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Abstract: Deep convolutional neural network (CNN) achieves outstanding performance in the field
of target detection. As one of the most typical targets in remote sensing images (RSIs), airport has
attracted increasing attention in recent years. However, the essential challenge for using deep CNN
to detect airport is the great imbalance between the number of airports and background examples in
large-scale RSIs, which may lead to over-fitting. In this paper, we develop a hard example mining
and weight-balanced strategy to construct a novel end-to-end convolutional neural network for
airport detection. The initial motivation of the proposed method is that backgrounds contain an
overwhelming number of easy examples and a few hard examples. Therefore, we design a hard
example mining layer to automatically select hard examples by their losses, and implement a new
weight-balanced loss function to optimize CNN. Meanwhile, the cascade design of proposal extraction
and object detection in our network releases the constraint on input image size and reduces spurious
false positives. Compared with geometric characteristics and low-level manually designed features,
the hard example mining based network could extract high-level features, which is more robust for
airport detection in complex environment. The proposed method is validated on a multi-scale dataset
with complex background collected from Google Earth. The experimental results demonstrate that
our proposed method is robust, and superior to the state-of-the-art airport detection models.

Keywords: airport detection; hard example mining; convolutional neural network; region proposal
network

1. Introduction

With a rapid development in sensor and remote sensing technologies, the amount of available
satellite imagery has an explosive growth in recent years. It is significant to automatically access
the valuable information from the huge volume of the remote sensing data [1–7]. Objects in remote
sensing images (RSIs) have many different orientations, size, and illumination densities since RSIs
are taken from the upper airspace with different imaging conditions. Airports detection from optical
remote sensing images has attracted increasing attention, since airport is one of the most important
traffic facilities with its civil and military applications. However, airport detection is still a challenging
problem, because the background around the airport is much more complicated. In addition, the size
of airport varies greatly with the development of the air transportation. Moreover, there is a great
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imbalance between the number of airports and backgrounds in large-scale RSIs, which may lead to a
biased training on detectors.

Currently, airport detection in large optical remote sensing images can be divided into two main
stages. The first stage is to locate airport candidate regions with heuristic search strategy or weak
classifiers, based on airport-specific geometrical property. The second stage is to extract discriminative
features to depict the candidate regions obtained from first stage and train a sophisticated classifier
to identify whether the candidate regions are airports or backgrounds. Owing to the generation of
airport candidate regions, it is possible to accomplish a significant speed-ups and reach high object
recall with considerably fewer detection windows than using sliding window paradigm. It is also
allowed for developing more sophisticated classifiers on airport identification stage to achieve better
airport detection performance. An effective candidate region extraction algorithm may also improve
final detection quality by reducing spurious candidate regions.

Since the airport runways often have specific lengths and widths, a great number of region
extraction methods use the geometric characteristics of the runway to filter the candidate regions.
Kou et al. [8] utilized the line segments detector (LSD) to extract the straight line segments and
analyzed the line segments to locate the airport candidate regions. In addition, Budak et al. [2]
found that LSD algorithm detects large number of lines with various lengths, which interrupts the
extraction of airport candidate areas. Therefore, a more robust LSD method was proposed to fetch
the parallel lines of runways in RSIs, thus enhancing the detection accuracy of the airport runway.
Other studies on the analysis of runways parallel lines utilized the Hough transform [9], the Radon
transform [10] to extract an airport candidate regions. In order to improve the efficiency of candidate
region extraction in large-scale RSIs, visual attention mechanism is employed in the airport detection,
which assumes that the airport is a salient region. Zhang et al. [11] proposed a spatial-frequency visual
saliency analysis algorithm to efficiently extract an airport candidate region in board-area RSIs. Taking
multi-resolution into consideration, Zhao et al. [1] presented a hierarchical reinforcement learning
saliency model to extract airport regions. In [12], Zhu et al. located the airport candidate region based
on bottom-up graph-based visual saliency (GBVS) and top-down saliency. In [13], Yao et al. combined
the cues of contrast and the line density to build the saliency model for rapidly localizing the airport
candidate areas.

After candidate region extraction, it is indispensable to identify these regions and remove
the spurious targets. Previous works first utilized geometric features, gradient-based features and
texture-based features to characterize candidate regions, then adopted more sophisticated classifiers to
precisely recognize the airport from the cluttered background. Tao et al. [14] identified airports via
several statistical measures such as mean, variance, and higher order moments in the candidate regions.
Zhu et al. [12] first used the scale-invariant feature transform (SIFT) [15] descriptor to characterize the
regions of interest (ROIs). Then an SVM and hierarchical discriminant regression tree were used to
determine whether ROIs contain an airport. In the work of [2], fisher vector was employed to encode
the SIFT descriptors extracted from candidate regions and classified by an SVM to confirmed the
airport areas. Yao et al. [13] used the conditional random field (CRF) model to capture the context
information in ROIs for the fine detection. Zhao et al. [1] adopted Latent Dirichlet Allocation (LDA)
topic model at multi-level to judge the state of the saliency detection and recognize the airports.

The majority of airport detection methods utilize line features of the runway to extract candidate
regions, and concentrate on the low-level manually designed features to describe the geometric
structure of airports. These methods have the advantages of simple design and easy explanation.
However, the line features may cause confusions with roadways, coastline, and mountain ridge. It is
also unstable to describe an airport in complex and cluttered background using manually designed
features. With the excellent performance of convolutional neural network (CNN) for object detection in
natural scene images [16–20], CNN has been introduced into the field of target detection at RSIs [21–27].
Zhang et al. [25] identified airport candidate regions with a CNN model transferred from AlexNet [16].
Although the satisfactory results have been reported in [25], CNN model is only used to classify the
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ROIs. The ROIs extraction still relies on the manually designed features, which has a great influence on
the accuracy of airport detection.

Moreover, for airport detector training in large-scale RSIs, the training set is distinguished by a
serious imbalance between the number of airports and background examples, which leads to inefficient
training process and even reduces final detection quality. Therefore, there is a great challenge on how
to select airport and background examples to keep airport-background class balance and further train
more superior classifier in a limited time.

Recent research indicates that detection datasets contain an overwhelming number of easy
examples and a small number of hard examples. So many scholars tried to mine the more representative
hard examples to balance the proportion of foreground-background class examples. Some promising
works were reported in [23,28–30]. Cheng et al. [28] adopted a two-step iterative training strategy that
alternates between updating the detection model given the training set, and selecting hard negative
examples using a updated detection model. In order to reduce the spurious targets in candidate regions
and improve the accuracy of the region proposal network, Zhang et al. [23] used the output score
map of the region proposal network to collect the hard negative examples and employed an iterative
process for retraining the network. Traditional methods usually freeze the model to mine negative
examples. However, the positive example mining is also important for avoiding missing detection.
In addition, freezing the model to collect hard examples would dramatically slow the progress of
model training.

To tackle these problems above, especially for balancing airport-background class examples, we
propose a hard examples mining based CNN method (HEM-CNN) in this paper. The proposed
method combines feature extraction, region proposal generation and airport identification into a
unified framework, thus accomplishing a significant speed-ups. The cascade strategy between
region proposal generation and airport identification greatly inhibits the false alarms existed in
airport detection. In our method, the shared CNN layers are first employed to extract a high-level
feature, which makes the extraction of airport candidate regions no longer rely on manual designed
features. Then, region proposal network with HEM achieves high-quality region proposals based on the
high-level feature. Finally, object detection network with HEM identifies the region proposals whether
contain an airport using shared CNN features. For balancing airport-background class examples in
network training, we develop a new designed hard example mining layer that automatically selects hard
examples by their loss. Moreover, we also define a new loss function both for region proposal network
and object detection network, which uses a weight-balanced strategy to compute the loss respectively on
airport and background examples. By adopting the hard example mining and weight-balanced strategy,
our method releases the ratio constraints on airport and background examples in the mini-batch.
This strategy avoids the network trapping into the local optimal, and improves the training efficiency.

The major contributions of our approach are summarized as follows.

1. We design a novel HEM-CNN framework for airport detection. It integrates shared features
extraction, proposal detection and object localization to achieve a speed-accuracy trade-off.
In addition, a more robust high-level feature is utilized to extract high-quality proposals in
our framework.

2. We introduce a new designed hard example mining layer into CNN, which is efficient to improve
the network training by automatically select positives and negatives. In addition, HEM layer
contributes to release the ratio constraint on airport-background examples.

3. We develop a weight-balanced loss function to compute the average loss respectively on airport
and background examples. It makes our network training focus on the hard examples and
achieves a precision-recall trade-off.

The rest of this paper is organized as follows. Section 2 presents the detail of our proposed
network. Section 3 analyzes the detection performance of the proposed network on a complicated and
challenging dataset. Finally, Section 4 concludes this paper.
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2. Methodology

As illustrated in Figure 1, our proposed framework consists of three main components, namely,
shared convolutional neural network, region proposal network, and object detection network.
These three networks are merged into a unified network to achieve an approximate joint training
with hard example mining. We demonstrate that our network achieves a better training and more
outstanding performance by embedding the hard example mining schemes into an end-to-end CNN
training process.

Feature
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RPN with HEMShared CNN
Object Detection Network

 with HEM Detection reusltInput Image

RPN Hard 

Example Mining 
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Object Detection 
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Example Layer
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Figure 1. The flowchart of the proposed method. The red arrows indicate the direction of the
backward propagation.

2.1. Shared Convolutional Neural Network

In order to describe the airport more accurately, shared convolutional neural network is constructed
to extract the high-level semantic features. In addition, these features will be shared between region
proposal network (RPN) and object detection network. It is conducive to improving the efficiency of
the whole end-to-end network. We merge RPN and object detection network into an overall framework
by using common convolutional features, rather than concatenate two independent networks.

Shared convolutional neural network is built with Zeiler and Fergus net (ZF) [31]. Since airports
are typically 800–2000 m in length, 18–60 m in width [14] and RSIs used for airport detection are usually
at low resolution ranging from 8 m to 60 m [1,12,25,32], we adopt the ZF net which has 5 shareable
convolutional layers. In addition, the effective receptive field of the last shared convolutional layer is
139 pixels on the input image, so that an airport region is wrapped entirely.

2.2. Region Proposal Network with HEM

To realize the real-time end-to-end airport detection network, this paper utilizes three
convolutional layers and a separate hard example mining layer to construct a region proposal network,
as shown in Figure 2. Given the feature map of remote sensing image, RPN will generate a set of
airport candidate regions.

In the region proposal network, the first convolutional layer has 256 kernels of size 3 × 3 with
stride of 1 pixel. The whole feature map of size w × h is performed first by this convolutional layer to
generate w × h × 256-dimensional feature tensor. In addition, each 256-dimensional features represents
the context information with receptive field 3×3 in convolutional feature map which is output by
the last shared convolutional layer. To harvest the airport candidate regions and their confidence,
the convolutional features obtained by the first convolutional layer will be fed into the next two sibling
convolutional layers, named box-regression layer and box-classification layer, which will predict the
bounding box and confidence of airport candidate regions, respectively. The box-regression layer
predicts the bounding box of airport candidate regions with 4 × α kernels of size 1 × 1 and the stride
of 1 pixel. α represents the number of anchors which will be explained at next subsection. In addition,
the box-classification layer evaluates the confidence of airport using 2 × α kernels of size 1 × 1 and the
stride of 1 pixel. The details of two sibling convolutional layers are available in [19]. Regression and
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classification on bounding box both require 256-dimensional features output by first convolutional
layer in RPN. In order to select hard examples from a large training set, the output of box-classification
and box-regression layers will be transmitted to the hard example mining layer in the training phase, as
depicted in Figure 2 with dotted line. Hard example mining layer combines the result of classification
and regression on bounding box to calculate the loss on training set. In addition, the probability
distribution of hard examples is constructed from the current examples losses, then the hard examples
will be sampled to group as mini-batch according to that distribution. Subsequently, the later loss layer
in Figure 2 will backward propagate the training error at current mini-batch and update the entire
region proposal network.

Only forward-propagated

RPN with HEMShared CNN

Hard 

Example 

Mining Layer

Softmax Classification 

Loss

Smooth-L1 Bbox 

Reg. Loss

Feature map

Box-classification Layer

Box-regression Layer

Figure 2. The framework of the RPN with hard example mining. The dotted line indicates that the
data is only delivered in single direction along the arrow.

2.2.1. Anchors

Airports usually have many different orientations and scales since RSIs are taken from the upper
airspace. To tackle this problem, region proposal network designs multiple scale and aspect ratio
anchors at each position of feature map. The box-regression and box-classification layer calculate the
calibration parameters and confidence for each anchor. After geometric calibration, the anchors are
output to compute the deviation with ground-truths. In addition, the final deviation is backward
propagated for updating the network parameters. Therefore, the scale and aspect ratio of anchors have
a significant effect on network training.

In this paper, the selection of aspect ratio and scale is determined by training set. Before training
the region proposal network, we count the aspect ratio and scale of airports respectively from the
entire positive examples. As shown in Figure 3, it can be seen that the distribution of scale in the
training set is mainly between 502 and 2702 pixels. In addition, the aspect ratio of airports roughly
ranges from 0.2 to 2.5. Therefore, we use three scales with box areas of 642, 1282, 2562 pixels, and three
aspect ratios of 0.5, 1, 2 to construct 9 anchors (α = 9) for extracting airport candidate regions.
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Figure 3. The distribution of airport regions on training set. (a) The distribution of scale; (b) the
distribution of aspect ratio.
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2.2.2. Hard Example Mining Layer

The original region proposal network [19] balances the foreground-to-background ratio to a target
of 1:1 by sampling the training examples randomly from input images. However, focusing on the
airport detection in RSIs, the number of non-airport regions is usually much more than the airport
regions. It is difficult to achieve the balance between positive and negative examples in each mini-batch.
Such huge imbalance on training set may cause an inefficient region proposal network. In this paper,
we develop a hard example mining layer that automatically selects hard examples as mini-batch in each
iterative update. This layer is embedded into the RPN to inhibit spurious targets in the airport detection.

In the hard example mining layer, the intersection over union between the anchors and the
ground-truths is first calculated to determine the positive anchors corresponding to the airport regions.
Then, this layer receives the output of box-regression and box-classification layers to compute the loss
on training set. In addition, the distribution of hard examples are constructed based on the current loss
at each example. Finally, the hard examples are sampled as mini-batch to backward propagate the
training error according to that distribution. In addition, a new loss function is designed to achieve
precision-recall trade-off and keep the weight of airport-background class balance, as follow:

Lrpn
hem (pi, ti) =

β

Npos
∑

i
Lcls (pi, p∗i )× 1 [p∗i = 1]

+
1

Nneg
∑

i
Lcls (pi, p∗i )× 1 [p∗i = 0] (1)

+
λ

Npos
∑

i
p∗i Lreg (ti, t∗i )

Here, Lcls
(

pi, p∗i
)

represents the classification log loss over airport and background. In addition,
1 [∗] denotes Iverson bracket indicator function [33], which evaluates to 1 if condition in square
brackets is satisfied, and 0 otherwise. So the first term and second term in this formula mean the
log loss on airports and backgrounds separately. The regression loss Lreg

(
ti, t∗i

)
is the smooth L1

defined in [19]. pi and p∗i respectively denote the predicted and ground-truth label. Both ti and t∗i are
vectors with 4 parameterized coordinates of bounding box, as mentioned in [19]. Npos and Nneg are
the number of airport and background examples in mini-batch, respectively. In addition, the three
terms in Equation (1) are normalized by Npos, Nneg and two balanced parameters β, λ.

As can be seen from Equation (1), the first two terms compute the average loss on positive
and negative examples respectively, which releases the restriction on airport-background proportion.
In addition, the third term is a regression loss that enforces our network to accurately locate an
airport within an image. In the HEM-CNN, we apply the hard example mining layer to select more
representative and hard training example, which is much difficult to distinguish. If any hard examples
were neglected, its loss would increase until it has a high probability of being sampled. At each
training iteration, the most representative examples in current image would be used to optimize
our network. In addition, with our designed loss function, it is not necessary to concern about the
airport-background class imbalance that obstructs the network training.

2.3. Object Detection Network with HEM

In our work, we utilize fast R-CNN as our object detection network and improve the performance
of network by hard example mining. Object detection network is trained by approximate joint training
together with region proposal network, as illustrated in Figure 4.
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Figure 4. The framework of the Object Detection Network with hard example mining. The dark dotted
line indicates that the data is only delivered in single direction along the arrow. In addition, loss-signals
are not backward propagated along the dotted line. The network parameters are shared between the
layers connected with a green dotted line.

The way of mining hard examples based on heuristic strategy in Fast R-CNN [17] is not applicable
to the airport detection in RSIs. In the Fast R-CNN, the negative examples partially overlapped
with the ground-truths are considered to be quite confused and easily misidentified as positives.
Therefore, these examples will be regarded as hard examples among training set and screened out
as essential data to optimized during network training. However, compared with natural images,
the background in RSIs is much more complicated. So it is unsatisfactory to only select the negative
examples partially overlapped with positives to construct mini-batch. Aiming at complex background
that disturb airport detection, this paper brings the strategy of hard example mining into the object
detection network. According to the current example loss, hard example mining in object detection
network is no longer dependent on heuristic strategy.

In object detection network training, we score all training proposals extracted from RPN by their
losses computed in object detection network. In addition, top Nodn

hard proposals with highest loss will be
chosen as the hard examples for training object detection network. To keep the airport-background class
balance in hard examples, the loss metric LdetNet

hem in object detection network is similar to Lrpn
hem (pi, ti) ,

as follows.

LdetNet
hem (pi, ti) =

β

Npos
∑

i
Lcls (pi, p∗i )× 1 [p∗i = 1]

+
1

Nneg
∑

i
Lcls (pi, p∗i )× 1 [p∗i = 0] (2)

+
λ

Npos
∑

i
p∗i Lreg (ti, t∗i )

2.4. Approximate Joint Training

Due to a large amount of labeled data frequently required to train a CNN model, it is insufficient
to learn so many network parameters using limited airport examples in RSIs [25]. However, the
optical remote sensing images has close similarity with natural images at low-level and middle-level
visual features. This paper follows the work in [25] that transfers the convolutional neural network
trained from a large number of natural images to airport detection in RSIs, and applies the labeled
airport dataset to fine-tune the pre-training network. To reduce over-fitting during fine-tuning phase,
we employ data augmentation on the airport training set. The airport training set is augmented to
obtain 48× training examples by horizontal, vertical reflection and rotating with different orientations
ranged from 30◦ to 330◦, with step 30◦.
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In this paper, the approximate joint training method is used to train the shared convolutional
neural network, RPN and object detection network in the unified framework, as shown in Figure 1.
In each stochastic gradient descent (SGD) iteration, the forward propagation first transmits the input
image into the shared convolutional neural network to extract the feature map. Then, the feature
map is employed to generate the region proposals in region proposal network. Finally, the extracted
region proposals will be used to train the object detection network. The backward propagation takes
place as usual for RPN and object detection networks [19]. Only for the shared convolutional neural
network, the backward propagated signals are dependent on both the RPN loss and object detection
network loss.

3. Results and Discussion

3.1. Dataset and Parameter Setting

To prove the performance of our method, we extend a complicated and challenging optical remote
sensing dataset [1] with 244 remote sensing images acquired from Google Earth, including 148 different
airports at different spatial resolutions. These remote sensing data contain airport images in different
regions with cluttered background, such as mountains, islands, cities, farmland, desert, hills and so
on. There are various viewpoints and illumination intensities in our dataset. The size of images is
500 × 600 pixels and spatial resolution ranges from 8 m to 60 m. There are 974 images in total and
ground-truth data are labeled manually. In our experiments, we implement a 5-fold cross validation
for the training and testing to increase the confidence in the numerical results. In addition, there are
20% images using for validation in training set. It results in three subsets: a training set containing
623 images, a validation set containing 156 images, and a test set containing 195 images. Based on the
dataset partition, the training set is augmented to obtain 48× training images.

In our work, the HEM-CNN is initialized by a pre-training model learned from natural images [31],
as a proper practice [25]. We fine-tune all layers of the ZF net for 40 k iterations with a momentum of
0.9, a weight decay of 0.0005, and a learning rate of 0.001. The parameters of λ and β are chosen as 1
and 0.25, with respectively. The validation results are presented in Table 1. The balanced parameter λ

is set to 1 to make classification and regression terms equally weighted. In addition, we set β = 0.25
to inhibit the false positives for complicate background in RSIs. We configure mini-batch size to 256
for training region proposal network. To train object detection network, all proposals generated from
RPN are first sorted based on their score. Then we pick up the top 12,000 proposals for non-maximum
suppression, and finally select the top 2000 proposals with high score to train the object detection
network. The mini-batch size in object detection network is set to 128 (Nodn

hard = 128).
The experiments were carried on a Windows server with an Intel(R) Xeon(R) CPU E5-2620 v2

@2.10GHz and a NVIDIA Tesla K40c GPUs with 12 GB onboard memory.

Table 1. Network performance on validation set according to different β and λ.

β 0.1 0.1 0.1 0.25 0.25 0.25 0.4 0.4 0.4
λ 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

Precision 0.979 0.9949 0.9803 0.98 0.9797 0.975 0.9753 0.9481 0.9209
Recall 0.8947 0.9378 0.9433 0.9378 0.9554 0.933 0.9339 0.9481 0.934

F1-Measure 0.935 0.9655 0.9614 0.9584 0.9674 0.9535 0.9542 0.9481 0.9274
AP 0.951 0.9602 0.9552 0.9577 0.9714 0.9627 0.9548 0.9693 0.9689
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3.2. Evaluation Metrics

In these experiments, we employ the precision-recall (PR) curve, average precision (AP) [13],
IoU-Recall (IR) curve [34], and F1-measure [28] to quantitatively evaluate the performance of our
HEM-CNN method. They are standard and widely used metrics in many target detection works,
such as those in Ref. [1,11,13,24,26,28,35].

The detection is considered to be correct when the intersection over union (IoU) between detection
box and ground-truth bounding box exceeds 40%, otherwise the detection box is assumed as a false
positive. IoU is defined as following formula:

IoU =
area

(
Bdet

⋂
Bgt
)

area
(

Bdet
⋃

Bgt
) × 100% (3)

Here, area
(

Bdet
⋂

Bgt
)

indicates the intersection area between detection box and ground-truth
bounding box, and area

(
Bdet

⋃
Bgt
)

indicates their union.

3.3. Verification of HEM and Weight-Balanced Loss Function

To discuss the airport-background class imbalance in RSIs, we made statistics about positive
and negative examples on the training set. As depicted in Table 2, we can find that the training set
contains airport and background examples with a ratio of 1:16. However, the RPN [19] and Fast
R-CNN [17] require training set composed of positive and negative examples with a ratio of 1:1 and 1:3,
with respectively. It proves that there exists a large imbalance on airport-background class examples for
training airport detector. Therefore, it is necessary to select more representative examples, for keeping
airport-background examples balance and avoiding the degeneration of network training.

Table 2. The statistics of examples on training set.

Positives Negatives

Examples number 25,712 409,374
Hard examples number (loss > 0) 9030 19,573

Average Loss 5.791 −0.897

Given the training set, the goal of network training is to minimize the loss function by updating
layer parameters. So we exploit a loss oriented strategy and further analyze the loss proportion on
positive and negative examples. As shown in Figure 5 and Table 2, it can be concluded that there are
much more negative examples with lower loss than positives. In this paper, we define the difficulty
of example by its loss, which means the example with higher loss is more difficult to distinguish by
neural network. In addition, top mini-batch-size examples with highest losses will be chosen as hard
examples for network training. Otherwise examples are assumed as easy examples. The hard and
easy examples are shown in Figure 5. Comparing hard ones with easy ones in images, we can found
following characteristics:

1. In contrast with hard examples, there are much more easy examples in RSIs.
2. Easy examples mainly concentrate on the background areas in RSIs, that is to say, negatives have

more easy examples than positives. So it is feasible to employ hard example mining to handle the
airport-background class imbalance.
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Figure 5. Hard and easy examples. The first row lists hard examples. The second row denotes easy
examples. The positive and negative examples are indicated by green and red rectangles, respectively.

Besides the mathematical definition of hard example above, we made a further study which
probes into the physical significance on hard example mining. For the task of airport detection, we
found out that most of hard examples formed into 6 categories including highway, salient roadway,
salient mountain ridge, riverbank, coastline, and regions partially overlapped with airport. It can be
seen from Figure 6a–c that highway, coastline and riverbank are always regarded as hard examples,
since they are similar with airport runway. Regions in Figure 6d,e are much more salient than other
areas and have some line features, which are commonly used in airport region extraction [13]. As for
regions in Figure 6f, it is hard for network to recognize their classes, due to the region overlapped
with airport. Faster R-CNN [19] also utilizes this heuristic region-overlap strategy to select hard
examples. From the above analysis on hard examples, it is reasonable to use our HEM strategy to
select representative examples for network training.

In order to evaluate the effectiveness of the hard example mining and weight-balanced loss
function, we make comparison on Faster R-CNN [19], Faster R-CNN with weight-balanced loss,
HEM without weight-balanced loss and HEM with weight-balanced loss. The experimental results
are shown in Figure 7 and Table 3, which prove that training network with HEM could promote the
performance of final network. Despite the number of negative examples is greater than positives,
our designed loss function also makes network optimization treat positives and negatives equally.
Our HEM-CNN method focuses more on hard examples with high loss, which improves the efficiency
of network training.

Table 3. Comparison of HEM and new loss function.

Method Precision Recall F1-Measure AP

Faster R-CNN [19] 0.8881 0.9386 0.9127 0.9462
Faster R-CNN with weight-balanced loss 0.9299 0.9387 0.9343 0.9472

HEM without weight-balanced loss 0.9863 0.9283 0.9564 0.9553
HEM with weight-balanced loss 0.9671 0.9465 0.9567 0.9702
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(a) (b) (c)

(d) (e) (f)

Figure 6. The 6-class hard examples. The positive and negative examples are indicated by green and
red rectangles, respectively. (a) highway; (b) coastline; (c) riverbank; (d) salient roadway; (e) salient
mountain ridge; (f) regions overlapped with airport .
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Figure 7. Comparison of HEM and new loss function.
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3.4. Performance on Region Proposal Method

To validate the capability of our region proposal network, we compare our RPN with different
proposal extraction methods, including Saliency and CRF [13], RPN [19], selective search [36]
commonly used in object detection [24,26]. The Saliency and CRF method extracts airport candidate
regions, based on the contrast and straight-line of airport runways. For selective search method, we
select top 1500 proposals as the airport candidate regions according to their priorities [26]. In RPN [19]
and our RPN with HEM, top 300 proposals with highest scores are chosen as the airport candidate
regions. To quantitatively evaluate proposal extraction method, the IoU-Recall curve is used to analyze
airports recall in testing set, since missed airport regions cannot be recovered in subsequent object
detection stage.

Figure 8 illustrates the performance of different proposal extraction methods. Considering the
trade-off between localization accuracy and recall, our network achieves the best performance than
other methods. Although the selective search method has a higher recall at low IoU, the candidate
regions simultaneously contain much more useless background information, which will disturb
the correct recognition on airport regions in airport identification. When IoU is higher than 0.2,
our proposal method has the highest recall than other methods, which confirms that hard example
mining can improve the recall of candidate region extraction. Moreover, the region extraction method
with excellent performance should not only achieve a good recall, but also have a low false positive
rate. Therefore we applied the PR curve to make a further comparison on this two region proposal
networks and analyzed the effect of the hard example mining in region proposal network. It can be
found from Figure 9b that RPN with HEM has a higher precision and recall than the original RPN [19],
since it is beneficial for network training to use hard examples which are always too confused and
difficult to recognized by traditional detector. Bringing hard example mining into RPN achieves a
better recall, and extremely suppresses the false positives in the proposal extraction stage.
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Figure 8. Comparison of the different detection proposal methods.



Remote Sens. 2017, 9, 1198 13 of 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

IoU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
e

c
a

ll

IoU vs Recall in RPN

heuristic sampling

hard negatives mining

randomly sampling

hard example mining

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

c
is

io
n

Recall vs Precision in RPN

heuristic sampling, AP=0.7101

hard negatives mining, AP=0.7557

randomly sampling, AP=0.7487

hard example mining, AP=0.7711

(b)

Figure 9. Comparison of the different sampling methods on region proposal. (a) IoU-Recall Curve in
RPN; (b) Precision-Recall curve in RPN.

3.5. Comparison on Different Sampling Methods

3.5.1. Overview Sampling Methods

We also implement a experiment to verify which sampling method is the most excellent for
network training. The sampling methods in this experiment are including random sampling, heuristic
sampling [17], hard negatives mining [23,28] and our hard examples mining. These three sampling
methods except ours all sample airport and background examples with a ratio of 1:1 in RPN and
1:3 in object detection network, respectively. In the experiment, we configure the mini-batch size to
256 in RPN and 128 in object detection network. If there are a few airport examples in an image,
we will pad the mini-batch with backgrounds. The random sampling method samples airport and
background examples in an image based on the uniform distribution. Heuristic sampling following [17],
selects background examples with some overlap with ground-truths, since these examples are more
likely to be confused. Hard negatives mining method activated by the work in [23], computes the loss
of all background examples in an image and sorts these examples by their losses, then takes examples
for which the current network performs worst. Hard example mining layer proposed in this paper,
sorts airport and background examples together and selects examples with higher loss as mini-batch.

3.5.2. Evaluating Sampling Method on Region Proposal

Figure 9 demonstrates the quantitative comparison results of four different sampling methods,
measured by IoU-Recall curve and PR curve, respectively. The experimental results show that it is
capable to greatly improve the recall and precision of the region proposal network by introducing
the hard example mining layer into the RPN. Compared to other sampling methods, only HEM
simultaneously selects airport and background examples by their losses which consists of two parts: the
error of classification and localization, as shown in Equation (1). Therefore, hard example mining not
only considers the correct classification, but also focuses on the accuracy of localization. The heuristic
sampling method selects hard background examples overlapped with ground-truths. However,
random sampling collects mini-batch examples at any location of whole image. It can grasp all kinds
of examples in complicate RSI. So random sampling has a better precision than heuristic sampling
method. The hard negatives mining method has a worse recall than other methods, and the reason may
be the huge loss gap between the background and airport examples. Even if the mini-batch contains
airport and background examples, network training mainly concentrates on the correct classification
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on these hard backgrounds. In addition, the ratio between airport and background examples also limits
the effective mining on hard background examples, resulting in the missing detection on airports.

3.5.3. Evaluating Sampling Method on Final Detection

After comparing different sampling methods on region proposal network, we further evaluate the
effect of sampling methods on the final detection. As shown in Figure 10, our hard example mining
method achieves the best performance. Although negatives mining obtains a higher precision, it also
misses more airport targets as depicted in Table 4. Heuristic sampling has a high recall, but its precision
is the worst in the four sampling methods. This adequately shows that heuristic sampling ignores some
infrequent, but important, difficult background regions without overlap with ground-truths. However,
hard example mining is directly dependent on the example loss at network forward propagation,
rather than a spatial priori information used in heuristic sampling. So hard background examples with
higher loss will attract more attention, which greatly inhibit the spurious airport regions and improve
the detection accuracy. Based on the optimal sampling method determined above, our network adopts
hard example mining as our sampling method for network training.
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Figure 10. Comparison of the different sampling methods on final detection.

Table 4. Comparison of the different sampling methods on final detection.

Sampling Method Random Sampling Heuristic Sampling [17]
Hard Negatives
Mining [23,28]

Hard Example
Mining

Precision 0.8881 0.7478 0.9773 0.9671
Recall 0.9386 0.9443 0.8971 0.9465

F1-Measure 0.9127 0.8347 0.9355 0.9567
AP 0.9462 0.9524 0.9473 0.9702
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Comparing the results in Figures 9b and 10, we can find that object detection network improves
the recall and precision in final detection. This shows that the region proposal network with relatively
low recall is probably due to the poor localization of RPN. The candidate regions extracted from
RPN not only cover the airport area, but also contain the extra background area, so the IoU between
proposals and ground-truths is relatively low. Object detection network enhances localization accuracy
using bounding-box regression and eliminates the false positives generated in proposal extraction
stage. Therefore the object detection network has an irreplaceable role in our HEM-CNN method.

3.6. Comparison on State-of-the-Art Airport Detection Methods

To quantitatively evaluate our network, we compared it with three traditional state-of-the-art
methods and two CNN methods, in which the BU and TD saliency [12], the HRL [1], the saliency
and CRF [13], CNN with USB-BBR [26] and the Faster R-CNN model [19] are employed, respectively.
For a fair comparison, we applied the same training set and testing set for HEM-CNN and other
comparison methods.

Table 5, Figures 11 and 12 show the comparison results of different methods, measured by
Precision, Recall, AP values, F1-Measure, and PR curve, respectively. A similar conclusion can be
made for the experiment results, in that our proposed method outperform all other methods and the
average computing time is about 0.12 seconds per image. The methods in [1,12,13] combine saliency
with the line characteristics of the airport runways to detect airport regions. However, it is inefficient
to identify the airport regions in complex and cluttered environment with multiple spatial resolutions.
As shown in Figures 12–14, there are a lot of false positives in traditional airport detection results.
Because traditional airport detection methods can be disturbed by targets with line features, such as
roads, riverbank, and regular distribution of farmland. Compared with the traditional manually
designed low-level features and saliency features, the high-level features extracted by CNN have a
better expressive power on airports. It can be seen from Table 5 that CNN methods are more accurate
than traditional airport detection methods. However, CNN with USB-BBR [26] has a worse recall than
traditional methods, since the selective search method could not extract plentiful airport candidate
regions. Therefore, it is necessary to adopt an end-to-end network structure, which applies high-level
features sufficiently for candidate region extraction and airport identification.

It can be seen from Table 5 that Faster R-CNN [19] achieves a better precision and recall than
CNN with USB-BBR [26] and traditional airport detection methods [1,12,13]. However, as shown in
Figures 12–14, Faster R-CNN [19] still misses a large amount of airport regions with small size, due to
the example with small size has less available information in RSI. These examples with small size are
much harder and should be taken into more consideration by the network. Faster R-CNN [19] adopts
a random sampling method to obtain mini-batch for updating the network. Random sampling equally
selects examples regardless of their size or difficulty. It results in ignoring the correct classification on
hard examples with small size, since easy examples can overwhelm training. Therefore, airport targets
with small size are miss detected in the RSIs. By contrast, our HEM-CNN method is more robust
than traditional airport detection methods under different illuminations and viewpoints. Meanwhile,
comparing with the Faster R-CNN method, the embedding of hard example mining and new loss
function enhances the network adaptability in complicated imaging conditions.
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Figure 11. Comparison of the different airport detection methods.

(a) (b) (c) (d) (e) (f)

Figure 12. Detection results of different airport detection methods. The true positives, false positives,
and ground-truths are indicated by red, blue and green rectangles, respectively. (a) BU and TD
saliency [12]. (b) Saliency and CRF [13]. (c) HRL [1]. (d) CNN with USB-BBR [26]. (e) Faster
R-CNN [19]. (f) our network.
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(a) (b) (c) (d) (e) (f)

Figure 13. Detection results at different illuminations. The true positives, false positives, and
ground-truths are indicated by red, blue and green rectangles, respectively. (a) BU and TD saliency [12].
(b) Saliency and CRF [13]. (c) HRL [1]. (d) CNN with USB-BBR [26]. (e) Faster R-CNN [19].
(f) our network.

(a) (b) (c) (d) (e) (f)

Figure 14. Detection results at different viewpoints. The true positives, false positives, and
ground-truths are indicated by red, blue and green rectangles, respectively. (a) BU and TD saliency [12].
(b) Saliency and CRF [13]. (c) HRL [1]. (d) CNN with USB-BBR [26]. (e) Faster R-CNN [19].
(f) our network.

Table 5. Comparison of the different airport detection methods.

Detection
Method

BU and TD
Saliency [12] HRL [1]

Saliency and
CRF [13]

CNN with
USB-BBR [26] Faster R-CNN [19] Ours

Precision 0.8096 0.8077 0.7145 0.8411 0.8881 0.9671
Recall 0.7188 0.7283 0.716 0.6575 0.9386 0.9465

F1-Measure 0.7615 0.7659 0.7152 0.7381 0.9127 0.9567
AP 0.6046 0.5845 0.5549 0.6427 0.9462 0.9702

Average time (s) 2.12 3.52 1.97 4.90 0.13 0.12
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3.7. Performance Analysis on Illumination and resolution

3.7.1. Illumination

To analyse the effect of illumination on the proposed method, we divide the testing set into two
different illumination subsets. Table 6 shows the detection results of the proposed method under
different illuminations. We found that higher precision and recall are achieved in sufficient illumination.
Although the proposed method has a performance decay in deficient illumination, the difference on
precision and recall is less than 1% between sufficient and deficient illuminations. Therefore, it can be
concluded from this result that our proposed method is robust to the different illuminations.

Table 6. The effect of illumination on our proposed method.

Illumination Sufficiency Deficiency

Precision 0.9701 0.9613
Recall 0.9498 0.9405

3.7.2. Resolution

According to the spatial resolution of images, we divide testing set into four levels, where level
1 is 36 to 60 m/pixel, level 2 is 18 to 36 m/pixel, level 3 is 9 to 18 m/pixel, and level 4 is 9 m/pixel
or less. We summarize the detection results as shown in Table 7. It can be seen that the proposed
method has the lowest recall with 92.84% at level 1, and gets the worst precision at level 4. The reason
why precision has a decay in the higher resolution is that our network extracts a few regions which
are part of airports. In addition, these regions are assumed as false positives due to the strict metric
IoU (≥ 40%) used in our experiments. At a lower resolution, although the HEM can reduce miss
detections by focusing more on regions with small size, the limited spatial information still weakens
the localization accuracy, and results in misdetections.

Table 7. The effect of resolution on our proposed method.

Resolution Level 1 Level 2 Level 3 Level 4

Precision 1 0.9881 0.9619 0.8913
Recall 0.9284 0.9513 0.9538 0.9441

4. Conclusions

In this paper, we have proposed an end-to-end HEM-CNN framework to tackle the
airport-background class imbalance in CNN training. The end-to-end structure of HEM-CNN would
release the constraint on image size and accelerate the network training. In addition, the cascade design
of RPN and object detection network reduces false positives tremendously. Our framework contains a
new designed hard example mining layer, which selects more representative examples for network
training. To achieve precision-recall trade-off, we train HEM-CNN framework by a weight-balanced
loss function. It is efficient to train our network by hard example mining and weight-balanced loss
function. The experiments demonstrated that the high-level features extracted by CNN are more robust
than manually designed features for airport detection. RPN in HEM-CNN achieves high-quality region
proposals by this high-level features. From the experimental results, we find that our HEM-CNN could
obtain a outstanding performance on airport detection in complicated environment. In the future
work, we will further study the impact of hard example mining on network training, and enhance the
detection accuracy of RPN so that it can replace the object detection network to efficiently accomplish
the airport detection task.
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