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Abstract: Distribution, migration and transformation of chromophoric dissolved organic matter
(CDOM) in coastal waters are closely related to marine biogeochemical cycle. Ocean color remote
sensing retrieval of CDOM absorption coefficient (ag(λ)) can be used as an indicator to trace the
distribution and variation characteristics of the Changjiang diluted water, and further to help
understand estuarine and coastal biogeochemical processes in large spatial and temporal scales.
The quasi-analytical algorithm (QAA) has been widely applied to remote sensing inversions of
optical and biogeochemical parameters in water bodies such as oceanic and coastal waters, however,
whether the algorithm can be applicable to highly turbid waters (i.e., Changjiang estuarine and coastal
waters) is still unknown. In this study, large amounts of in situ data accumulated in the Changjiang
estuarine and coastal waters from 9 cruise campaigns during 2011 and 2015 are used to verify and
calibrate the QAA. Furthermore, the QAA is remodified for CDOM retrieval by employing a CDOM
algorithm (QAA_CDOM). Consequently, based on the QAA and the QAA_CDOM, we developed
a new version of algorithm, named QAA_cj, which is more suitable for highly turbid waters, e.g.,
Changjiang estuarine and coastal waters, to decompose ag from adg (CDOM and non-pigmented
particles absorption coefficient). By comparison of matchups between Geostationary Ocean Color
Imager (GOCI) retrievals and in situ data, it reveals that the accuracy of retrievals from calibrated
QAA is significantly improved. The root mean square error (RMSE), mean absolute relative error
(MARE) and bias of total absorption coefficients (a(λ)) are lower than 1.17, 0.52 and 0.66 m−1,
and ag(λ) at 443 nm are lower than 0.07, 0.42 and 0.018 m−1. These results indicate that the calibrated
algorithm has a better applicability and prospect for highly turbid coastal waters with extremely
complicated optical properties. Thus, reliable CDOM products from the improved QAA_cj can
advance our understanding of the land-ocean interaction process by earth observations in monitoring
spatial-temporal distribution of the river plume into sea.
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1. Introduction

Remote sensing of oceans and coastal zones is a key technology for monitoring spatial-temporal
distribution of the river plume into sea and understanding of the land-ocean interaction processes.
Satellite retrievals of inherent optical parameters (IOPs) of waters such as absorption and scattering
characteristics is one of the most important applications of ocean color remote sensing [1]. Furthermore,
chlorophyll, chromophoric dissolved organic matter (CDOM), suspended sediment and other
water component concentrations can be derived from IOPs, which leads to further estimations of
phytoplankton biomass, primary productivity and heat flux [2]. The IOPs mainly include absorption
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coefficient (a(λ), see Table 1 for symbols and definitions) and backscattering coefficient. They are the
source of the satellite remote sensing to quantify ocean water information [3], and key parameters
of bio-optical models [4]. CDOM absorption coefficient is often used as a tracer to evaluate the
amount of nutrients carried by Changjiang diluted water. Numerous applications of remote sensing
have allowed to retrieve main components of water (i.e., phytoplankton, non-pigmented particles
and CDOM) worldwide [5–7]. In CDOM-rich regions, such as North America and northern Europe,
CDOM determines the optical properties of marine waters to a large extent and its existence can affect
marine biogeochemical processes by the light absorption. Bricaud et al. [8] pointed out that even low
concentrations of CDOM in the open sea may have an effect on absorption and hence on ocean color
similar to that of low or moderate algal biomass; Nieke et al. [9] supported the possibility of using
light absorption characteristics of CDOM in coastal waters strongly influenced by freshwater runoff in
the Estuary and Gulf of St. Lawrence system (Canada); Darecki et al. [10] found a strong influence
of CDOM absorption on the quantitative and qualitative features of spectral reflectance of in two
different water bodies with similar chlorophyll content in the Baltic Sea; Hu et al. [11] estimated ag to
study occurrence and distribution of red tides in coastal waters off South Florida; Bowers et al. [12]
used salinity to determinate ag in an estuary for exploring the river discharge.

A number of algorithms were proposed to quantify ag(λ) from spectral measurements of ocean
water. Empirical algorithms [13–19] were mostly based on spectral reflectance ratios to calculate
ag(λ), and these algorithms required adequate data to parameterize the model and may only be
valid for specific locations. Algorithms based on statistical modeling [18,20–24], such as optimization
(Garver-Siegel-Maritorena, GSM), matrix inversion algorithm, artificial neural network (aNN) and
Linear Matrix Inversion (LMI) algorithm, used some semi-analytical methodologies, but required
knowledge about specific biochemical parameters [5]. Semi-analytical algorithms [25–27] mostly
use Rrs(λ) to calculate IOPs and further to estimate biochemical parameters, which incorporate both
empirical parameters and bio-optical models. The quasi-analytical algorithm (QAA) developed by
Lee et al. [28] was widely applied during the last decade. Several updated versions were presented in
following years [29–31]. Recent version (QAA_v6) has been presented online by Lee [31].

Although the QAA algorithm is widely used [30,32–35], some researches pointed out that there
are still large uncertainties in deriving optical properties for optically complex Case 2 waters [36–38].
Under the joint influences of river runoffs, tidal currents, marine circulations, etc., the hydrodynamic
and biogeochemical environment in the Changjiang estuary and its adjacent coastal waters is
unique, characterizing by high turbidity and complicated optical properties [39–41]. Among these
drivers, the Changjiang diluted water with low salinity and high levels of nutrients and suspended
sediment [42–45] makes greatest contribution to the optical complexity in the region of Changjiang
River mouth due to its obvious seasonal changes. Compared to the clear oceanic waters, due to the
lack of in situ data support, an application of QAA in the Changjiang estuarine and coastal waters is
rarely reported in the literature.

Therefore, improvements to QAA over optically complex and highly turbid waters is in great
demand considering successful absorption retrieval from ocean color remote sensing would provide a
considerable advance in the release of satellite product and estimation of water components in the
future. The objective of this study is to improve QAA algorithm and enhance an accuracy of QAA
retrieval from satellite data in the Changjiang estuarine and coastal waters. The applicability of QAA
is tested in the study area at first and then we perform a verification and calibration of QAA based
on large amounts of in situ data accumulated during 9 voyage surveys from 2011 to 2015. Moreover,
we calibrate the QAA_v6 and propose QAA_cj for retrieving both total and CDOM spectral absorption
coefficients. Through applying to GOCI level-1 products, QAA_cj is finally validated with in situ data
and compared with QAA_v6.
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Table 1. Symbols and definitions.

Symbol Description Unit

a Total absorption coefficient, aw + aph + ag + ad m−1

anw Non-water absorption coefficient, a − aw = aph + ag + ad m−1

aw Pure water absorption coefficients m−1

aph Phytoplankton absorption coefficients m−1

ag CDOM absorption coefficients m−1

ad Non-phytoplankton particulate absorption coefficients m−1

ap Particulate absorption coefficients, aph + ad m−1

adg Combined CDOM and non-pigmented particulate absorption coefficient, ag + ad m−1

bbp Particulate backscattering coefficient m−1

bbw Pure seawater backscattering coefficient m−1

bb Total backscattering coefficient, bbw + bbp m−1

Y Power of the spectral particulate backscattering coefficient
Rrs Above-surface remote-sensing reflectance sr−1

rrs Below-surface remote-sensing reflectance sr−1

S Exponential slope of the CDOM spectral absorption coefficient nm−1

u Ratio of backscattering coefficient to the sum of absorption and backscattering
coefficients, bb/(a + bb)

λ0 Reference wavelength nm

2. Materials and Methods

2.1. Shipborne Samplings and Measurements

Water samples were collected during nine cruise campaigns in the Changjiang estuarine and
coastal waters from 2011 to 2015. Spectral radiometric parameters (i.e., spectral downwelling irradiance,
Ed, spectral incident radiance, Ls, total spectral upwelling radiance, Ltot) for estimating Rrs(λ) were
measured by Hyperspectral surface acquisition system (HyperSAS, Satlantic Inc.®, Halifax, NS,
Canada). A total of 371 surface data samples was collected. Two radiance sensors were pointed
to the sea and sky, respectively, at an optimal zenith angle of 40◦, and at an optimal azimuth angle of
135◦ away from the sun, in order to maximally avoid the wind speed impact and minimize solar glitter
effects [46].

Spectral absorption coefficients a(λ, z) and attenuation coefficients c(λ, z) (z is the depth in meters)
were measured in situ by WETLabs® absorption and attenuation meter (ac-s) during downcasts and
upcasts as water flowed through the ac-s meter. A total of 479 data samples of a was obtained. bb(λ, z)
values were measured simultaneously by WETLabs® ECO-BB9 backscattering sensors (at wavelengths
of 412, 440, 488, 510, 532, 595, 650, 676, and 715 nm, and at a scattering angle of 117◦). 515 data samples
of bbp were collected.

CDOM water samples were obtained through filtration on shipboard using a 0.22 µm
polycarbonate membrane (Millipore, 47 mm diameter, MilliporeSigma, Burlington, MA, USA) under
low vacuum immediately after sampling. The membranes were soaked in 10% HCl for 15 min and
then rinsed by Milli-Q water three times before filtration. The filtered CDOM samples were collected
in borosilicate glass vials, and then stored in a −40 ◦C refrigerator. All vials were pre-soaked in 10%
HCl for 24 h, rinsed by Milli-Q water for three times, and pre-combusted at 450 ◦C for 5 h. A total of
551 data samples were obtained.

Data processing methods were detailed in Section 2.2. A total of 181 matchups containing
simultaneous data of Rrs, a and bb were obtained. Furthermore, SPSS software (IBM®, version 22.0)
was used to control data quality. Excluding the sampling data deviating from the mean values more
than ±3σ, 144 matchup data were reserved for the analysis. In addition, 159 matchup data of ag and
Rrs were collected. All matchup locations are shown in Figure 1a. Meanwhile, two sets of matchup
data were randomly divided into two parts, of which 70% were used to calibrate algorithm, and 30%
to validate algorithm.
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Figure 1. Location of sampling stations in the Changjiang estuarine and coastal waters. (a) Samples 
were collected from 9 cruises in summer (May, July 2011, August 2013 and July 2015) and winter 
(February, March 2012, March 2013, February 2014 and March 2015); (b) Matchup stations selected 
for in situ and GOCI images (empty circles and stars represent the matchup time windows within 
±24 h, filled circles and stars within ±3 h). 

Typical spectra of remote-sensing reflectance collected in the Changjiang estuarine and its 
adjacent coastal waters are shown in Figure 2a,b shows the sun zenith angle and weather conditions 
of in situ Rrs(λ) validation data. 

Figure 2. (a) Typical spectra of remote-sensing reflectance collected in the Changjiang estuarine and 
its adjacent coastal waters; (b) The sun zenith angle and weather conditions of in situ Rrs(λ) 
validation data. 

2.2. Data Processing 

Through in situ measurements of downwelling spectral irradiance, Ed(λ), incident spectral 
radiance, Ls(λ), total upwelling spectral radiance, Ltot(λ), Rrs(λ) is estimated by Sokoletsky and Shen 
[47]: ( ) = ( ) − ( ) , ( )( )  (1) 

where ρsky(λ) stands for a ratio of spectral reflected sky radiance, and Ls,sky(λ) for incident spectral 
sky radiance. The estimations of ρsky(λ), Ls,sky(λ) and Rrs(λ) were detailed in Sokoletsky and Shen [47]. 

Because a(λ) is affected by temperature, salinity, pure water absorption and total scattering, it 
must be corrected [47–49]. For the most important and simultaneously the most difficult scattering 

Figure 1. Location of sampling stations in the Changjiang estuarine and coastal waters. (a) Samples
were collected from 9 cruises in summer (May, July 2011, August 2013 and July 2015) and winter
(February, March 2012, March 2013, February 2014 and March 2015); (b) Matchup stations selected for
in situ and GOCI images (empty circles and stars represent the matchup time windows within ±24 h,
filled circles and stars within ±3 h).

Typical spectra of remote-sensing reflectance collected in the Changjiang estuarine and its adjacent
coastal waters are shown in Figure 2a,b shows the sun zenith angle and weather conditions of in situ
Rrs(λ) validation data.
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Figure 2. (a) Typical spectra of remote-sensing reflectance collected in the Changjiang estuarine
and its adjacent coastal waters; (b) The sun zenith angle and weather conditions of in situ Rrs(λ)
validation data.

2.2. Data Processing

Through in situ measurements of downwelling spectral irradiance, Ed(λ), incident spectral
radiance, Ls(λ), total upwelling spectral radiance, Ltot(λ), Rrs(λ) is estimated by Sokoletsky and Shen [47]:

Rrs(λ) =
Ltot(λ)− ρsky(λ)Ls,sky(λ)

Ed(λ)
(1)

where ρsky(λ) stands for a ratio of spectral reflected sky radiance, and Ls,sky(λ) for incident spectral sky
radiance. The estimations of ρsky(λ), Ls,sky(λ) and Rrs(λ) were detailed in Sokoletsky and Shen [47].
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Because a(λ) is affected by temperature, salinity, pure water absorption and total scattering, it must
be corrected [47–49]. For the most important and simultaneously the most difficult scattering correction
procedure for the anw(λ), we have used a modified Boss’s method (MBM) which was described in
Sokoletsky and Shen [47]. The average of a(λ, z) in depths of 0.5~1.5 m is adopted for the surface data.
bbp(λ) is calculated using a scale factor supplied by the WETLabs Inc. [48]. The specific correction
method of bbp is described in Sokoletsky and Shen [47]. In turbid waters, bbp at λ < 488 nm measured
by ECO-BB9 is generally too low due to absorption effects. Therefore, a spectral power function fitting
was conducted, based on bbp(λ, z) values measured at λ ≥ 488 nm [47]. In this study, the average of
bbp(λ, z) in depths of 0.5 to 1.5 m is adopted for the surface values.

In laboratory, CDOM samples were unfrozen and warmed to room temperature under dark light
conditions. CDOM absorbance spectra, D(λ), were measured by PerkinElmer Lambda 1050 UV/VIS
spectrophotometer. ag(λ) was derived as follows [39]:

a′g = 2.303× D(λ)

l
(2)

where a′g(λ) represent uncorrected values of ag(λ) at wavelength λ, λ in nm; l is the length of cuvette,
l = 0.1 m. Further, these initial values were scattering corrected as follows [8]:

ag(λ) = a′g(λ)− a′g(700)× λ

700
(3)

where ag(λ) is the final CDOM absorption coefficient.

2.3. Satellite Images

Satellite images were captured by the Geostationary Ocean Color Imager (GOCI) launched
by Korean Ocean Satellite Center, which is the world’s first geostationary ocean color observation
sensor [50]. GOCI image covers 2500 × 2500 square kilometers, including Bohai Sea, Yellow Sea
and East China Sea. GOCI collects eight images per day between 8:00 to 15:00 (Beijing time) at
each hour, in a 500 m spatial resolution. GOCI has 6 visible wavebands centered at 412, 443, 490,
555, 660, 680 nm, and two near-infrared wavebands centered at 745 and 865 nm. GOCI data and
products can be downloaded from official website (http://kosc.kiost.ac). This study used GOCI
level-1 top-of-atmosphere (TOA) radiance data. Through performing atmospheric correction method
proposed by Pan et al. [51], which is applicable for the Changjiang estuarine and coastal waters,
the TOA radiance data are then inversed into the water surface remote-sensing spectral reflectance
Rrs(λ). Afterwards, GOCI images Rrs(λ) were used for CDOM retrieval. Quasi-synchronous matchups
between GOCI overpass observations and ground samplings were available during 6 March 2012 and
22 March 2015. A time window between in situ and satellite data was set at ±3 h for the Changjiang
estuary, and ±24 h for the outer oceanic area. A mean value from a 3 × 3 pixel box centered at each
sampling site is used aiming to reduce sensor and algorithm noise. A total of 28 images were obtained.
Locations and time intervals of matchup samples are shown in Figure 1b.

2.4. QAA_v6

The QAA_v6 is developed from QAA that is based on the relationship between rrs and IOPs from
Gordon et al. [52]:

rrs(λ) = g0 u(λ) + g1[u(λ)]
2 (4)

u =
bb

a + bb
(5)

http://kosc.kiost.ac
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where the values of g0 = 0.089 and g1 = 0.1245 were accepted in this study in accordance with the
QAA_v6. rrs(λ) has a computable relation with Rrs(λ) according to the following Equation (1) (QAA_v6,
step 0),which can be derived from Rrs to obtain IOPs:

rrs(λ) =
Rrs(λ)

0.52 + 1.7Rrs(λ)
(6)

The QAA_v6 algorithm was divided into two parts: in the first part, reference wavelength λ0 was
selected, and then bbp(λ) and a(λ) were estimated by semi-analytical and analytical algorithms. In this
process, aph(λ), ag(λ), and ad(λ) were not taken into account. In the second part, the total absorption
coefficient which was derived from the first part was decomposed into absorption coefficients of its
major components.

In the first part of the algorithm, two reference wavelengths were used in QAA_v6, which are 55X
(here X means any number from 0 to 9; for example, it was 5 in previous versions of the QAA (version
1, 2, 3 and 4)) and 670 nm, designed for oceanic and coastal waters, respectively. The a(λ0) could be
estimated from Rrs(443), Rrs(490), Rrs(55X), and Rrs(670) according to empirical formula (QAA_v6,
step 2):

If Rrs(670) < 0.0015 sr−1:

a(λ0 = 55X) = aw(λ0) + 10h0+h1x+h2x2
, where

x = log [ rrs(443)+rrs(490)

rrs(55X)+5rrs(670) rrs(670)
rrs(490)

]

else :

a(λ0 = 670) = aw(670) + 0.39[ Rrs(670)
Rrs(443)+Rrs(490) ]

1.14

(7)

where a(λ0) is an empirical coefficient relating to the specific study area, h0 = −1.146, h1 = −1.366,
h2 = −0.469. Therefore, it is calibrated by fitting Equation (7) by using in situ data in the study area,
which is detailed in Section 3.1.

bb(λ) is expressed by Lee [31] (QAA_v6, step 5):

bb(λ) = bbw(λ) + bbp(λ0)

(
λ0

λ

)Y
(8)

where Y is an empirical coefficient relating to the specific study area. Therefore, it is calibrated by
fitting Equation (8) using in situ data in the study area, which is detailed in Section 3.1.

In the second part, a(λ), was decomposed into two partial absorption coefficients: adg(λ) and
aph(λ). The expression for adg is given by Lee [31] (QAA_v6, step 9):

adg(λ) = adg(443) exp [−S(443− λ)] (9)

where S is the exponential slope for adg(λ). According to QAA_v6, S values can be estimated by
spectral ratio (QAA_v6, step 8):

S = 0.015 +
0.002

0.6 + rrs(443)
rrs(55x)

(10)

Since S values are influenced by CDOM and phytoplankton detritus, they are difficult to estimate
accurately. In this study, we reestablished the empirical formula based on in situ data, which is detailed
in Section 3.1.
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2.5. QAA_CDOM

To retrieve ag, the mixture variable adg needs to be further decomposed to ag and ad. However,
the QAA_v6 cannot separate ag from adg so far. In this study, we use QAA_CDOM algorithm proposed
by Zhu and Yu [26] and Zhu et al. [27] to separate ag(443) and ad(443) by:

ap(443) = j1bbp(555)j2 (11)

ag(443) = a(443)− ap(443)− aw(443) (12)

ad(443) = adg(443)− ag(443) (13)

where j1 and j2 are calculated by fitting Equation (11) by using in situ data in the study area, which is
detailed in Section 3.1.

Zhu and Yu [26] and Zhu et al. [27] used the in situ data (water types vary from clear Case 1
to turbid Case 2) to prove the effectiveness of this algorithm. The algorithm takes an advantage of
bbp(555) to estimate ap(443). Therefore, ag(443) can eventually be obtained by subtracting ap(443) and
aw(443) from a(443) estimated by the QAA_v6.

2.6. Accuracy Assessment

The accuracy of calibration algorithm can be evaluated by four statistical indices,
root-mean-square-error (RMSE), mean absolute relative error (MARE), bias and the coefficient of
determination (R2). These indices are defined as follows (N is the number of samples):

RMSE =

√
∑N

i=1(Xest,i − Xmea,i)
2

N
(14)

MARE =
1
N

N

∑
i=1

|Xest,i − Xmea,i|
Xmea,i

(15)

bias =
1
N

N

∑
i=1

(Xest,i − Xmea,i) (16)

where Xest,i and Xmea,i are predicted and in situ values of optical parameters, respectively.

3. Results

3.1. QAA_cj Calibration

In this work, QAA_cj which is a combination of QAA_v6 and QAA_CDOM, is proposed especially
for CDOM retrieval in highly turbid waters, i.e., the Changjiang estuarine and its adjacent coastal
waters. Considering the QAA_v6 algorithms contain several empirical formula that depends on
datasets (i.e., original QAA, IOCCG and NOMAD datasets), IOPs were obtained mostly from oceanic
waters and partly from coastal waters, which is significantly different from IOPs data in the Changjiang
estuarine and coastal waters. By comparison, IOPs of the Changjiang estuarine and coastal waters
have a large variability (Table 2).
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Table 2. Descriptive statistics of water constituent concentrations for the Changjiang estuarine and its
adjacent coastal waters (CV is the ratio of standard deviation to the mean).

Min Max Median Mean Standard Deviation CV

a(443) (m−1) 0.27 8.58 1.02 1.53 1.46 0.95
bbp(443) (m−1) 0.014 6.85 0.14 0.38 0.77 2.05
ag(443) (m−1) 0.029 0.65 0.12 0.17 0.13 0.74
Chl-a (µg·L−1) 0.082 20.32 0.95 2.02 3.19 1.58
TSM (mg·L−1) 0.61 475 13.27 40.78 63.12 1.55

In order to enhance the applicability of QAA_v6 in highly turbid waters, five empirical equations,
namely, Equations (6)–(10) have to be calibrated with our in situ data. More specifically, the following
five parameters were estimated: calculated parameters α(λ) and β(λ) instead of 0.52 and 1.7 in
Equation (6), a(λ) at reference wavelength λ0 = 680 nm in Equation(7), Y in Equation (8), adg(443) in
Equation (9) and S in Equation (10). Details of calibration are described as follows.

(1) Calculating new values for spectral parameters α(λ) and β(λ) instead of the
spectrally-independent constants 0.52 and 1.7 (step 0 in Table 3). According to Yang et al. [53],
α(λ) and β(λ) are wavelength dependent, which are calculated by:

rrs(λ) =
Rrs(λ)

α(λ) + β(λ)Rrs(λ)
(17)

where α(λ) = 0.3638 + 8.776 × 10−4λ − 9.193 × 10−7λ2 + 3.174 × 10−10λ3, β(λ) = 1.357 + 8.608 ×
10−4λ − 6.347 × 10−7λ2, λ in nm. Equation (17) was derived from the Aas-Højerslev radiative transfer
model [47,54,55] at solar zenith angle θ0 = 40◦, wind speed = 5 m·s−1, and the wavelength range of 400
to 800 nm with R2 = 0.9995 and R2 = 0.9903 for α(λ) and β(λ), respectively.

(2) Calibrating a(λ0) formula (step 2 in Table 3). a(λ) was significantly underestimated, when
reference wavelength in Equation (7) was accepted as 55X or 670 nm. Through the correlation analysis,
it was found that λ0 = 680 nm is the optimal reference wavelength. Based on our in situ data,
the following equation relating non-water absorption at 680 nm, anw(680), with the spectral ratio
Rrs(680)/Rrs(490) was derived as follows (Figure 3):

anw(680) = 0.9398[
Rrs(680)
Rrs(490)

]
2
+ 0.865

Rrs(680)
Rrs(490)

− 0.0852 (18)

(3) Step 3 is from QAA_v6 (step 3 in Table 3).
(4) Calibrating the Y in Equation (8) (step 4 in Table 3). The unknown parameters m and n were

obtained by fitting a power regression with 466 sets of individual in situ measured data including
bbp(680) and its corresponding Y values derived from Equation (8). The power regression is:

Y = mbbp(680)n (19)

where it was found that m = 1.75 and n = −0.05, with the significance level p < 0.001 (Figure 4).
(5) Step 5 is from QAA_v6 (step 5 in Table 3).
(6) Step 6 is from QAA_v6 (step 6 in Table 3).
(7) Establishing ag(λ) formula (step 7 in Table 3). Though regression analysis, Equation (11) is

fitted by in situ data, where it was found that j1 = 4.802 and j2 = 0.8055, with the significance level
p < 0.001 (Figure 5).
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(8) Step 8 is from QAA_CDOM (step 8 in Table 3). The unknown parameters p and q were obtained
by fitting a power regression with in situ measured data including spectral ratio Rrs(555)/Rrs(490) and
its corresponding S values derived from Equation (10). The power regression is:

S = p[Rrs(555)/Rrs(490)]q (20)

where it was found that p = 0.0112 and q = 1.0401, with the significance level p < 0.001.
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Table 3. A QAA_cj algorithm’s calibration for the Changjiang estuarine and coastal waters.

Steps Property Derivation Approach

Step 0 rrs(λ)

=
Rrs(λ)

α(λ)+β(λ)Rrs(λ)

α(λ) = 0.3638 + 8.776× 10−4λ− 9.193× 10−7λ2 +
3.17× 10−10λ3;
β(λ) = 1.357 + 8.608× 10−4λ− 6.347× 10−7λ2

Semi-analytical

Step 1 u(λ) =
−g0+
√

g2
0+4g1rrs(λ)

2g1
, g0 = 0.089, g1 = 0.1245 Semi-analytical

Step 2 a(680)
= aw(680) + 0.9398x2 + 0.865x− 0.0852
x =

Rrs(680)
Rrs(490)

Empirical

Step 3 bbp(680) =
u(680)a(680)

1−u(680) − bbw(680) Analytical

Step 4 Y = 1.75bbp(680)−0.05 Empirical

Step 5 bbp(λ) = bbp(680)
(

680
λ

)Y
Semi-analytical

Step 6 a(λ) = (1−u(680))bb(λ)
u(λ) Analytical

Step 7 ag(443)
= a(443)− ap(443)− aw(443)
ap(443) = 4.8024bbp(680)0.8055 Empirical

Step 8 ag(λ)
= ag(443)e−S(λ−443), where

S = 0.0112[ Rrs(555)
Rrs(490) ]

1.0401 Semi-analytical

3.2. In Situ Data for QAA_cj Validation

Both QAA_cj and QAA_v6 algorithms are applied separately to test an accuracy of retrieved
optical parameters in the Changjiang estuarine and coastal waters. A reference wavelength λ0 = 670 nm
has been selected for the Rrs(λ) dependence in Equation (7) following the QAA_v6 spectral criterion.

Figure 6 shows the comparison of Y values derived from in situ bbp(λ) by the QAA_v6 (triangles)
and QAA_cj (circles) algorithms based on the validation database. It is clear to be seen that values of Y
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estimated by QAA_cj range from 1.7 to 2.3, which is much closer to the measured values, whereas,
the QAA_v6 estimation is largely underestimated (0.3~1).

Figure 7 shows the comparison of in situ and retrieval results of a(λ), in which two short
wavelengths (e.g., 443 or 555 nm) and two long wavelengths (e.g., 680 or 715 nm) were compared.
Compared with in situ data, QAA_cj has good consistency in short wavelength and long wavelength
bands; however, there is a slight overestimation in the short wavelength spectral range. In comparison,
QAA_v6 has an obvious underestimation, especially in the long wavelength range. The assessment
results for retrieved total absorption from 412 to 715 nm are summarized in Table 4. Statistical results
show that two algorithms are similar in the short wavelength range (412, 443, 490, 555 nm), but QAA_cj
is more accurate than QAA_v6 in the long wavelength domain (660, 680, 715 nm). Specifically,
QAA_cj has a better accuracy in estimating a(λ) than QAA_v6 at 715 nm, for which R2 are 0.73 and
0.30, respectively. Poor RMSE and bias results are mainly caused by the bias of Y value estimation.
In addition, the QAA_v6 algorithm performed better than QAA_cj at 412 and 443 nm, which could be
explained by the inaccuracies caused by the empirical Equation (18).

Since ag and ad have similar absorption features, ag cannot be extracted from the adg by
the QAA_v6 algorithm. Therefore, QAA_cj-derived ag(λ) values were compared only with the
QAA_CDOM-derived ag(λ) values (Figure 8), and the assessment results are shown in Table 5. QAA_cj
has a better accuracy in estimating ag(443) with RMSE, MARE and bias of 0.07, 0.42 and 0.018 m−1

compared with those of 0.25, 2.39 and 0.22 m−1, respectively, from QAA_CDOM. The retrival accuracy
of ag(λ) at wavelengths of 412 and 490 nm is improved as well (Table 5).Remote Sens. 2017, 9, 1192  11 of 19 
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Table 4. Comparison statistics of QAA_cj and QAA_v6 based on in situ dataset collected from the
Changjiang estuarine and coastal waters (N is the number of validation data).

Algorithms N RMSE (m−1) MARE Bias (m−1) R2

a(412)
QAA_cj 49 1.09 0.50 0.66 0.82
QAA_v6 49 1.08 0.48 −0.79 0.71

a(443)
QAA_cj 49 0.91 0.52 0.50 0.75
QAA_v6 49 0.99 0.49 −0.74 0.61

a(490)
QAA_cj 49 0.42 0.34 0.027 0.73
QAA_v6 49 0.93 0.56 −0.71 0.78

a(555)
QAA_cj 49 0.64 0.33 −0.23 0.73
QAA_v6 49 0.93 0.60 −0.68 0.53

a(660)
QAA_cj 49 0.71 0.22 −0.085 0.72
QAA_v6 49 0.80 0.44 −0.62 0.33

a(680)
QAA_cj 49 0.54 0.18 −0.084 0.75
QAA_v6 49 0.88 0.44 −0.62 0.61

a(715)
QAA_cj 49 0.56 0.17 −0.057 0.73
QAA_v6 49 0.95 0.44 −0.78 0.30

Table 5. Comparison statistics between the QAA_cj and QAA_v6 algorithms based on in situ dataset
collected from Changjiang estuarine and its adjacent coastal waters (N is the number of validation data).

Algorithms N RMSE (m−1) MARE Bias (m−1) R2

ag(412) QAA_cj 43 0.12 0.41 0.033 0.92
QAA_CDOM 43 0.41 2.40 0.34 0.61

ag(443) QAA_cj 43 0.07 0.42 0.018 0.90
QAA_CDOM 43 0.25 2.39 0.22 0.56

ag(490) QAA_cj 43 0.035 0.35 0.0023 0.84
QAA_CDOM 43 0.01 2.48 0.11 0.55

3.3. Satellite Data for QAA_cj Validation

QAA_cj (Table 3, steps 0 to 6) and QAA_v6 (steps 0 to 6) are applied toGOCI to validate the
accuracy of a(λ) based on the in situ data (Figure 9, Table 6). When applying to GOCI, QAA_cj has a
consistency with in situ data at 443, 555, 680 nm, of which R2 is larger than 0.8 at 680 nm. It shows that
the QAA_cj yielded a better accuracy in estimating a(680) with RMSE and bias of −0.025 and 0.10 m−1,
compared with those of 0.62 and 0.31 m−1 from QAA_v6. However, the inversion result is slightly
poor at 745 nm (Figure 9, Table 6).

QAA_cj (Table 3, Steps 7 and 8) and QAA_CDOM algorithms are applied to GOCI to validate
the accuracy of ag(λ), compared with in situ data (Figure 10). It is indicated that estimations from
the QAA_CDOM have lower agreement with the in situ values. Meanwhile, QAA_cj has a better
consistency in estimating ag(λ) at 412, 443 and 490 nm, compared with the QAA_CDOM. Remarkably,
the retrieval accuracy is optimal at wavelength of 443 nm, at which MARE is 0.14, R2 is 0.70, whereas
QAA_CDOM yields MARE = 2.34 and R2 = 0.11 (Table 7).
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Table 6. Comparison statistics of QAA_cj and QAA_v6 based on in situ dataset and GOCI-derived at
a(443), a(555), a(680), a(745) (N is the number of validation data).

Algorithms N RMSE (m−1) MARE Bias (m−1) R2

a(443)
QAA_cj 14 0.56 0.25 −0.14 0.50
QAA_v6 14 0.76 0.49 −0.42 0.046

a(555)
QAA_cj 14 0.46 0.29 −0.10 0.69
QAA_v6 14 0.64 0.50 −0.29 0.038

a(680)
QAA_cj 14 0.35 0.11 −0.025 0.80
QAA_v6 14 0.62 0.34 −0.32 0.096

a(745)
QAA_cj 14 1.17 0.44 −1.23 0.28
QAA_v6 14 1.47 0.68 −2.11 0.029

Table 7. Comparison statistics of QAA_cj and QAA_v6 based on in situ dataset and GOCI-derived at
ag(412), ag(443), ag(490). (N is the number of validation data).

Algorithms N RMSE (m−1) MARE Bias (m−1) R2

ag(412) QAA_cj 30 0.029 0.16 0.0026 0.72
QAA_CDOM 30 0.46 2.37 0.36 0.26

ag(443) QAA_cj 30 0.02 0.14 −0.00025 0.70
QAA_CDOM 30 0.31 2.34 0.25 0.11

ag(490) QAA_cj 30 0.017 0.15 −0.0086 0.53
QAA_CDOM 30 0.17 2.06 0.13 0.0001

4. Discussion

CDOM absorption is a major variable in remote sensing algorithms for deriving concentrations
of optically active components of sea water [56]. Based on the spectral absorption characteristic of
CDOM, Del Castillo and Miller [14], D’Sa and Miller [18] and Ficek et al. [13] established statistical
relationships between ag and Rrs ratio (using different wavelengths) in Mississippi River and the Baltic.
Using Rrs(λ) to calculate a and further to separate out adg and aph, semi-analytical models, such as
GSM [23] and QAA [28], were developed based on IOCCG dataset and in situ data, while Brando and
Dekker [5] and Hoge and Lyon [22] developed models using in situ data in Fitzroy Estuary and U.S.
Middle Atlantic Bight.

The QAA_cj algorithm was developed to give an opportunity to obtain more accurate estimates
for both total and partial absorption coefficients in highly turbid waters, such as the Changjiang
estuarine and coastal waters. For this purpose, we calibrated empirical parameters of the QAA_v6 and
QAA_CDOM algorithms. Proofs of improvement made in these algorithms are shown in Tables 4–7 and
Figures 6–10. For example, a total absorption coefficient a(λ) retrieved by QAA_v6 was underestimated
in highly turbid waters, while QAA_cj-based values were closer to in situ data (Table 4, Figure 7). As for
CDOM spectral absorption ag(λ), on the one hand it could not be estimated by the QAA algorithm and
on the other hand it was overestimated by the QAA_CDOM algorithm (Figure 8), while the QAA_cj
retrieved value of ag(443) has RMSE and R2 of 0.07 m−1 and 0.90, respectively, compared with in situ
data (Table 5). Nevertheless, the accuracy of ag(λ) derived from the QAA_cj in highly turbid waters
still remains to be a challenge.

We also wish to note that our findings may have great values not only for numerous scientists and
for decision makers working for the East China estuarine and coastal waters, but also for many other
investigators. As it has been found by Sokoletsky et al. [57], the biogeochemistry-optical relationships
for the East China estuarine and coastal waters are very similar to that of the Gironde Estuary [58] and
the Southern North Sea [59]. Thus, these findings really allow generalizing all conclusions of our study.

Since the aim of the study was the investigation of underwater IOPs, we used a conversion from
the surface remote-sensing reflectance Rrs(λ) to its underwater analog, rrs(λ). Therefore, in this study,
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we used the formula proposed by Sokoletsky et al. [57] to calculate rrs(λ) from Rrs(λ). Sokoletsky
and Shen [47] showed that although relations between Rrs(λ) and rrs(λ) are close for different models,
the particular model parameters may play an important role in the inversion results. In addition,
we have used only clear and cloudless sky conditions to measure Rrs(λ) to do calculations more simple
and closer to remote-sensing results, Figure 2b.

Equation (4) is an approximation to the exact solution of the radiative transfer equation [60],
which may cause a normalized (to the mean value) root-mean-square error of about 20% [61]. Moreover,
it is inappropriate to regard parameters of this equation (i.e., g0 and g1) as constants. These parameters
are associated with the solar zenith angle and water properties, and vary with water composition
scattering properties [62]. Consequently, g0 and g1 have influence on bb(λ), when using QAA, it will
further affect the inversion accuracy of a(λ). Lee et al. [62] partitioned and weighted parameter g
according to the molecular (water itself) and particulate contributions to the backscattering coefficient.
In this study, however, this approach was not exploited.

According to Lee et al. [63], the a(λ0) and Y have an impact on performance of the QAA. Y
is a parameter which describes spectral variation of bbp(λ) [64], and the variation of Y depends on
water composition and size of particles according to the Mie theory [65]. Yang et al. [38] found
that Y values have a great impact on the retrieval results, particularly in the shorter spectral bands.
Figure 6 shows that the QAA_v6 algorithm has a low accuracy in estimating Y, which perhaps
caused by the insufficient capability of this algorithm considering the complex optical features of the
Changjiang estuarine and coastal waters. The ranges of Y values derived from the QAA_cj and the
QAA_v6 are from 1.5 to 2.5 and from 0.3 to 1, respectively (Figure 6). Even though our algorithm for Y
(Equation 19) does not yield a reasonable correlation with the measured values (Figure 6), we have
chosen to keep it for generalization purposes, and we are planning to improve the Y model in the
following study.

In this study, we have changed the reference wavelength from 670 nm to 680 nm. Although it is an
insignificant change of spectral, the retrieval accuracy of calibrated formula was improved effectively
when applied to Changjiang estuarine and coastal waters (Tables 4 and 5). We reproduced a(λ) and
ag(λ) from the GOCI images using the QAA_v6, QAA_CDOM and QAA_cj algorithms, and presented
the comparison results in Figures 9 and 10. As shown in Figure 9, differences between our algorithm
and in situ data is smaller than those between the QAA_v6 and in situ data for the whole blue to
near infrared spectral range. Similar findings were found for the ag(λ) retrieving in the blue spectral
domain (Figure 10).

Some contradicting results derived from QAA algorithm were discovered from existing literature
as well. For example, investigations by Qin et al. [66] and Shanmugam et al. [67] have shown that
there is a lower accuracy for retrieving absorption components in some regions of the ocean by QAA.
Zheng et al. [68] have also shown that the accuracy of QAA algorithm (v5) varied greatly in deriving
a(λ) (from 2% to 28%) and bb(λ) (from 8% to 14%) depending on wavelength and ocean site. In addition,
Zhu et al. [69] compared and verified 15 CDOM retrieval algorithms (empirical, semi-analytical,
optimization, and matrix inversion algorithms), and pointed out that the QAA_CDOM algorithm was
optimal. The reason of this is that CDOM has negligible backscattering, whereas inorganic particles
have strong backscattering, even in longer wavelength [27]. Several researches find that QAA_CDOM
has a good accuracy in obtaining the ap(λ) from bbp(λ) [26,27,69]. However, QAA_CDOM has
some empirical parameters, which are required to be calibrated according to specific study area.
Figure 10 shows that after calibration, ag(λ) has a significant improvement at 412, 443, 490 nm. It seems
obvious that better accuracy in ag(λ) leads to improvement of a retrieval accuracy for aph and ad.

5. Conclusions

Through calibration and validation, we improved empirical parameters of QAA_v6 and
QAA_CDOM IOPs algorithms, and thus developed a new algorithm, namely, QAA_cj, which is
suitable for the highly turbid Changjiang estuary and adjacent areas. Results of validation prove
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that QAA_cj has a better accuracy in retrieving a(λ) and ag(λ), compared with the QAA_v6 and
QAA_CDOM. a(λ) derived from QAA_cj is in a good agreement with in situ and GOCI data, where
RMSE ranges from 0.35 to 1.17 m−1, MARE from 0.11 to 0.52, bias from −1.23 to 0.66 m−1 and R2 is
from 0.28 to 0.82. As for ag(λ), RMSE ranges from 0.035 to 0.12 m−1, MARE from 0.14 to 0.42, bias from
−0.0086 to 0.033 m−1 and R2 is from 0.53 to 0.92.

The improvement of a(λ) and ag(λ) retrieval accuracy will help to provide theoretical basis for
the release of satellite product and further study on optical properties. Reliable CDOM products
can provide information on the internal movements and nutrients structure of Changjiang diluted
water and mechanisms of hydrodynamics in the Changjiang estuarine and coastal waters. The trace of
CDOM can advance our understanding of the land-ocean interaction processes through monitoring
spatial-temporal distribution of the river plume into sea. In the future, we will focus on exploring the
relationships between environmental factors and optical parameters, in combination with satellite data
and physical models.
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