity products (MOD11A1) provide
per-pixel temperature and emissivity values in a sequence of swath-based to grid-based global products.
This is a tile-based and gridded level three product produced daily at 1 km × 1 km spatial resolution.
The surface emissivities in bands 31 and 32 are estimated from land cover types [43,44]. The average
emissivity value of bands 31 and 32 is used in this study. Nearest neighbour resampling is used to
match the Landsat spatial resolution.

The ASTER Global Emissivity Database (ASTER-GED) was developed by JPL (Jet Propulsion
Laboratory). This product is derived from clear-sky pixels for available ASTER data between 2000 and
2008, covering the globe. It has a (nominal) spatial resolution of 100 m × 100 m and includes,
among others, the mean emissivity and standard deviation for all five ASTER thermal infrared bands
separately from all the clear pixels during the 2000–2008 period. The emissivity value of band 14
(10.95–11.65 µm) is used in this study. Nearest neighbour resampling is used to match the Landsat
spatial resolution.

NDVI-based emissivity is estimated from the Landsat visible and near-infrared bands and typical
emissivity values, following the approach described in [30]. The fraction of vegetation cover (FVC) [30]
is estimated using Equation (6), by assuming the NDVI threshold for non-vegetated (NDVInonveg) and
vegetated (NDVIveg) surfaces to be 0.18 and 0.85, respectively [19]. Finally, the emissivity is estimated
using Equation (7), assuming a reference emissivity for non-vegetated (εnonveg) and vegetated surfaces
(εveg) to be 0.97 and 0.99, respectively [19].
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FVC =

[
NDVI − NDVInonveg

NDVIveg − NDVInonveg

]2
(6)

ε = εnonveg · (1 − FVC) + εveg · FVC (7)

The NDVI-based emissivity product is of 30 m × 30 m spatial resolution, matching exactly the
Landsat thermal data.

2.2.5. Atmospheric PW Content

Information on PW is necessary for the atmospheric correction of thermal observations.
The atmospheric correction is indirectly performed in Equation (2). The NCEP/NCAR (National
Centers for Environmental Prediction/National Centre for Atmospheric Research) reanalysis project
data have among others, PW values of six-hour temporal resolution (00:00, 06:00, 12:00 and 18:00 UTC)
and 2.5-degree spatial resolution [45]. The GEE product comes as an image collection of PW. In order
to align the NCEP/NCAR reanalysis PW product with the Landsat imagery in this study, a time
adjustment was necessary in order to choose for each day the PW product that is representative for the
Landsat acquisition time. This is achieved through the timestamps in the metadata of every image
and by estimating the average PW between the two PW values, which are close in time. It is worth
noting that the atmospheric PW content can also be estimated with the use of satellite data [37,46].
The MODIS PW product for example could be used instead of the NCEP/NCAR reanalysis, but this
product is not yet available in the GEE catalogue.

2.2.6. Coefficient Tables for Atmospheric Parameterization

Different coefficient tables, C in Equation (5), are obtained through simulations with many
different atmospheric sounding inputs [19]. These are created with atmospheric profiles for different
locations all over the world. For Landsat 5 and 7, five coefficient tables C are available, created using
five different databases of atmospheric soundings and MODTRAN code [19]: a custom database named
STD (six standard) constructed with data from six standard atmospheric profiles (tropical, midlatitude
summer, midlatitude winter, subartic summer, subartic winter and U.S. Standard); three databases,
TIGR1, TIGR2, TIGR3 (thermodynamic initial guess retrieval), with TIGR1 being a reduced version of
the original TIGR1, TIGR2 being an extension of the original TIGR1 and TIGR3 an extension of TIGR2;
and SAFREE, a combination of TIGR1, TIGR2 and radiosondes from Meteo France and the Norwegian
Meteorological services. For Landsat 8 only one coefficient table was available [20], corresponding to
the GAPRI (Global Atmospheric Profiles from Reanalysis Information) database by the ERA-interim
(European Reanalysis) reanalysis data [47].

2.3. LST Algorithm Implementation in the GEE

The algorithm described in Section 2.1 is implemented in the GEE using the data described in
Section 2.2. GEE has two APIs (application programming interfaces), a JavaScript and a Python
interface. Both provide libraries of functions for accessing Google’s computing and storage infrastructure.
The JavaScript API is used through ‘playground’, which is the web-based IDE (integrated development
environment) of GEE. The ‘playground’ provides a ready-to-use editor to test the code and easily see the
results. An issue with the GEE ‘playground’ is that it provides limited access through invitation, and thus it
is not suitable for open-access application development. The Python API provides the same functionalities
and follows the same principles as the JavaScript API. The main difference, besides the programming
language, is that the Python API can be used to develop custom web applications accessible by everyone.
The SC method described in Section 2.1 was first implemented in the GEE’s ‘playground’ for easy testing.
Once operational, the JavaScript code was translated into Python and a web application was developed
using the Google App Engine. The application is accessible to everyone and a user-friendly environment
allows easy access to the Landsat LST products.
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Figure 1 graphically illustrates the implementation algorithm and the flow of data in the
application. Initially, the user draws a polygon on the map to mark the area of interest and provides
information on the preferred date range, emissivity source (ASTER, MODIS or NDVI) and Landsat
satellite (5, 7 or 8). These choices are made in the front end of the application in an interactive
environment. Then an AJAX (Asynchronous JavaScript and XML (extensible markup language))
request containing the user’s preferences is sent to the back end of the application and more specifically
to the Python API which provides access to the GEE product catalogue and functions. The selected
Landsat radiance and brightness temperature image collections are then accessed and filtered for
the required geographical area and date range. For MODIS emissivity, a filter for the selected area
and date range is applied, since the MODIS emissivity product is daily. For ASTER emissivity, only
the area filter is applied, since there is only one emissivity map corresponding to 2000–2008. For the
NDVI-based emissivity, calculations need to be performed. A filter is applied to the Landsat surface
reflectance product for the date and area and then calculates the emissivity as described in Section 2.2.4.
The different image collections (the radiance, brightness temperature with cloud mask and emissivity)
are then joined in a single image collection. The PW data is handled differently than other image
collections, since it has a 6-h temporal resolution. First the PW collection is filtered for the selected
area and date range. Then the average of the two PW values is selected, the first value is the PW that
was acquired closest in time before the Landsat image and second is that acquired closest after the
Landsat image. The PW is added using this methodology to every image in the joined collection which
now contains all the necessary data for the LST estimation of the specific geographical area and date
range. It is worth noting the flexibility of GEE to easily combine all the satellite data products from
different sources and of different spatial resolutions, using the nearest neighbour resampling method
(or other method if requested). Equation (2) is then applied to every image in the joined collection
to estimate the LST products for the selected area and date range. The water surfaces, clouds and
shadows are removed from the LST products in the final steps by using the Fmask (Section 2.2.2).
In the end, the Python API requests from the GEE a download link and a map layer from Google Maps
to visually represent every image. The AJAX request returns to the front end with that information so
both the visualization and download functions are available to the users for the calculated Landsat
LST products.

2.4. Accuracy Assesment

Since validation with in-situ data was beyond the scope of this study and since at the time of
the study other operational Landsat LST products were not available for comparison, the accuracy
assessment of the LST products was based on indirect verification. Thus, ASTER higher-level LST
products [48] were considered as a reference dataset to assess the accuracy of the Landsat-derived
LST. ASTER LST products were selected for their high accuracy, which is reported to be of
1.5 K [49]. A thorough analysis of ASTER radiance and temperature accuracies is reported in [50].
Using instrumented buoys in large lakes, for 246 independent validations of surface temperature,
they reported that all channels were well within the preflight specification of ±1 K. Comparing a
dynamically changing variable such as the surface temperature derived from different satellites is
challenging. In this study, a time difference of maximum half an hour is allowed, therefore, ASTER LST
products were compared to Landsat 7 LST products. The LST derived from Landsat 5 and 8 in GEE
was evaluated by comparison with other Landsat 5- and 8-derived LST from the same observations,
but using alternative approaches, such as the approach implemented by the software ATCOR [51].
GEE was used for selecting ASTER images that meet the reference data selection criteria. Using
the GEE catalogue was very efficient in matching the acquisition dates of ASTER and Landsat 7
with time differences of less than half an hour. From the resulting matching Landsat and ASTER
image pairs, a number of pairs was manually selected to cover different geographic areas around the
world, with distinguishable surface cover (desert, dense forest, cities, etc.). Images corresponding
to different seasons and a large range of PW values were selected, to ensure testing for a variety of



Remote Sens. 2017, 9, 1208 8 of 16

different atmospheric conditions. For the selected dates, the ASTER LST products were provided by
JPL (Jet Propulsion Laboratory). For Landsat 5 and 8, no ASTER data with a time difference of less
than half an hour in acquisition time were available. Thus, a set of Landsat 5 and 8 LST products
estimated with ATCOR for the cities of Heraklion and Basel were used, that were produced by the
DLR (German Aerospace Agency). All the reference images that were used are listed in Table 4 with
their acquisition date, spatial resolution, a reference point of the location, area size and PW values.

Figure 1. LST estimation algorithm in the application. The user sets his preferences for the geographical
area, the date range, the source of emissivity and the preferred Landsat in the front end. In the back end
a function joins the GEE image collections of Landsat and emissivity data, whereas a second function
adds the PW (precipitable water) information. The joined collection is then used for the LST estimation.
The process is the same in GEE ‘playground’ as well as in the web application.

Table 4. List of reference images used for accuracy assessment, the area they cover, the date of
acquisition, the spatial resolution, satellite source of acquisition and the PW content.

Area of the Scene Satellite Acquisition Date Spatial Resolution (m) Location (Latitude,
Longitude) Area Size (km2) PW (g/cm2)

The West Virginia
mountains ASTER 11 October 2004 90 38.6621, −80.4140 2.449 0.72

Amazon forest ASTER 7 September 2010 90 −0.2032, −57.4076 2.321 4.32
Bangkok ASTER 11 December 2014 90 13.8167, 100.4589 2.660 2.42

Sahara Desert ASTER 27 October 2016 90 26.2330, 26.2820 2.346 2.20
Dubai ASTER 29 June 2009 90 25.2831, 55.3724 1.560 0.83
Tokyo ASTER 10 May 2015 90 35.6729, 139.7488 2.522 1.10
Basel Landsat 5 31 July 2010 30 47.5608, 7.5846 415 1.54
Basel Landsat 8 24 April 2015 30 47.5608, 7.5846 415 0.97
Basel Landsat 8 23 August 2016 30 47.5608, 7.5846 415 2.92

Heraklion Landsat 5 19 February 2010 30 35.3398, 25.1330 191 1.06
Heraklion Landsat 5 16 July 2011 30 35.3398, 25.1330 191 2.02
Heraklion Landsat 8 29 July 2016 30 35.3398, 25.1330 191 2.60
Heraklion Landsat 8 7 March 2016 30 35.3398, 25.1330 191 1.36

The comparison process includes the estimation of the Landsat LST as described in Section 2.1,
for 13 images, using all combinations of the three emissivity sources, the five coefficient tables for
Landsat 5 and 7 and one coefficient table for Landsat 8. In total, 147 Landsat LST products were available
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for comparison. Post-processing was necessary for the LST product derived by Landsat 7 in order to be
comparable to the ASTER LST products, mainly due to their different spatial resolution. The Landsat
LST products at 30 m× 30 m spatial resolution were resampled to 90 m× 90 m, using spatial averaging.
The RMSE (root mean square error) was used as an accuracy metric in all cases.

3. Results and Discussion

3.1. Accuracy Assesment

The accuracy of the Landsat LST products was assessed as explained in detail in Section 2.4,
based on indirect validation with ASTER and Landsat LST products, derived using different
approaches. The set of 147 Landsat LST products was compared to the reference data and the
accuracy assessment results for different coefficient tables and emissivity sources are presented and
discussed below.

3.1.1. Atmospheric Effects: Coefficient Table Comparisons

The first accuracy test concerns a comparison among LST products estimated based on different
coefficient tables. The objective was to assess the magnitude of errors for the different areas tested and
to select one model to be used in the GEE implementation. Figure 2 shows the RMSE using different
coefficient tables for Landsat 5 and Landsat 7. No results are presented for Landsat 8 since only one
coefficient table was available (see Section 2.2.6). For Landsat 5, the use of the SAFREE coefficient
table resulted in lower RMSE, with an average value of 1.49 ◦C (bias −0.54), while TIGR3 was very
close with an average RMSE of 1.50 ◦C (bias −0.64). For Landsat 7, TIGR2 performed better than the
other coefficient table with an average RMSE of 1.77 ◦C (bias 0.9). The reference data had a variety of
PW ranging from 0.72 to 4.32 g/cm2. Our results are in line with [19], where for a PW range between
0.5 and 3 g/cm2 the best RMSE was obtained by using the STD, TIGR2 and SAFREE databases.

Figure 2. LST RMSE (root mean square error) boxplots for each coefficient table, where× is the average,
and the horizontal line inside box is the median. (a) Landsat 5 RMSE boxplots for each coefficient table
calculated from all three available Landsat 5 delivered reference data; (b) Landsat 7 RMSE boxplots for
each coefficient table calculated from all six ASTER reference images.

Consequently, the coefficient table corresponding to SAFREE was adopted in the final methodology
for Landsat 5, the TIGR2 for Landsat 7 and the GAPRI for Landsat 8, as it was the only one available at
the time.

3.1.2. Emissivity Effects: Comparisons of the Different Emissivity Retrieval Methods

As already mentioned, three emissivity data sources were used in the LST estimation:
the ASTER-GED, the daily MODIS emissivity product and NDVI-based emissivity. This allowed the
assessment of the emissivity impact on the LST. The reference data were split into two main categories
based on the surface cover of the area: natural/isolated landscapes and urban/peri-urban areas. The first
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category includes areas that are not much affected by human activity and they do not exhibit vast
changes over time. In practise, this category includes images from the Amazon forest, the West Virginia
Mountains and the Sahara Desert (Table 4). The second category includes images of cities (Table 4) and
the surface cover of the areas depicted in the images are, thus, affected by human activity. Figure 3
shows the RSME of the estimated LST compared to the reference data for each of the two main categories
and for each emissivity source. The emissivity of natural/isolated landscapes is not expected to present
significant changes over time, since the land cover does not change; in contrast, human activity, particularly
urbanization and agricultural activities, are responsible for intense land cover changes, which impact
emissivity. As thus expected, the ASTER emissivity provides more accurate LST estimates for the
natural/isolated landscapes (average RMSE of 1.54 ◦C, bias 0.66) than MODIS and NDVI-based emissivity.
For the urban/peri-urban areas on the other hand, all emissivity sources provide very similar results in
terms of LST error. The reason is that these are highly heterogeneous and mixed areas in space.

Figure 3. Boxplots of LST RMSE results based on the source of emissivity (ASTER, MODIS, NDVI) for
natural/isolated landscapes and urban/peri-urban areas, and the horizontal line inside each box is
the median. (a) Natural/isolated landscapes category contains the RMSE boxplots from the Amazon
forest, the West Virginia Mountains and Sahara Desert; (b) Urban/peri-urban areas category contains
the RMSE boxplots from Bangkok, Dubai, Tokyo and all Heraklion and Basel images.

Overall, from Figure 3, it seems that the ASTER emissivity provides slightly better results, despite
the fact that it is a single static image compared to the other frequently-updated emissivity options.
This can be explained by the high quality of ASTER products compared to the other emissivity options,
in the areas where the average emissivity remains similar, the values from the static ASTER image
are still relevant. On the other hand, in urban/peri-urban areas, where land cover/use changes
continuously and alters emissivity’s spatial distribution, the more frequent emissivity retrievals from
MODIS and NDVI seem to be on par with ASTER accuracy. For future estimations of LST that are far
in time from the 2000–2008 ASTER emissivity map, this gap will probably increase and the ASTER
emissivity data will become outdated.

The NDVI-based emissivity maps have a better spatial resolution (30 m × 30 m) than the
MODIS-maps (1 km × 1 km), while in terms of temporal resolution both products refer to the Landsat
acquisition time. For the NDVI-based emissivity, the NDVInonveg and NDVIveg in Equation (6) have
fixed values of 0.18 and 0.85 instead of being estimated particularly for each region. In a global
study, the terrain is very much diverse in different areas and these NDVI fixed values are not fully
representative for all situations. This possibly explains the slightly poor performance of NDVI-based
emissivity compared to the MODIS emissivity in the Landsat LST estimation.

Figure 4a–c shows the Landsat 8 LST maps for the area of Basel, Switzerland on the 24 April 2015,
using ASTER- (Figure 4a), MODIS- (Figure 4b) and NDVI-based (Figure 4c) emissivity products. Figure 4d
is the Landsat 8 RGB (red green blue) image from the same date. Figure 4e–h presents a zoom in the
outlined area of the Basel airport (EuroAirport Basel Mulhouse Freiburg) and Figure 4i–k presents the
corresponding emissivity.
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Figure 4. Landsat LST estimations with different emissivity sources in the area of Basel, Switzerland,
24 April 2015: (a) LST estimated with ASTER emissivity product; (b) LST estimated with MODIS
emissivity; (c) LST estimated with NDVI-based emissivity; (d) true-color composition of the Landsat
8 image of 24 April 2015; (e) LST in the Basel airport area using ASTER emissivity; (f) LST in the
Basel airport area using MODIS emissivity; (g) LST in the Basel airport area using NDVI-based
emissivity; (h) true-color composition of the Landsat 8 image of 24 April 2015 in the Basel airport area
(i) ASTER emissivity product in the Basel airport; (j) MODIS emissivity product in the Basel airport;
(k) NDVI-based emissivity in the Basel airport. Black color in all cases represents masked areas.

The LST maps using different emissivity sources in Figure 4a–c show similar results, as expected
from the earlier discussion (see Figure 3b). A closer look at the zoomed area reveals some of the
strengths and weaknesses of each different emissivity-derived LST. At the bottom half of the images in
the first row, the LST with NDVI-based emissivity (Figure 4c) outlined better the vegetated areas than
the LST with ASTER and MODIS emissivity. The NDVI-based emissivity captures well the emissivity
of vegetation, which is in the peak in this image since it was acquired during April. This is even
more evident in the second row, zoomed-in area in Figure 4. Another noticeable difference in the
LST refers to the area of the airport. The ASTER emissivity seems to provide better estimates for the
airport area, which is expected to be hotter than the surrounding area. In the third row of Figure 4,
the NDVI-based emissivity seems to capture better than ASTER and MODIS the spatial variability of
emissivity. The ASTER emissivity product is assumed to be more accurate in the case of non-vegetated
surfaces, since it is derived from a combination of long-term emissivity data, while the NDVI-based
emissivity assumes a constant emissivity value for non-vegetated surfaces.

3.1.3. Overall Accuracy Assessment of the Landsat LST Products

Following the process of comparison that was described in Section 2.4, the average RMSE for
all 147 comparisons was initially computed at 1.89 ◦C. This can be improved by taking advantage of
the findings described in Section 3.1.1, using only the SAFREE database when estimating LST from
Landsat 5 and the TIGR2 for Landsat 7. Another improvement can be made by choosing the best
emissivity source based on the area as described in Section 3.1.2. Therefore, considering all these
adjustments, the final RMSE was found to be 1.40 ◦C (bias −0.31) for Landsat 5, 1.71 ◦C (bias 0.77) for
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Landsat 7, 1.31 ◦C (bias 0.1) for Landsat 8. Furthermore, an overall RMSE of 1.52 ◦C was estimated for
all Landsat sensors used in this study.

3.2. Landsat LST Web Application

The LST products for Landsat 5, 7 and 8 at 30 m spatial resolution are publicly available through
a web application that was developed for this purpose and it is accessible at: http://rslab.gr/
downloads_LandsatLST.html. This web application automatically updates with the latest available
satellite data, since it is linked to the GEE catalogue, which is updated frequently. The availability of
data depends on the operational period of the respective satellites. The Landsat 5 archive extends from
March 1984 to May 2012, the Landsat 7 archive extends from May 1999 to present and the Landsat 8
archive from April 2013 to present. LST products can be created for each Landsat sensor for the
time period of its operation, shown in Table 1, using NDVI-based emissivity. Although products are
available for the same periods using ASTER emissivity, their use is suggested based on the guidelines
we provide below. Landsat LST products with the use of MODIS emissivity are available for the period
2002 up to present.

Figure 5 shows a screenshot of the web application. The user can choose the desired date range,
Landsat satellite and emissivity source; and draw a polygon to identify an area of interest. Then, by clicking
the “Calculate LST” button, the calculations are performed based on the user preferences. The LST products
are presented in the form of a map layer overlaid to Google Maps. The LST product(s) corresponding to
the date range and area of interest are listed under the map and they are available for download either
individually, or as a batch file. Due to the computational limitations, a maximum date range of one month
is allowed in the current release of the web application. This will be improved in future releases to allow
larger datasets to be handled at once.

Figure 5. Screenshot of the Landsat LST web application. The users set their preferences for the date
range, preferred Landsat and emissivity source on the right-hand side. The option ‘Draw a polygon’
allows the user to draw the area of interest on the map. An example is shown here for the area of
Heraklion, Greece. Landsat 5 scenes that correspond to this specific request, their IDs and acquisition
date are shown in a table at the bottom, along with the respective visualization and download options.
In this screenshot, the LST product corresponding to the first image in said table is shown overlaid on
Google Maps. The missing values correspond to clouds, cloud shadows and water surfaces.

http://rslab.gr/downloads_LandsatLST.html
http://rslab.gr/downloads_LandsatLST.html
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Using the ASTER emissivity is recommended for cases of natural/isolated landscapes,
with not-significant land cover changes, as was indicated by our analysis; or to use it for LST retrievals
from Landsat observations acquired between 2000 and 2008, which is the time period that corresponds to
the data acquisition of this ASTER product. The NDVI-based emissivity should be used in cases of intense
phenological changes in vegetated areas. The MODIS emissivity should be used in cases of areas with
extended homogeneous areas that are changing over time, i.e., extended deciduous forests.

The application was built with the use of HTML (hypertext markup Llanguage), JavaScript,
CSS (cascading style sheets), JQUERY for the front end and GEE’s Python API for the back end,
as explained in Section 2.3. It provides instant access to global, up-to-date, LST data and it is
light-weight in terms of computations. This is achieved with the use of GEE, which enables instant
access to the large satellite data archive and transfers all the computational and storage needs to
Google’s infrastructure. Moreover, the user does not need to install any software or download any
data for processing, as opposed to currently available applications [22,24]. The Landsat LST web
application can even run from mobile devices with limited power for a quick snapshot of the LST of
an area.

Other sources of data, capable of improving the accuracy of our LST estimations, such as
temperature and emissivity retrievals from geostationary platforms like MSG (Meteosat Second
Generation) [52], will also be taken into account in our analysis, as soon as they are available in GEE.
Feedback by the scientific community on the quality of our LST products is highly welcome and we
encourage users that own in-situ observations to publish validation studies.

4. Conclusions

LST information from Landsat is not easily calculated, and so far, it is not directly provided as
a standard product. Many studies propose methods and algorithms for retrieving LST from Landsat
observations, but only experts can easily implement these approaches. Landsat image downloading
and ancillary atmospheric data is also needed and the installation of extra tools and software is required
in most cases. This study presents an online application for LST estimation from Landsat 5, 7 and 8
that requires the least possible time and effort to provide maps on-the-fly and without the need for
extra resources from the user. For global coverage and the whole Landsat archive, this is only possible
using advanced cloud computing technologies, i.e., the GEE. The GEE data catalogue includes all the
Landsat imagery and it transfers all the heavy computational processes to cloud computing servers.
The user only needs to define the time range and area of interest and receives the Landsat LST maps
and products in seconds.

The LST estimation method implements a SC algorithm because it allows LST retrieval with
the use of one thermal channel. This allowed for algorithm consistency between Landsat 5, 7 and 8.
Since for SC algorithms the emissivity is provided from external sources, the developed web application
provides the flexibility to choose between three different emissivity sources: ASTER, MODIS and
NDVI-based. An accuracy analysis using ASTER and LST estimations from Landsat using alternative
approaches as reference datasets, indicated that the LST can be retrieved from Landsat 5, 7 and 8 within
an overall accuracy of 1.52 ◦C (RMSE). The three different emissivity sources did not significantly
differentiate LST estimations; however, recommendations on emissivity source selection were made
in this study: the analysis revealed that ASTER-derived emissivity performs better for areas with no
significant land cover changes; the NDVI-based emissivity captures phenological changes and their
spatial pattern well; and the MODIS-derived emissivity is suitable for extended homogeneous areas.

Further improvement of the web application includes adding extra options for users such
as a minimum, maximum and average extractor for every image, increasing the maximum date
range, as well as further investigation of the results in order to improve the accuracy of the LST
products for specific areas at local scales. There is room for improvement in the calculation of
the NDVI-based emissivity, which can provide more accurate estimations with varying definitions
of NDVInonveg and NDVIveg in Equation (6), such as the NDVI-THM (NDVI threshold method)
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approach [53]. Improved emissivity retrieval methods for urban environments [41] are considered
for future implementation, to ensure accurate estimation of energy budget components at local scale.
The possibility of a consolidated emissivity product is also under consideration. The usability of
applications like the one developed in this study are not yet mainstream. Therefore, we appreciate also
any feedback by users of the web application, based on their specific needs, in order to improve it and
to provide tailored solutions to users in future releases.
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