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Abstract: Evapotranspiration (ET) is a key component of the hydrologic cycle, accounting for ~70%
of precipitation in the conterminous U.S. (CONUS), but it has been a challenge to predict accurately
across different spatio-temporal scales. The increasing availability of remotely sensed data has
led to significant advances in the frequency and spatial resolution of ET estimates, derived from
energy balance principles with variables such as temperature used to estimate surface latent heat flux.
Although remote sensing methods excel at depicting spatial and temporal variability, estimation of ET
independently of other water budget components can lead to inconsistency with other budget terms.
Methods that rely on ground-based data better constrain long-term ET, but are unable to provide the
same temporal resolution. Here we combine long-term ET estimates from a water-balance approach
with the SSEBop (operational Simplified Surface Energy Balance) remote sensing-based ET product
for 2000-2015. We test the new combined method, the original SSEBop product, and another remote
sensing ET product (MOD16) against monthly measurements from 119 flux towers. The new product
showed advantages especially in non-irrigated areas where the new method showed a coefficient of
determination R? of 0.44, compared to 0.41 for SSEBop or 0.35 for MOD16. The resulting monthly
data set will be a useful, unique contribution to ET estimation, due to its combination of remote
sensing-based variability and ground-based long-term water balance constraints.
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1. Background and Rationale

Evapotranspiration (ET) is the quantity of water that includes net water evaporation and plant
transpiration. It plays a significant role in the hydrologic cycle, returning about 70% of precipitation
across the conterminous United States (CONUS) to the atmosphere [1,2]. Because it is generally the
second largest component of the water budget, following precipitation, researchers and water resource
managers require accurate and reliable ET estimates to understand water availability and distribution
for both short and long-term water resources management.

The use of remote sensing-based methods of estimating ET has increased in recent years [3], and
has proven useful in various applications such as agricultural water use monitoring and estimation [4],
and hydrologic simulation [5]. These methods are particularly advantageous in their ability to produce
estimates on timescales as short as weeks. The remote sensing approaches generally use surface
energy balance arguments to partition the net incoming solar radiation energy into sensible heat
flux, ground heat flux, and latent heat flux (energy equivalent of ET mass flux) [6-10]. Different
algorithms applied to the same input remote sensing data sets can make predictions of the latent heat
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(ET) component as disparate as 20-60% of the available surface energy [11]. The uncertainty of ET
estimation is demonstrated by the non-unique partitioning of total ET to multiple landscape sources.
One study comparing this variability of ET source partitioning in three remote sensing ET algorithms
showed that for the global average ET, different algorithms attributed a range of 14-52% of the ET
to soil evaporation, 10-24% to evaporation of water intercepted by canopies, and 24-76% to plant
transpiration [12]. Uncertainties have also been demonstrated within the energy balance algorithms
due to errors in assumptions about albedo values [13]. Though there are substantial uncertainties
among remote sensing ET estimates, the usefulness of the high frequency of measurements and the
broad spatial coverage in capturing spatial and temporal variability mark a significant step forward in
our ability to measure and monitor ET.

Physical measurements of ET are difficult to obtain. One micrometeorological method of ET
measurement, eddy covariance, involves instrumenting a tower to monitor the exchange of water vapor
between a local landscape of interest and the atmosphere. The AmeriFlux tower network includes
data contributed from eddy covariance stations across the US (data and community background
available [14]). Flux tower data represent ET measured at a point location, ideally with adequate fetch
so that the measured flux at a point is indicative of flux from a given landscape type; measurements
can be highly influenced by local environmental factors, with extrapolation to regional scales difficult.
Flux tower data are also known to have uncertainties, with errors in their energy balance closure
arguments that can be on the order of 20% [15]. However, for measurement of ET, flux tower data
are currently the best available ground-truth data source at daily or monthly timescales. Analyses
evaluating the accuracy of remote sensing ET estimates often involve comparisons against flux tower
data, for example, for a set of 45 towers [9], 46 towers [16], or 85 towers [11]. There is a lack of studies
showing comparisons using all >100 available AmeriFlux towers in the CONUS to evaluate remote
sensing ET products in a variety of settings, and in relation to other variables measured at the tower
locations. Such comparisons could aid in evaluation of strengths or weaknesses of different products
for application in different settings, such as in irrigated areas or a given land cover type, or by month.
Analyses of spatial locations of high residuals between predictions and flux tower measurements,
and testing for correlations between residuals and variables such as precipitation and temperature,
could also indicate potential sources of bias in products and guide algorithm refinement.

Because of the difficulty of direct measurement at larger temporal and spatial scales than
represented by individual flux towers, ET is often estimated indirectly by solving for the missing
volume in the water balance of a watershed, given long-term precipitation influx and stream discharge
outflow. Calibration of empirical equations to ET data produced by this method has precedent for
producing accurate long-term ET components for large-scale water balance estimation [17]. One such
method of estimating ET was recently introduced for the CONUS [1]. In this work, ET was estimated
with a regression against climate and land cover variables, calibrated using long-term water balance
data from a set of 679 watersheds (Figure 1). This empirical water-balance (EWB) ET product
was developed jointly with estimates of recharge and quick-flow runoff, within the closed water
budget constraints of water supply from precipitation and groundwater-sourced irrigation. The EWB
ET estimation method was compared against 2000-2013 annual average ET data from two remote
sensing-based approaches, the MODIS (Moderate Resolution Imaging Spectroradiometer) MOD16
ET [16] and the operational Simplified Surface Energy Balance (SSEBop) ET [9]. The MOD16 product
uses data from the MODIS instrument on the Aqua and Terra satellites, including MODIS surface
temperature, leaf area index, land cover type, albedo, enhanced vegetation index, and fraction of
photosynthetically active radiation, as well as meteorological data from the Global Modeling and
Assimilation Office (GMAO) reanalysis [16]. MOD16 provides ET estimates for the globe at the
1 km spatial resolution, over the 2000-2016 timespan, at the eight-day, monthly, or annual temporal
resolution; the monthly timescale resolution MOD16 product is used in this study, at the scale of
the CONUS and over the 2000-2015 timespan. The SSEBop product also uses surface temperature
data from the MODIS instruments and air temperature and potential ET from model-assimilated
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meteorological datasets [9,18]. SSEBop provides ET estimates for the CONUS at the 1 km spatial
resolution and monthly timescale over the 2000-2016 timespan. SSEBop was developed as a new
version of an energy balance algorithm that is streamlined for operational use, and the simplicity of its
parameterization was designed to reduce sources of model error. The SSEBop product was shown to
have a coefficient of determination R? of 0.64 when compared with 528 monthly data points from 45
AmeriFlux stations [9].
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Figure 1. (a) Map of annual average Empirical Water Balance (EWB) ET [1] across the conterminous U.S.,
for the 2000-2013 time period, from [1]; (b) Map of annual average ratio of ET to precipitation (ET/P)
for the 2000-2013 time period. Here precipitation (P) from [1] includes input from groundwater-sourced
irrigation. Values exceed 1 only in locations of open water.

2. Goals and Objectives

The ET estimates from these three approaches were tested in [1] against measurements from 67
flux towers in the AmeriFlux network. The EWB method showed the highest correlation with the
long-term ground-based data, followed by the SSEBop ET and then the MOD16 ET [1]. The EWB
approach cannot, however, capture the temporal variability that is possible with the remote sensing
data sets.

There has been little effort to explicitly combine ET estimates developed using water-balance and
remote sensing methods, though each approach has strengths and weaknesses in terms of frequency
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of estimates and long-term accuracy. The objectives of this study are to explore the potential for
ground-based measurements to improve remote sensing ET by using the EWB map from [1] to
constrain the overall magnitude of long-term ET, and to develop such a combination for the monthly
timescale using publicly available data sets and explore the robustness of the new data set. Although
several other remote sensing ET products exist, the scope of this manuscript is not intended to be a
comprehensive comparison of the different ET products available, but rather to present a method for
applying water balance constraints to remote sensing products through the example of SSEBop ET,
with a third remote sensing product (MOD16) also tested for comparison. The SSEBop/water-balance
method combination involves refining the SSEBop product through application of a scaling map that
applies water balance constraints to the long-term average ET values. We show extensive comparisons
of results against independent flux tower data at the monthly timescale for SSEBop ET, the MOD16
ET product, and the combined SSEBop /water-balance (SSEBop-WB) estimates. These comparisons
include product evaluations distinguished by irrigation presence, land cover type, month and season.
Analysis of model residuals (differences between model predictions and flux tower data) also shows
model performance by location in the CONUS, performance between SSEBop and SSEBop-WB as a
function of scale factor value, and an appraisal of systematic bias with climatic and soil variables.

3. Approach and Methods

3.1. Comparison and Combination of Approaches

We first qualitatively compared the differences in the spatial variations of long-term annual
average ET among the methods of the SSEBop ET, the MOD16 ET, and the EWB ET. We created
2000-2013 annual average maps for the SSEBop and MOD16 data sets, as well as maps of the
ratio of 2000-2013 average ET to precipitation, for comparison with the EWB ET maps of Figure 1.
The “precipitation” values here represent water supply from the Parameter-elevation Relationships on
Independent Slopes Model (PRISM) precipitation data set produced by Oregon State University [19]
combined with groundwater-sourced irrigation, from the USGS county-scale water use data sets
from 2000 [20], 2005 [21], and 2010 [22]. Further description and the combined water supply data are
available in [1] and [23].

The testing of the EWB, SSEBop, and MOD16 methods in [1] showed that for the long-term
annual average, the EWB ET method had closer agreement with flux tower data than the SSEBop ET
or MOD16 ET products; also, by embedding the water budget within EWB, long-term ET estimates in
excess of long-term water availability from precipitation and irrigation were avoided. The EWB ET
also showed better predictive power for SSEBop ET than MOD16 ET. Based on these results, in this
study we worked to combine the EWB ET and SSEBop ET methods in order to retain both (1) the higher
long-term accuracy and consistent water budget constraints of the water-balance regression and (2) the
monthly-timescale dynamics of the SSEBop ET data. The approach taken to combine the two methods
was to scale the SSEBop maps so that they converged to the EWB estimates in the long-term annual
average. A scale factor map at a 1 km resolution consistent with the remote sensing products was
created from the ratio of the 2000-2013 annual average EWB ET map to the 2000-2013 annual average
SSEBop ET map. Individual monthly SSEBop ET maps were each multiplied by this scale factor map
to produce monthly ET maps constrained by long-term water budgets. Because of excessively high
scale factors possible where the annual average SSEBop ET values were zero or near-zero, there were
locations where the scale factor multiplication led to excessively high ET estimates. A realistic upper
bound was therefore set for ET values at 15 mm/day [24]. Because of uncertainties in the irrigation
data used to derive the EWB ET estimates, we hypothesized that the SSEBop ET was likely to produce
more accurate estimates in irrigated areas. The scaled SSEBop was compared with the SSEBop-only
method in the locations of irrigated agriculture to evaluate whether SSEBop should be used as-is
or scaled in these areas. The data processing steps described here were carried out in ArcGIS using
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ArcPy and Python, and the statistical comparisons were carried out using the statistics functions in the
NumPy [25] and SciPy [26] packages.

To determine locations of irrigated agriculture, we used the MODIS Irrigated Agriculture Datasets
for the United States (MIrAD-US) product, which provides irrigation intensity on a 0-100% scale at the
five-year intervals of 2002, 2007, and 2012 [27]. For determining locations of irrigated agriculture for
our method comparison, we averaged the 2002, 2007, and 2012 maps (Figure 2), and counted non-zero
pixels as irrigated areas.
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Figure 2. Map of irrigation intensity from the MODIS Irrigated Agriculture Datasets for the United
States (MirAD-US), averaged over datasets from 2002, 2007, and 2012 [27].

3.2. AmeriFlux Data Processing and Comparisons

Data were downloaded in February 2017 for the 145 flux towers in the CONUS for which ET data
were available within the time window of 2000-2015, from the AmeriFlux network data download site
(data and background available [14]). Some noise in this data is expected, due to the point-measurement
nature of flux tower data that can measure very localized fluctuations and to potential errors in energy
balance closure arguments [15]. These factors are not sources of noise that we are able to address in
this study, but are worth noting in that although flux tower data are the best available independent
data source for testing short-timescale ET, the values are not to be taken as absolute truth. The data
category processed for these towers was the latent heat flux, with units of watts per meters squared.
These data were converted to units of mm/day through division by the density of water and latent
heat of vaporization, and multiplication by seconds per day and millimeters per meter. Data were
available for different sites at various temporal frequencies, with some sites’ data available at 15-min,
30-min or hourly intervals, often with gaps of missing data within days, months, or years. To fill data
gaps, for each month of data at each site, a filter was applied where a minimum of 20 measurements
were required for each measurement time of each day. For months and sites that met these criteria,
all available (>20) measurements for each individual time of day (e.g., all >20 measurements at noon)
were averaged, producing a smooth average diurnal ET curve for that month. These curves were
averaged to calculate a daily ET value for each month, and multiplying by days in the month yielded
an average monthly value. Monthly ET predictions for the SSEBop, MOD16, and SSEBop-WB methods
at the locations of these sites were compared with the AmeriFlux data for all available sites. Residuals
between the remote sensing methods and the AmeriFlux tower data were mapped spatially, and the
sites with the highest residuals across methods were also listed (Tables 4 and 5).
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MIrAD-US irrigation intensity was also extracted from the data set at these tower locations and
sorted by irrigated (MIrAD intensity > 0) or non-irrigated (MIrAD intensity = 0). To evaluate method
performance in different settings, the land cover type from the 2006 National Land Cover Database
(NLCD) was also described at tower locations [28]. Other maps of CONUS-scale data relevant to
ET were also obtained, to enable analysis of residuals as a function of these variables for testing for
potential systemic bias in the algorithms. Here a residual is defined as the difference between the value
predicted by a remote sensing method at the location of a flux tower for a given month, and the value
calculated from the flux tower data for that month. Average residuals presented for a given location
represent the average of all residuals (all differences between predictions and measured values)
for all months available for that location. These additional maps included monthly precipitation,
and mean, maximum, and minimum daily temperature (from PRISM Climate Group at Oregon State
University [19]), as well as soil properties from the STATSGO data base [29], and impervious surface
percent from the 2006 NLCD.

4. Results

4.1. Annual Average ET Maps

From the EWB method, the spatial average value of ET across the CONUS was 547 mm/year,
while the mean SSEBop ET was 509 mm/year and the mean MOD16 ET was 481 mm/year.
For comparison, the mean effective precipitation was 780 mm/year. The maps of 2000-2013 annual
average ET for EWB, SSEBop and MOD16 are shown in Figures 1a, 3a and 4a. Maps of ET/P are
shown in Figures 1b, 3b and 4b.
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Figure 3. Operational Simplified Surface Energy Balance (SSEBop) ET data. (a) Average annual ET for
the 20002013 timespan as estimated using the SSEBop model; (b) ET/P for the SSEBop ET.
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Figure 4. MOD16 ET data. (a) Average annual ET for the 2000-2013 timespan as estimated using the
MOD16 model; (b) ET/P for the MOD16 ET. Clear areas (no data) represent urban areas or water
bodies, which are not included in MOD16 data sets.

Because the EWB ET was produced within a closed water budget, its values are only able to
exceed long-term precipitation in locations of water bodies [1]. In the two remote sensing methods,
the lack of closed water budget constraints results, in some areas, in long-term ET significantly
exceeding precipitation supply (Figures 3b and 4b). The EWB ET exceeds precipitation in 0.44%
of the CONUS, and only over water bodies. The SSEBop ET exceeds precipitation in 8.1% of the
CONUS area, and the MOD16 ET exceeds precipitation in 3.0% of the CONUS. ET may in reality
exceed water available from precipitation and irrigation in locations with substantial groundwater
influxes not accounted for in these water balances, particularly where groundwater and surface water

basins do not coincide, through inter-basin transfers through mechanisms such as diversions, or where

groundwater is depleting or showing a strong monthly signal due to pumping. For example, in
Florida, the groundwater and surface water basins differ enough that there it may be necessary to
estimate leakage out of a surficial control volume to compose a water budget estimate of ET. However,
such explanations are unlikely to account for large regional exceedances over the long-term of multiple
times the available water. In the EWB ET, arid regions show that >90% of the incoming precipitation is
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lost to ET. By contrast, the remotely-sensed algorithms predict several arid regions to have low values
of ET/P, indicating larger (relative) error incurred by remote sensing methods in marginally small
ET areas.

4.2. Comparisons with AmeriFlux Data

The data from the towers in the AmeriFlux network were processed and averaged as described in
Section 3.2. The filtering process resulted in a total of 119 sites, with a total of 5089 months of average
ET values. Of these 119 sites, 12 were located in areas designated by the MIrAD map as irrigated
agriculture (MIrAD intensity > 0), with 656 total months of data in these irrigated areas.

We first compared the different approaches in irrigated areas, to test a hypothesis that the
combination method should only adequately scale the SSEBop ET in non-irrigated areas. Figure 5
shows the comparison of flux tower data with the different method estimates only for flux towers in
locations where MIrAD-US indicated the presence of irrigation. The SSEBop data showed the strongest
correlation (R? = 0.66, root mean square error (RMSE) = 38 mm/mo, bias = —6.5 mm/mo), followed by
the scaled SSEBop (R? = 0.51, RMSE = 47 mm/mo, bias = —3.2 mm/mo), and the MOD16 ET (R? = 0.32,
RMSE = 55 mm/mo, bias = —24.7 mm/mo). Comparisons among the three correlations showed that
all three were significantly different from each other (p < 0.05). These results confirmed our hypothesis
that SSEBop data should be left unscaled in irrigated areas. Factors contributing to scatter in the data
may include errors in the remote sensing ET products, the uncertainties associated with flux tower
data mentioned in the Introduction, and uncertainty due to comparing a tower measurement at a point
location with km-scale estimates from the remote sensing methods.
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Figure 5. Comparisons of AmeriFlux data with the ET predictions only in tower locations where
the MIrAD-US product (Figure 2) indicated active irrigation, for (a) scaled SSEBop; (b) SSEBop;
and (c) MOD16.

We also compared the methods in areas without irrigation (Figure 6), and found that here the
scaled SSEBop had the highest correlation (R2 =0.44, RMSE =39 mm/mo, bias = 3.2 mm/mo), followed
by the raw SSEBop (R? = 0.41, RMSE = 38 mm/mo, bias = 1.4 mm/mo), and the MOD16 (R? = 0.36,
RMSE = 34 mm/mo, bias = —2.2 mm/mo). Comparisons among the correlations showed that the
MOD16 correlation was significantly different from the other two (calculated probability p < 0.05), and
the difference in correlation between SSEBop and scaled SSEBop was borderline significant (p = 0.05).
Based on these results, our final combined SSEBop-WB product of the SSEBop and water-balance
regression methods involved scaling the SSEBop to the water-balance data in non-irrigated areas, and
leaving SSEBop as-is in irrigated areas.
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MIrAD-US product (Figure 2) did not indicate active irrigation, for (a) scaled SSEBop; (b) SSEBop;
and (c¢) MOD16.

4.3. Combined Product and Monthly, Seasonal Comparisons

The scale factor map for creating the SSEBop-WB estimates is shown in Figure 7. This map was
produced from the ratio of the long-term EWB ET (Figure 1a) to the long-term SSEBop ET (Figure 3a),
except in locations of irrigation, where the scale factor map was given a value of 1 (original values
are therefore unscaled). The individual monthly SSEBop ET maps were multiplied by this scale factor
map to produce monthly SSEBop-WB estimates.
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Figure 7. Scale factor map used in converting SSEBop ET estimates to SSEBop/Water-Balance
(SSEBop-WB) ET estimates. Locations of AmeriFlux towers are also shown. This map represents
the ratio of the long-term EWB ET (Figure 1a) to the long-term SSEBop ET (Figure 3a), except in
irrigated areas where the scale factor values are set to 1.

Comparisons using data from all available sites between the AmeriFlux data and the
three methods are plotted in Figure 8. The R? for the SSEBop-WB ET was highest, at
0.48 (RMSE =39 mm/mo, bias = 2 mm/mo), followed closely by the SSEBop ET at 0.47
(RMSE =38 mm/mo, bias = 0.4 mm/mo) and the MOD16 ET at 0.30 (RMSE = 39 mm/mo,
bias = —6 mm/mo). Comparisons among the correlations showed that the MOD16 correlation was
significantly different from the other two (p < 0.05), but that the correlations for SSEBop and SSEBop-WB
were close enough not to be significantly different (p > 0.05).

The three methods were also compared with AmeriFlux data by month, to see whether different
methods perform better depending on the time of year. The monthly and seasonal correlations are
summarized in Table 1. The seasonal maps for the SSEBop-WB product are also shown in Figure 9.
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In general, all methods performed worse in winter months when ET magnitudes are lower. In the
spring and summer, SSEBop-WB performed the best, while in the fall, SSEBop performed the best.
In general, as there is less variation in ET over an individual month, overall R? values are lower than
for full year comparisons where there is a much broader spread in values. Though the individual
monthly correlations were in general lower than the seasonal or total averages, all monthly correlations

of all methods were statistically significant with p < 0.01.
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Table 1. Correlations between AmeriFlux data and the three ET methods by month and season.

All correlations are statistically significant with p < 0.01.
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Time Period R?, SSEBop-WB R?, SSEBop R?%, MOD16 Number of Sites Months of Data
January 0.09 0.11 0.08 85 395
February 0.12 0.13 0.15 77 357
March 0.14 0.14 0.19 89 433
April 0.21 0.20 0.17 90 424
May 0.34 0.30 0.22 89 437
June 0.37 0.31 0.13 97 444
July 0.29 0.26 0.06 94 448
August 0.19 0.17 0.04 91 449
September 0.19 0.21 0.07 90 443
October 0.21 0.24 0.26 89 459
November 0.14 0.17 0.31 84 419
December 0.09 0.11 0.14 85 381
Winter (DJF) 0.10 0.12 0.12 92 1133
Spring (MAM) 0.34 0.32 0.26 929 1294
Summer (JJA) 0.29 0.26 0.08 100 1341
Fall (SON) 0.32 0.34 0.26 100 1321
All 0.48 047 0.30 119 5089
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In order to better understand method performance in different settings, we next split results by
land cover type as identified in the 2006 National Land Cover Database. The results are summarized
in Table 2. Such comparisons can help to guide users as to which data set may be more appropriate
for a site with a given type of land cover. For example, although the MOD16 data set tended to
underperform the others in most settings, it had the highest correlations in areas with land cover
designated as “Barren”, “Forest”, or “Grass”.

Table 2. Monthly statistical metrics for the different methods by land cover type from the 2006 NLCD.
The R%, RMSE, and bias of each method when compared with AmeriFlux data are listed for each land

cover type.

Product Metric Agriculture Urban Barren Forest Shrubs Grass Marsh
R? 0.513 0.834 0.426 0.322 0.55 0.584 0.505

SSEBop-WB  RMSE (m/mo) 0.042 0.016 0.028 0.043 0.023 0.033 0.047
bias (m/mo) 0.002 0.002 0.004 0.005 —0.012 0.003 0.01

R? 0.513 0.834 0.423 0.324 0.572 0.575 0.496

SSEBop RMSE (m/mo) 0.039 0.014 0.024 0.043 0.023 0.031 0.043
bias (m/mo) —0.002 —0.001 —0.003 0.006 —0.011 0.001 0.001

R? 0.155 0.81 0.51 0.328 0.398 0.62 0.235

MOD16 RMSE (m/mo) 0.05 0.025 0.019 0.035 0.026 0.024 0.053
bias (m/mo) —0.014 0.021 —0.001 0.002 —0.013 —0.004 —0.014

4.4. Analysis of Residuals

The spatial distributions of the average residuals between the three method estimates and flux
tower measurements are shown in Figure 10. These residual maps show which parts of the country
are more accurately captured by which methods, and can be used to either refine the methods or
to indicate locations where flux tower data may need reevaluation. For example, if a given method
performed particularly poorly (with high residuals) in the southwest, the algorithm could be examined
to see whether the modeling of ET in arid landscapes could be improved. Results are presented both
for the magnitude of the residual (mm/mo, a—c), and for the residual normalized by the AmeriFlux
value (d-f). Positive residuals indicate an overestimate of ET relative to the AmeriFlux towers.

Though the SSEBop-WB shows an advantage in R? when the complete data set is compared with
the original SSEBop data (Figure 8), the improvement is not large, and individual months or land
cover types can show advantages for either in certain settings (Tables 1 and 2). The similar R? values
between SSEBop and SSEBop-WB are due partly to the method of SSEBop-WB development, where
the temporal variation is entirely sourced from SSEBop but scaled by a constant scale factor for a
given pixel location. The similarity is also due to the majority of flux towers being located where
scale factors (Figure 7) are not far from 1, as can be seen in the histogram of Figure 11a. Binning
and averaging the residual magnitude and percent difference by scale factor value, we compared the
method performance as a function of scale factor value (Figure 11b—c). Spikes in the plots around a
scale factor of 1.2 or 3 reflect individual outlier tower data points, but in general for scale factors higher
than 1, the SSEBop-WB tended to show a smaller residual magnitude and percent difference than the
SSEBop. For scale factors less than one, the residual magnitude for SSEBop tended to be positive while
SSEBop-WB tended to be negative, and the percent difference was similar.

We also examined whether residuals of the three methods showed correlations with variables such
as precipitation, temperature, and soil properties, as such correlations could indicate systematic biases
in the algorithms that could be corrected. These results are summarized in Table 3. Most variables
did not show a strong correlation with residuals of the three methods, with the possible exception
of temperature variables, which showed correlations of 0.16-0.17 with SSEBop and SSEBop-WB.
All correlations in Table 3 except those for soil available water capacity and soil thickness showed a
statistical significance of p < 0.05.
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Figure 10. Residuals plotted as magnitudes of the average monthly difference between the three tested
methods and the AmeriFlux tower data, for: (a) The SSEBop-WB ET; (b) The SSEBop ET; and (c) The
MOD16 ET. The residuals are also plotted as percent differences between the three methods and the
AmeriFlux tower data, for: (d) The SSEBop-WB ET; (e) The SSEBop ET; and (f) The MOD16 ET.
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Figure 11. Comparison of SSEBop and SSEBop-WB relative to scale factor values at AmeriFlux sites.
(a) Histogram of the distribution of scale factor values at flux tower sites; (b) Average magnitude of
residuals for the tower measurements, relative to scale factor values; (c) Average percent difference
between SSEBop or SSEBop-WB values and tower ET measurements, relative to scale factor values.
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Table 3. Correlations of residuals with other measured quantities at tower locations, to check for
potential sources of systematic bias in the algorithms. All correlations except for soil available water
capacity and soil thickness showed a statistical significance of p < 0.05.

Variable R?, SSEBop-WB R?, SSEBop R%, MOD16
Precipitation (mm/mo) 0.013 0.014 0.004
Temp max (°C) 0.168 0.17 0.003
Temp min (°C) 0.163 0.172 0.002
Temp mean (°C) 0.169 0.174 0.002
Temp range (°C) 0.019 0.011 0.001
Soil saturated hydraulic conductivity 0.011 0.006 0.035
Soil available water capacity 0 0 0.01
Soil field capacity 0.005 0.001 0.049
Soil porosity 0.006 0.004 0.01
Soil thickness 0.003 0.004 0.002
Percent impervious 0.004 0.002 0.001

Finally, as flux tower data sets are known to have uncertainties (see discussion in Section 3.2),
we compiled a list of the sites that had the highest magnitude residuals with the three tested methods
(Table 4) and the highest percent difference residuals (Table 5). Though these differences may be due
to inaccuracies in the three remote sensing methods tested here, locations where all remote sensing
methods show significant disagreements relative to the towers may also indicate errors within the flux
tower data. Focused studies at these locations would be needed to determine whether the discrepancies
at each were due to errors in either the remote sensing or flux tower measurements.

Table 4. AmeriFlux sites with the highest average magnitude difference compared with remote sensing
ET data sets, listed in descending order for the new SSEBop-WB data set, the SSEBop ET, and the

MOD16 ET.
Site ID State Latitude Longitude S.SEBop-WB SSEBop Residual MOD16 Residual
Residual (mm/mo) (mm/mo) (mm/mo)

US-Tw4 CA 38.103 —121.641 25 25 118
US-Myb CA 38.0498 —121.765 23 23 114
US-Twl CA 38.1074 —121.647 -3 -3 154
US-SdH NE 42.0693 —101.407 29 51 61
US-SP1 FL 29.7381 —82.2188 -29 —40 —44
US-Bkg SD 44.3453 —96.8362 32 32 36
US-Wi7 WI 46.6491 —91.0693 -17 —37 -32
US-Wi8 WI 46.7223 —91.2524 —-12 —-27 —-37
US-Los WI 46.0827 —89.9792 —28 -21 —26
US-CPk WY 41.068 —106.119 25 11 35

Table 5. AmeriFlux sites with the highest average percent difference compared with remote sensing
ET data sets, listed in descending order for the new SSEBop-WB data set, the SSEBop ET, and the

MOD16 ET.
SSEBop-WB . .
Site ID State Latitude Longitude ResidualI;’ercent SSI],E Bop Reslldual MOD16 Reslldual
Diff. ercent Diff. Percent Diff.

US-Oho OH 41.5545 —83.8438 71 74 —164
US-Ses NM 34.3349 —106.744 93 92 70
US-Los WI 46.0827 —89.9792 —89 —66 —80
US-Seg NM 34.3623 —106.702 73 77 58
US-PFa WI 45.9459 —90.2723 —65 —59 —76
US-Wre WA 45.8205 —121.952 —83 —75 —38
US-SP1 FL 29.7381 —82.2188 —48 —66 -73
US-SRC AZ 31.9083 —110.84 67 54 65
US-Sta WY 41.3966 —106.802 69 76 37
US-LPH MA 42,5419 —72.185 —58 —45 —68

5. Discussion

We have presented here a new method and data set for combining remote sensing with long-term
water-balance-based estimates for ET (see Acknowledgments for download information). The approach
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works to constrain non-irrigated remote sensing estimates to water-balance-based estimates for
the purposes of (1) long-term magnitude accuracy; and (2) consistency with other water budget
terms (e.g., not significantly exceeding precipitation); while (3) preserving the temporal frequency
of measurements that remote sensing methods offer. To produce a combined monthly timescale ET
data set, a scale factor map was created from the ratio of the long-term EWB ET to the long-term
SSEBop ET. This scale factor map was applied to the monthly timescale SSEBop ET estimates, so that
the modified SSEBop-WB estimates would equal the EWB ET estimates in the long-term average.
An exception was made for the areas where irrigation was present in the MIrAD-US data sets, where
the SSEBop estimates were confirmed to be more accurate and were left unscaled. This new data set of
remote sensing-based ET estimates constrained by ground-based water balance data capitalizes on the
advantages of both approaches.

The data were thoroughly tested and compared using 119 flux tower sites, with data processed for
the monthly timescale. This study is unique from previous work partly because this is the most sites
that have been used in such a comparison study evaluating remote sensing ET products by comparison
with flux towers, compared to studies that have used a number of towers in the 45-85 range [9,11,16].
The unique collection of 5089 months of data from towers from many different settings, land cover
types, and climate regimes across the country may have contributed to our overall R? being lower
than some previous studies, such as showing R? = 0.64 for SSEBop [9], R? = 0.80 for the Global Land
Evaporation Amsterdam Model (GLEAM) ET product [11], or a skill score of 0.53 for MOD16 [12].

In our analysis, though the overall R? for the new SSEBop-WB method was shown to be only
slightly higher than the original SSEBop data when compared with the flux tower data, analysis of
performance as a function of the scale factors at flux tower locations showed that the performance
of the new method tends to provide a greater advantage at higher scale factor values, where the
methods differ more significantly. The SSEBop-WB product has the additional benefit of consistency
with other water budget components in the long term, without excessively exceeding long-term
precipitation and irrigation water supply. The breakdowns of correlation by month, land cover type,
and other variables will also be useful for deciding which method might be most appropriate for a
given application. Though all the monthly timescale correlations were statistically significant, the R
values for all methods were much lower for the monthly timescale than the overall R?, especially for
the winter months. The use of the products at the monthly or seasonal timescale should consider the
correlation levels in their use of the data sets. Though the comparison by land cover type more often
showed a higher R? for SSEBop-WB than SSEBop, the results are close and the RMSE for SSEBop were
either equal to or slightly lower than the RMSE for SSEBop-WB. These comparisons by land cover type
and time of year should help guide a user to which data set is more appropriate for an application; in
some months and/or land cover types, particularly in applications where water balance constraints
are not critical, the original SSEBop would be a better choice. In the overall comparison, and in most
subsets of data comparison, the MOD16 data set showed the poorest correlations of the three methods
tested. There were however a few specific months or land cover types for which MOD16 performed
the best, so consideration of an appropriate product for a given application could indicate selection
of MOD16.

Additional data sets were explored at the flux tower locations, such as irrigation presence, land
cover, precipitation, temperature, soil properties, and impervious surface percent to explore the
performance of SSEBop, MOD16, and the new SSEBop-WB method in different settings and at different
times of year, and also to test for potential correlations with residuals between the remote sensing
and flux tower measurements. Correlations with most variables tested were statistically significant,
indicating that the method performances were systematically if subtly impacted by factors such as
temperature, impervious surface percent, or precipitation rate. The temperature dependence showed
the highest correlation with SSEBop and SSEBop-WB, where 16-17% of the variance of the increase in
ET residual magnitude was explained by the value of the temperature. Such results could be used to
inform future improvements in the algorithm treatment of temperature.
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There has been some previous work to compare remote sensing-based estimates for ET with those
from water-balance-based estimates [1,30], but none has previously worked to explicitly combine the
two to capitalize on the complementary temporal frequency and magnitude accuracy advantages of
each. The method presented here to combine the two approaches will provide a unique angle for
future efforts to improve estimation of ET by incorporating all types of available data.

6. Conclusions

In this paper, a new data set has been produced and tested for the combination of ground-based
water balance data with remote sensing ET data. The combination aims to combine the advantages
of long-term magnitude accuracy and constraint within water budgets of the water-balance-based
estimates with the remote sensing benefits of enabling shorter-timescale measuring of ET and improved
accuracy in irrigated areas. By capitalizing on the complementary strengths of the two approaches,
we have presented a method for scaling remote sensing ET products to water-balance constraints
and produced a new SSEBop-WB ET data set for the monthly timescale. Such an approach could be
followed to constrain other remote sensing ET products as well, particularly if/where their use is
problematic due to errors related to exceeding water budget limitations. The new ET data set will be
particularly appropriate for applications where water budget consistency is important, such as water
balance hydrological models. Comparisons of the original SSEBop, the new SSEBop-WB, and the
additional MOD16 data sets against data from 119 flux towers across the CONUS provided information
about the performance of each method as a function of time of year, irrigation presence, and land
cover type. The SSEBop-WB showed an improvement particularly in non-irrigated areas, where the
SSEBop-WB R? = 0.44, as compared to the SSEBop R? = 0.41 or the MOD16 R? = 0.36. The original
SSEBop performed the best in the irrigated areas, and was left unscaled in those areas in the final
SSEBop-WB product. Over all data points, the SSEBop-WB showed the highest overall R? at 0.48,
followed closely by SSEBop at 0.47 and then MOD16 at 0.30. For different land cover types of times of
year, the method with the highest performance varied between the SSEBop-WB, SSEBop, and MOD16
data sets, and these results should be used to quantitatively guide users of these products to selection
of an appropriate data set for a given application. The analysis of residuals by location in the country
can help to inform checks on flux tower data accuracy as well as inform remote sensing method
development and refinement. The SSEBop-WB maps are freely available for download [31], as is the
scale factor map that could be used in conjunction with downloadable SSEBop data and the methods
described here. The approach of scaling the magnitude of remote sensing ET estimates to converge
to water balance-based data could also be taken in other regions outside the CONUS with sufficient
water balance data. The new ET maps produced in this work will be useful for a variety of applications
in water budget monitoring and water resource management.
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